NSERC fundings 1. ``Sharp traveling
waves for degenerate diffusion equations with delay",
NSERC Individual
Discovery Grant 2022-03374, years:
2022-2027. $27,000/year, in total $135,000
2. ``Non-monotone traveling waves for reaction-diffusion equations with delay", NSERC Individual
Discovery Grant 354724-2016, years:
2016-2022. $18,000/year, in total $108,000 3. ``Damped Euler-Poisson equations
and nonlinear diffusion waves", NSERC Individual
Discovery Grant 354724-2011, years: 2011-2016. $10,000/year, in total $50,000
4. ``Phase transitions and partial
differential equations of mixed type", NSERC Individual
Discovery Grant 354724-2008, years: 2008-2011. $14,000/year, in total $42,000
FRQNT fundings:
5. ``Euler-Poisson équations de modèles semi-conducteurs avec limite sonique
" FRQNTgrant 256440, years 2018-2021. $32,000/year, in total $96,000 6. ``Stabilitédes ondes oscillatoires de
déplacement
pour les équations de réaction-diffusionà
retardement", FRQNT
grant 192571, years: 2015-2018.$36,000/year, in total $108,000 7. ``Études des
équations d'évolution non linéaires de
la dynamique des fluides", FRQNTgrant
164832, years: 2012-2015. $28,000/year, in total $84,000 CEGEP
International
8. ``Collaboration internationale de la recherche scientifique à Beijing",Fédération de cégeps, year: 2014-2015. $3,000 9. ``Collaboration
internationale de
la recherche scientifique à Italie ", CEGEP
International, year: 2013-2014.$3,000
10. ``Collaboration internationale de
la recherche scientifique à Hong Kong et au Japon
", CEGEP
International, year: 2012-2013. $3,000
I also serve as the editorial board for some SCI journals:
Here is a full list of my publication. At least 4 papers are the most cited papers in the top 1% of the world for mathematics in this decade by ESI (see 2018 Clarivate, Web of Science). For reviews of my publications in Mathematical Reviews,
look
here. For citations of my publication, please look at Google Scholar.
A. Preprints /
Submitted Papers
[144] X. Li,
J. Li, M. Mei, J.-C. Nave, Nonlinear stability of viscous shock waves
for Burgers equations with critical fast diffusion and singularity,
2024, preprint. https://arxiv.org/abs/2402.09630
[143] S. Xu, M. Mei, J.-C. Nave, W. Sheng, Viscous
shocks to Burgers equations with fast diffusion and singularity, 2024,
preprint. https://arxiv.org/abs/2404.10941
B. Accepted /
Published Papers (all papers can be downloaded by clicking [PDF] at the end of each item)
[142] C. Xie, S. Fang, M. Mei, and Y. Qin, Asymptotic behavior for the fast diffusion equation with absorption and singularity, J. Differential
Equations, 414 (2025), 722-745. [PDF]
[141] Y.-H. Feng, R. Li, M. Mei, and S. Wang, Global convergence rates in zero-relaxation limits for non-isentropic Euler-Maxwell equations, J. Differential
Equations, 414 (2025), 372-404. [PDF]
[140] Y.-H. Feng, H. Hu, M. Mei, G. Tsotsgerel, and G. Zhang, Relaxation time limits of subsonic steady states for multimensional
hydrodynamic model of semiconductors, SIAM J. Math. Anal.. 56 (2024), 6933-6962. [PDF]
[139] T. Xu, S. Ji, M. Mei,
and J. Yin, Global Stability of Sharp Traveling Waves for Combustion Model with Degenerate Diffusion, J. Dyn. Differential Equations. (2024), https://doi.org/10.1007/s10884-024-10401-7. [PDF]
[138] T. Xu, S. Ji, M. Mei,
and J. Yin, Convergence to sharp traveling waves of soutions for Burgers-Fisher-KPP equations with degenerate diffusion, J. Nonlinear Sci. 34 (2024), article #44, [PDF]
https://doi.org/10.1007/s00332-024-10021-x
[137] Y.-H. Feng, H. Hu, M. Mei,
and Y. Zhu, 3D full hydrodynamic model for semiconductor
optoelectronic devices: stability of thermal equilibrium
states, J. Differential
Equations, (2024), in press.
[136] Y.-H. Feng, H. Hu, M. Mei,
and Y.-J. Peng, Relaxation time limits of subsonic steady states for
hydrodynamic model of semiconductors with sonic or non-sonic boundary, SIAM J. Math. Anal.. 56 (2024), 3452-3477. [PDF]
[135] Y.-H. Feng, H. Hu, and M. Mei, Structural stability of subsonic steady states to the hydrodynamic model for semiconductors with sonic boundary, Nonlinearity, 37 (2024), 025020. https://doi.org/10.1088/1361-6544/ad1c2e [PDF]
[134] S. Zhao, M. Mei,
and K. Zhang, Structural stability of subsonic steady-states to the
bipolar Euler-Poisson equations with degenerate boundary, J. Differential
Equations, 395 (2024), 125-152. [PDF].
[133] R. Peng, J. Li, M. Mei, and K. Zhang, Characteristic boundary layers in the vanishing viscosity limit for the Hunter-Saxton equation, J. Differential
Equations, 386 (2024), 164-195. [PDF].
[132] S. Li, M. Mei, K. Zhang, and G. Zhang, Subsonic steady-states for bipolar hydrodynamic model for semiconductors, J. Differential
Equations, 382 (2024), 274-301. [PDF].
[131] M. Mei and R. Xie, Stability of traveling wavefronts for advection–reaction–diffusion
equation, Appl. Math. Lett.,154(2022),Paper No. 109075. [PDF]
[130] R. Gao, D. Li,M. Mei, and D. Zhao, A decoupled linearly implicit and high-order structure-preserving scheme for Euler-Poincare equations, Math. Compt. Simulation, 218 (2024), 679-703. [PDF]
[129] J. Xu , S. Chen, M. Mei, Y. Qin, Unipolar Euler-Poisson equations with time-dependent damping: blow-up and global existence, Commun. Math. Sci., 22(2024),no. 1,181–214. [PDF]
[128] J. Xu, M. Mei, and S. Nishibata, Structural
stability of radial interior subsonic steady-states to n-D
Euler-Poisson system of semiconductor models with sonic boundary, SIAM J. Math. Anal.. 55 (2023), 7741--7761. [PDF]
[127] L. Chen, M. Mei, and G. Zhang, Radially symmetric spiral flows of the compressible
Euler-Poisson system for semiconductors, J. Differential
Equations, 373 (2023), 359-388. [PDF].
[126]
L. Chen, D. Li, M. Mei, and G. Zhang, Quasi-neutral
limit to steady-state hydrodynamic model of semiconductors with
degenerate boundary, SIAM J. Math. Anal.. 55 (2023), 2813--2837. [PDF]
[125] Y.-H. Feng, X. Li, M. Mei, and S. Wang, Zero-Relaxation Limits of the Non-Isentropic Euler–Maxwell
System for Well/Ill-Prepared Initial Data, J. Nonlinear Sci. 33 (2023), article # 71. [PDF]
[124] H. Hu, H. Li, M. Mei, and L. Yang, Structural stability of subsonic solutions to a steady hydrodynamic
model for semiconductors: From the perspective of boundary data, Nonlinear Anal. Real World Appl. 74 (2023), paper #103937. [PDF]
[123]. S. Ji and M. Mei, Optimal decay rates of the compressible Euler equations with time-dependent damping in R^n Rn: (II) over-damping case, SIAM J. Math. Anal.. 55 (2023), 1048-1099. [PDF]arXiv: 2006.00403
[122]. S. Ji and M. Mei, Optimal decay rates of the compressible Euler equations with time-dependent damping in R^n Rn: (I) under-damping case, J. Nonlinear Sci. 33 (2023), article # 7. https://doi.org/10.1007/s00332-022-09865-y [PDF] .
[121] R. Huang, M. Mei, Z. Wang, Threshold convergence results for a nonlocal time-delayed diffusion equation, J. Differential
Equations, 364 (2023), 76-106. [PDF].
[120] Y.-H. Feng, M. Mei, and
G. Zhang, Nonlinear structural stability and linear dynamic
instability of transonic steady-states to a hydrodynamic model for
semiconductors, J. Differential
Equations, 344 (2023), 131-171. [PDF] arXiv.2202.03475.
[119] M. Mei, T. Xu, J. Yin, Monotone reducing mechanism in delayed population model with degenerate diffusion, J. Differential
Equations, 342 (2023), 490-500. [PDF]
[115] C. Du, C. Liu, M. Mei, Time-periodic solutions to a three-phase model of viscoelastic fluid flow, Discrete
Contin. Dyn. Syst. -- Series A, 43 (2023) DOI: 10.3934/dcds.2022149. [PDF]
[114] T. Xu, S. Ji, M. Mei, J. Yin, Critical sharp front for doubly nonlinear degenerate diffusion equations with time delay, Nonlinearity, 35 (2022), 3358-3384. [PDF]
[113] T. Xu, S. Ji, M. Mei, J. Yin, Propagation speed of degenerate diffusion equations with time delay, J. Dyn. Differential Equations, 34 (2022), https://doi.org/10.1007/s10884-022-10182-x. [PDF]
[112] R.
Peng, J. Li, M. Mei, K. Zhang, Convergence rate of the vanishing
viscosity limit for the Hunter-Saxton equation in the half space, J. Differential
Equations, 328 (2022), 202-227. [PDF]
[111] R. Meng, L.-S. Mai,
M. Mei, Free boundary value problem for damped Euler
equations and related models with vacuum, J. Differential
Equations, 321 (2022), 349-380. (32 pages). [PDF]
[110] M. Mei and Y. Wang, Existence of traveling wave fronts of delayed Fisher-type equations with degenerate nonlinearities.Appl. Math. Lett.,129(2022),Paper No. 107937, 8 pp. [PDF]
[109]. Yue-Hong Feng, Xin Li, M. Mei, Shu Wang, Yang-Cheng Cao, Convergence to Steady-States of Compressible
Navier–Stokes–Maxwell Equations, J. Nonlinear Science, Vol. 32,, (2022),Article 2 (32 pages).
https://doi.org/10.1007/s00332-021-09763-9 [PDF]
[108]. La-Su Mai and M. Mei, Newtonian limit for the relativistic Euler-Poisson
equations with vacuum, J. Differential
Equations, 313 (2022), 336-381. (46 pages). [PDF]
[107]. Changchun
Liu, M. Mei, Jiaqi Yang, Gloabl stability of traveling waves for
nonlocal time-delayed degenerate diffusion equation, J. Differential
Equations, 306 (2022), 60-100. (41 pages). [PDF]
[106]. Jiaqi Yang, Changchun Liu, M. Mei,
Global solutions for bistable degenerate reaction–diffusion equation with time-delay and nonlocal effect, Appl. Math. Lett.125 (2022), 107726. [PDF].
[105]. Hui Sun, M. Mei, Kaijun
Zhang, Sub-exponential convergence to steady-states for 1-D
Euler-Poisson equations with time-dependent damping, Commun. Math. Sci., Vol. 20, (2022). [PDF]
[104] Liang Chen, M. Mei,
Guojing Zhang and Kaijun Zhang, Transonic steady-states of
Euler-Poisson equations for semiconductor models with sonic boundary in
multiple dimensions, SIAM J. Math. Anal.. Vol. 54, No. 1, (2022), pp. 363--388 [PDF]
[103] Yue-Hong Feng, Xin Li, M. Mei, Shu Wang, Asymptotic decay of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell systems, J. Differential
Equations, 301 (2021), 471-542. (72 pages). [PDF]
[102] Mengmeng
Wei, M. Mei, Guojing Zhang and Kaijun Zhang, Smooth transonic
steady-states of hydrodynamic model for semiconductors, SIAM J. Math. Anal.. Vol. 53, No.4, (2021), 4908-4932. [PDF]
[101]. F. Di Michele, M. Mei, B. Rubino,and R. Sampalmieri, Existence and uniqueness for a stationary hybrid quantum hydrodynamical model with general pressure functional, Commun. Math. Sci., Vol 19, No. 8, (2021), 2049-2079. [PDF]
[100]. Liang Chen, M. Mei, Guojing Zhang, and Kaijun Zhang, Radial solutions of the hydrodynamic model of semiconductors with sonic boundary, J. Math. Anal. Appl.,
501 (2021), 125187. arXiv: 2010.04867 [PDF]
[99].M. Mei, Xiaochun Wu, and Yongqian
Zhang, Stability of
steady-states for 3-D hydrodynamic model of unipolar semiconductor with
Ohmic contact boundary in hollow ball, J. Differential
Equations, 277 (2021), 57-113. (57 pages). [PDF]
[98]. Liping Luan, M. Mei, Bruno Rubino, Peicheng Zhu, Large-Time
Behavior of Solutions to Cauchy Problem for Bipolar Euler-Poisson
System with Time-Dependent Damping in Critical Case, Commun. Math. Sci., 19 (2021), 1207--1231 . [PDF].
[97]. Pengcheng Mu, M. Mei, and Kaijun Zhang, Subsonic
and supersonic steady-states of bipolar hydrodynamic model of
semiconductors with sonic boundary, Commun. Math. Sci., Vol. 18, No. 7, (2020), pp. 2005--2038. [PDF].
[96]. Jiaqi Yang, M. Mei, and Yang Wang,Novel convergence to steady-state for Nicholson’s blowflies equation with Dirichlet boundary, Appl. Math. Lett. 114 (2021), 106895. [PDF]
[95]. Haitong Li, Jingyu Li, M. Mei, and Kaijun Zhang,Optimal convergence rate to nonlinear diffusion waves for Euler equations with critical overdamping, Appl. Math. Lett. 113 (2021), 106882. [PDF]
[94]. Shifeng Geng, Yanping Lin, M. Mei, Asymptotic behavior of solutions to Euler equations with Ttme-dependent damping in critical case, SIAM J. Math. Anal. Vol. 52, (2020), 1463--1488. [PDF]
[87]. Shanming Ji, M. Mei, Zejia Wang, Dirichlet problem for the Nicholson's blowflies equation with density-dependent diffusion, Appl. Math. Lett. 103 (2020), 106191. [PDF]
[86]. Hui Sun, M. Mei, Kaijun Zhang, Large time behaviors of solutions to the unipolar hydrodynamic model of semiconductors with physical boundary effect, Nonlinear Anal. Real World Appl. 53 (2020), 103070. [PDF]
[85]. F. Di Michele, M. Mei, B. Rubino, R. Sampalmieri, Stationary
solutions for a new hybrid quantum model for semiconductors with
discontinuous pressure functional and relaxation time,Math. Mech. Solids24(2019),no. 7,2096–2115. [PDF]
[84]. Haitong Li, Jingyu Li, M. Mei, and Kaijun Zhang, Asymptotic behavior of
solutions to bipolar Euler-Poisson equations with time-dependent
damping, J. Math. Anal. Appl.,473 (2019) 1081--1121. [PDF],
[83]. M. Mei,Kaijun Zhang and Qifeng Zhang, Global stability of critical traveling waves with oscillations for time-delayed reaction-diffusion equation, Int. J. Numer. Anal. Model., 16 (3) (2019), 375--397. [PDF]
[73]. H. Hu, M. Mei, and K. Zhang, Relaxation limit in the bipolar semiconductor hydrodynamic model with non-constant doping profile, J. Math. Anal. Appl.,448 (2017) 1175--1203. [PDF],
[72]. Q. Zhang, M. Mei, and C.-J. Zhang, Higher-order linearized multistep finite difference methods
for non-Fickian delay reaction-diffusion equations, Int. J. Numer. Anal. Model., 14 (2017) 1--19. [PDF] [71]. F. Di Michele, M. Mei,B. Rubino and R. Sampalmieri, Stationary solutions to hybrid quantum hydrodynamical
model of semiconductors in bounded domain, Int. J. Numer. Anal. Model..Vol. 13 No. 6, (2016), 898--925. [PDE]
[68]. Z.-X. Yu and M. Mei, Uniqueness and stability of traveling waves for cellular neural networks with multiple delays, J. Differential
Equations, 260 (2016) , 241--267. [PDF] [Most cited paper]
[63]. C.-K.
Lin, C.-T.
Lin, Y.
Lin, and M. Mei, Exponential Stability of Nonmonotone Traveling Waves for Nicholson's
Blowflies Equation, SIAM J. Math. Anal. Vol. 46 (2014), pp. 1053-1084. [PDF] [Most cited paper]
[61]. Z.-X. Yu, M. Mei, Asymptotics and uniqueness of travelling waves for
non-monotone delayed systems on 2D lattices, Canadian Math. Bulletin, 56 (2013), 659--672. [PDF]
[59]. F.-M.
Huang, M. Mei, Y. Wang, and T. Yang, Long-time behavior of solutions for bipolar
hydrodynamic model of semiconductors with boundary effects, SIAM J. Math. Anal., Vol.
44, (2012),
1134--1164. [PDF]
[55]. F.-M.
Huang, M. Mei, Y. Wang, Large-time behavior of solutions to n-dimensional bipolar
hydrodynamical model of semiconductors, SIAM J. Math. Anal., Vol.
43, No.4, (2011),.1595--1630.
[PDF]
[54]. F.-M.
Huang, M. Mei, Y. Wang and H. Yu, Asymptotic convergence to planar stationary waves for
multi-dimensional unipolar hydrodynamic model of semiconductors, J. Differential
Equations, 251 (2011), 1305–1331. [PDF]
[53]. F.-M.
Huang, M. Mei, Y. Wang and H. Yu, Asymptotic convergence to stationary waves for unipolar
hydrodynamic model of semiconductors, SIAM J. Math. Anal., Vol.
43,
No.1, (2011), 411-429.
[PDF]
[52]. M. Mei, C.H. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for
nonlocal time-delayed reaction-diffusion equations,
SIAM J. Math. Anal., Vol.
42,
No.6 (2010), 2762--2790. [PDF],
Vol. 44,
No.1 (2012), pp 538--540. [Erratum]
[51]. M. Mei, Best asymptotic profile for hyperbolic p-system with
damping, SIAM J. Math. Anal.,
Vol. 42,
No.1 (2010), 1-23. [PDF]
[50]. H. Ma, M. Mei, Best asymptotic profile for linear damped p-system with
boundary effect, J. Differential
Equations, 249
(2010), 446--484. [PDF]
[47]. D. Wei,
J. Y. Wu, M. Mei, Remark on critical speed of traveling wavefronts for
Nicholson's blowflies equation with diffusion, Acta
Math. Sci., 30B
(5), (2010) . [PDF]
[42]. M. Mei, Y. S. Wong, Novel stability results for travelling wavefronts in
an
age-structured
reaction-diffusion population model , Math.
Biosci. Engin., 6
(2009), 743--752. [PDF]
[41]. M. Mei, Stability of Traveling Wavefronts for Time-Delayed
Reaction-Diffusion Equations, Proceedings of the 7th
AIMS International Conference ( Texas, USA), Discrete
Cont.
Dyn. Syst., Supplement 2009, 526--535. [PDF]
[26]. L. Hsiao, H.-L.
Li, M. Mei,Convergence rates to superposition of
two travelling waves of the solutions to a relaxation hyperbolic
conservation laws with boundary effects,
Math. Models
Methods
Appl. Sci.11 (2001)
1143--1168. [PDF]
[25]. P. Marcati, M. Mei,Convergence to nonlinear diffusion waves for solutions of
the initial
boundary problem to the hyperbolic conservation laws with damping,
Quart.
Appl. Math.58 (2000) 763--784.
[PDF]
[23]. S.
Kinami, M. Mei,
S. Omata, Convergence to diffusion waves
of the solutions for Benjamin-Bona-Mahony-Burgers equations, Appl.
Anal. Vol.75 No.3-4 (2000). [PDF]
[22]. M. Mei,
B. Rubino, Convergence to traveling
waves with decay rates for solutions of the initial boundary
problem to a nonconvex relaxation model , J.
Differential
Equations, 159 (1999) 138--185.
[PDF]
[21]. M. Mei, L^q-decay rates of solutions for
Benjamin-Bona-Mahony-Burgers
equations, J.
Differential Equations, 158
(1999) 314--340. [PDF]
[19]. M. Mei, Asymptotic behavior of solutions for a degenerate
hyperbolic system of viscous conservation laws, Z. Angew.
Math. Phys.50 (1999) 617--637.
[PDF]
[18]. M. Mei, Remark on stability of shock profiles for nonconvex scalar
viscous conservation laws, Bull.
Inst. Math. Acad. Sinica, 27
(1999) 213--226. [PDF]
[15]. M. Mei, Large-time behavior of solution for
generalized Benjamin-Bona-Mahony-Burgers equations, Nonlinear
Analysis, TMA33 (1998)
699-714. [PDF]
[14]. M. Mei, A.
Matsumura, Nonlinear stability
of viscous shock profile for a non-convex system of
viscoelasticity, Osaka J. Math.34
(1997) 589-603. [PDF]
[13]. M. Mei, Stability of traveling wave
solutions
for nonconvex equations of barotropic viscous gas, Osaka J.
Math.34 (1997) 303-318. [PDF]
[12]. M. Mei,
K. Nishihara, Nonlinear stability
of travelling waves for one dimensional viscoelastic materials
with non-convex nonlinearity, Tokyo J.
Math.20(1997) 241-264. [PDF]
[11]. M. Mei, Long-time behavior of solution for Rosenau-Burgers
equation (I), Appl.
Anal.63 (1996) 315-330. [PDF]
[10]. M. Mei, Long-time behavior of solution for Rosenau-Burgers
equation (II), Appl.
Anal.68 (1998) 333--356. [PDF]
[9]. M. Mei (梅茗 メイ ミン), Nonlinear Stability of Traveling WavesSolutions for Non-Convex Viscous Conservation Laws (非凸性を持つ粘性的保存則に対する進行波解の非線形漸近安定性), Ph.D. Thesis (博士論文) , Kanazawa University (金沢大学), Japan, March of 1996. [PDF]
[7]. M. Mei, Y.-K. Xiao: Analysis for a mathematical model of
the
pattern formation on shells of mollusks, Appl.
Math.-JCU (高校应用数学学报英文版)10B (1995) 411-418. [PDF]
[5]. 梅茗,肖应昆, 具有非局部边值约束的中子迁移问题单调衰减解(Monotonic decay of solutions for nonlocal
neutron transport equation with boundary effect), 应用数学(Mathematica Applicata),1992年第5卷第4期 (Vol. 5, No. 4, (1992)),109--112. [PDF]
[4]. 梅茗,曹德芬,肖应昆, 一类反应扩散系统解的全局稳定性和渐近性(Global asymptotic stability of solutions for a class of reaction-diffusion system), 数学物理学报 (Acta
Math. Sci. ),1992年第12卷 增刊 (Vol. 12, Suppl. (1992)),119--121. [PDF]
[3]. 梅茗, 高
维广义神经传播方程Cauchy问题整体光滑解 (Global smooth solutions of the Cauchy
problem for the generalized equation of pulse transmission with
higher dimension)应用数学学报(中文版)(Acta Mathematicae Applicatae Sinica), 1991年04期 450-461. (硕士论文 master thesis) [PDF]
[2]. 梅茗,Maxwell—Boltzmann方程非负解的极值原理和渐近性质 (Maximum principles and asymptotic properties of nonnegative solutions to the Maxwell-Boltzmann equation), 数学杂志(J. Math.(Wuhan)),1990年第10卷第3期 341-348页. [PDF]