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a b s t r a c t

This paper is concerned with the time delayed Nicholson’s blowflies equation with
degenerate diffusion. We prove the existence and uniqueness of the positive steady
state solution under the Dirichlet boundary condition and we show the stability
of the nontrivial steady state.
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1. Introduction and preliminaries

We consider the following degenerate diffusion Nicholson’s blowflies equation with time delay under
homogeneous Dirichlet boundary condition⎧⎪⎪⎨⎪⎪⎩

∂u(t, x)
∂t

= D∆um(t, x) − du(t, x) + pu(t− r, x)e−au(t−r,x), x ∈ Ω , t > 0,
u(t, x) = 0, x ∈ ∂Ω , t > 0,
u(s, x) = u0(s, x), x ∈ Ω , s ∈ [−r, 0],

(1.1)

where Ω ⊂ Rn (for the spatial dimension n ≥ 1) is a bounded domain with smooth boundary ∂Ω , r ≥ 0,
m > 1, D > 0, p > d > 0, a > 0, and the initial condition u0(s, x) ≥, ̸≡ 0. For the sake of convenience, we
denote the Nicholson’s birth rate function b(u) := pue−au. Here u(t, x) is the mature population of a species
at time t and location x, b(u(t − r, x)) is the birth function, r ≥ 0 is the time delay, D > 0 represents the
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diffusivity of the population, and d(u) is the death rate function. The diffusion term D∆um (with m > 1)
is considered to be in the form of porous medium type, which is dependent on the population density due
to the population pressure [1,2].

In contrast to the linear diffusion in earlier theoretical studies, many species exhibit positive density-
dependent dispersal [3,4]. Individuals tends to migrate from high-populated regions to the sparse regions
due to the population pressure and fierce competition for resources. Aronson [3] described this diffusive
mechanism with a density-dependent diffusion coefficient D(u) = um−1,m > 1. Hence, a natural question
is to investigate the population dynamics model with density-dependent diffusion and time delay.

The steady states ϕ(x) of (1.1) satisfy the following degenerate elliptic Dirichlet problem:{
−D∆ϕm(x) + dϕ(x) = pϕ(x)e−aϕ(x), x ∈ Ω ,

ϕ(x) = 0, x ∈ ∂Ω .
(1.2)

For the linear diffusion case of (1.1) (i.e., m = 1), it is proved that the elliptic problem (1.2) admits a
unique positive solution if and only if p − d > Dλ1, where λ1 > 0 is the principal eigenvalue of −∆ in
Ω with Dirichlet boundary condition, see Hess [5], So and Yang [6]. More importantly, it is shown in [6]
that the asymptotic behavior of solutions u(t, x) for (1.1) depends on the birth rate p and death rate d:
(i) if p − d < Dλ1, then u(t, x) converges to the zero solution; (ii) if p − d > Dλ1 and p/d ∈ (1, e2), then
u(t, x) converges to the positive steady states ϕ(x) of (1.2). Roughly speaking, the zero solution is globally
attractive if the growth rate p − d is small while the positive steady state is globally attractive if p − d is
large (with p/d < e2).

Here for the degenerate diffusion case (i.e., m > 1), we show a different dynamical behavior of solutions
to (1.1). The degenerate elliptic problem (1.2) always admits a unique positive steady state solution ϕ(x)
for all the p > d, and this steady state ϕ(x) is time-globally stable when p/d ∈ (1, e). In contrast to the
linear diffusion case, the zero solution is not attractive no matter how small the growth rate p − d is. This
indicates that the nonlinear diffusion allows the species to survive even for small growth rate.

2. Main results

Since the problems (1.1) and (1.2) are both degenerate at where u(t, x) = 0 (including the boundary
∂Ω due to the homogeneous Dirichlet boundary condition), we employ the following definitions of (weak)
solutions.

Definition 2.1. A function u ∈ L∞((0,+∞) × Ω) is called a weak solution of (1.1) if u ≥ 0, ∇um ∈
L∞(0,+∞;L2(Ω)), u(t, x) = 0 in the sense of traces at (t, x) ∈ (0,+∞) × ∂Ω , and for any T > 0 and
ψ ∈ C∞

0 ((−r, T ) × Ω)

−
∫ T

0

∫
Ω

u(t, x)∂ψ
∂t
dxdt+D

∫ T

0

∫
Ω

∇um · ∇ψdxdt+
∫ T

0

∫
Ω

du(t, x)ψ(t, x)dxdt

=
∫
Ω

u0(0, x)ψ(0, x)dx+
∫ max{T,r}

r

∫
Ω

b(u(t− r, x))ψ(t, x)dxdt

+
∫ min{T,r}

0

∫
Ω

b(u0(t− r, x))ψ(t, x)dxdt.

Definition 2.2. A function ϕ ∈ L∞(Ω) is called a bounded positive weak solution of (1.2) if ϕ(x) ≥ 0,
∇ϕm ∈ L2(Ω), ϕ(x) = 0 in the sense of traces at x ∈ ∂Ω , and for any ψ ∈ C∞

0 (Ω)

D

∫
Ω

∇ϕm · ∇ψdx+
∫
Ω

dϕ(x)ψ(x)dx =
∫
Ω

pϕ(x)e−aϕ(x)ψ(x)dx.
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Our main results are stated as follows.

Theorem 2.1. For any p > d, the degenerate elliptic problem (1.2) admits a unique positive solution ϕ(x)
as defined in Definition 2.2.

Theorem 2.2. If p/d ∈ (1, e) and the initial condition 0 ≤ u0 ∈ L∞, um0 (s, x) ≥ δϕ1(x) for s ∈ [−r, 0] and
x ∈ Ω , where δ > 0 and ϕ1(x) is the principal eigenfunction of −∆ in Ω with Dirichlet boundary condition.
Then the solutions of (1.1) converge to the positive steady state ϕ(x) of (1.2) in C(Ω).

We formulate the comparison principle of the degenerate diffusion equation (1.1) and the degenerate
elliptic problem (1.2).

Lemma 2.1. Let ϕ1(x) and ϕ2(x) be non-negative functions such that ϕmi (x) ∈ H1(Ω) for i = 1, 2,
ϕ1(x) ≥ ϕ2(x) in the sense of traces at x ∈ ∂Ω , and

−D∆ϕm1 (x) + dϕ1(x) +Kϕ1(x) ≥ −D∆ϕm2 (x) + dϕ2(x) +Kϕ2(x),

in the sense of distributions, where K ≥ 0 is a constant. Then ϕ1(x) ≥ ϕ2(x) a.e. on Ω .

Proof. This is proved by testing the differential inequality with ψ(x) := (ϕm2 (x) − ϕm1 (x))+, since
(ϕm2 (x) − ϕm1 (x))+ ∈ H1

0 (Ω). □

For the degenerate diffusion equation, we apply the approximate Hohmgren’s approach (see Theorem
6.5 in [7], Chapter 1.3 and Chapter 3.2 in [8]) to derive the comparison principle. See also the comparison
principle in [9–11] for degenerate diffusion equations.

Lemma 2.2. Let T > 0, QT := (0, T ) × Ω , and the function space E = {u ∈ L∞(QT );u ≥ 0,∇um ∈
L2((0, T );L2(Ω))}, u1, u2 ∈ E, u1(t, x) ≥ u2(t, x) on (0, T ) × ∂Ω and u1(0, x) ≥ u2(0, x) on Ω in the sense
of traces, and u1, u2 satisfy the following differential inequality

∂u1

∂t
−D∆um1 + du1 ≥ ∂u2

∂t
−D∆um2 + du2, x ∈ Ω , t > 0,

in the sense of distributions. Then u1(t, x) ≥ u2(t, x) almost everywhere in QT .

Proof. This lemma can be regarded as a simple case of a variation of Lemma 4.1 in [10]. Here we omit the
details for simplicity. □

For any p > d, we apply the comparison principle Lemma 2.1 and the monotone iteration method to show
the existence of positive steady state solution of the degenerate elliptic problem (1.2). The following upper
and lower solutions are defined

ϕ(x) := 1
a

ln p
d
, ϕ(x) := εϕ

1
m
1 (x), x ∈ Ω , (2.1)

where ε > 0 and ϕ1(x) is the principal eigenfunction (corresponding to the principal eigenvalue λ1 > 0) of
−∆ in Ω with Dirichlet boundary condition.

Definition 2.3. A function ϕ ∈ L∞(Ω) is called a bounded positive weak lower (or upper, respectively)
solution of (1.2) if ϕ(x) ≥ 0, ∇ϕm ∈ L2(Ω), ϕ(x) ≥ 0 (ϕ(x) = 0) in the sense of traces at x ∈ ∂Ω , and for
any ψ ∈ C∞

0 (Ω)

D

∫
Ω

∇ϕm · ∇ψdx+
∫
Ω

dϕ(x)ψ(x)dx ≥ (≤)
∫
Ω

pϕ(x)e−aϕ(x)ψ(x)dx.
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Lemma 2.3. The functions ϕ(x) and ϕ(x) defined in (2.1) are upper and lower solutions for the degenerate
elliptic problem (1.2) and ϕ(x) ≤ ϕ(x) for x ∈ Ω provided that ε is sufficiently small.

Proof. The constant function ϕ(x) satisfies that dϕ(x) ≡ pϕ(x)e−aϕ(x). We only need to check the lower
solution ϕ(x) such that

−D∆ϕm(x) + dϕ(x) = −Dεm∆ϕ1(x) + dεϕ
1
m
1 (x)

= Dεmλ1ϕ1(x) + dεϕ
1
m
1 (x) ≤ pεϕ

1
m
1 (x)e−aεϕ

1
m
1 (x).

A sufficient condition is that

0 < ε ≤ min

⎧⎨⎩
(

p− d

2Dλ1M
1−1/m
0

)1/(m−1)

,
1

aM
1/m
0

ln 2p
p+ d

⎫⎬⎭ ,

where M0 := supx∈Ω ϕ1(x). In fact, pe−aεϕ
1
m
1 (x) ≥ p+d

2 , and then

Dεmλ1ϕ1(x) ≤ p− d

2 εϕ
1
m
1 (x) ≤ pεϕ

1
m
1 (x)e−aεϕ

1
m
1 (x) − dεϕ

1
m
1 (x).

The proof is completed if we further assume that 0 < ε ≤ ln(p/d)/(aM1/m
0 ). □

Let K := ∥b(·)∥Lip > 0 be the Lipschitz constant of b(u) = pue−au on [0,+∞). We show that the following
degenerate elliptic problem is solvable.

Lemma 2.4. For any 0 ≤ ψ(x) ∈ L∞(Ω), the following auxiliary problem{
−D∆ϕm(x) + dϕ(x) +Kϕ(x) = Kψ(x) + pψ(x)e−aψ(x), x ∈ Ω ,

ϕ(x) = 0, x ∈ ∂Ω
(2.2)

admits a unique non-negative weak solution 0 ≤ ϕ ∈ L∞(Ω) such that ∇ϕm(x) ∈ L2(Ω). We define a
nonlinear operator T [ψ] = ϕ such that ϕ(x) is the unique solution of (2.2) corresponding to ψ(x).

Proof. The unique solvability of the problem (2.2) follows from a standard regularization process. Here we
omit the approximation process. We note that the comparison principle Lemma 2.1 is also applicable. □

Lemma 2.5. The functions ϕ(x) and ϕ(x) defined in (2.1) are the upper and lower solutions for the
degenerate elliptic problem (1.2) and ϕ(x) ≤ ϕ(x) for x ∈ Ω according to Lemma 2.3. Then ϕ1(x) := T [ϕ],
ϕ1(x) := T [ϕ], ϕi(x) := T [ϕi−1], ϕ

i
(x) := T [ϕ

i−1] for i = 2, 3, 4, . . . , satisfy

0 ≤ ϕ(x) ≤ ϕ1(x) ≤ · · · ≤ ϕ
i
(x) ≤ · · · ≤ ϕi(x) ≤ · · · ≤ ϕ1(x) ≤ ϕ(x), x ∈ Ω

for all i ∈ Z+, where T is the nonlinear operator defined in Lemma 2.4. Furthermore, there exist functions
ϕ0(x) = limi→∞ ϕi(x) and ϕ0(x) = limi→∞ ϕ

i
(x) (may be the same one) such that ϕ0(x) and ϕ0(x) are

positive solutions to the problem (1.2).

Proof. The order of ϕi(x) and ϕ
i
(x) follows from the standard monotone iteration method and the

comparison principle Lemma 2.1 is applicable. □

We need to show that the positive solution to the problem (1.2) is actually unique.

Lemma 2.6. The positive solution to the problem (1.2) is unique.
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Proof. We first prove that the positive solution ϕ(x) is bounded upward by ϕ(x). Let Ω0 := {x ∈ Ω ;ϕ(x) >
ϕ(x)} ⊂ Ω . If Ω0 is non-empty, then ϕ(x) satisfies −D∆ϕm(x) + dϕ(x) = b(ϕ(x)) on Ω0, which is uniformly
elliptic as ϕ(x) < ϕ(x) ≤ ∥ϕ∥L∞(Ω). Thus, ϕ(x) is continuous in Ω0 according to the classical elliptic
regularity theory. Let x0 ∈ Ω0 be the maximum point of ϕ(x) over Ω0. Then ∇ϕ(x0) = 0 and ∆ϕm(x0) ≤ 0
as ϕm(x) also attains its maximum at x0. Then at the point x0, (1.2) tells us that

pϕ(x0)e−aϕ(x0) = −D∆ϕm(x0) + dϕ(x0) ≥ dϕ(x0),

that is, maxx∈Ω ϕ(x) = ϕ(x0) ≤ 1
a ln p

d = ϕ(x).
Next, we show that ϕ(x) ≥ ϕ(x) as we may change the choice of ε in (2.1) smaller if necessary. We can

regard ϕm(x) as a super-harmonic function since −D∆ϕm(x) = pϕ(x)e−aϕ(x) − dϕ(x) ≥ 0 as ϕ(x) ≤ ϕ(x).
Then the classical strong maximum principle implies that ∂ϕm(x)

∂ν < 0 at x ∈ ∂Ω , where ν is the unit outward
normal vector. It follows that ϕm(x) ≥ εmϕ1(x) = ϕm(x) provided that ε is small enough.

Now we argue by contradiction and suppose that the positive solutions to the problem (1.2) are not
unique. We have already proved that they lie between ϕ(x) and ϕ(x). Then the limiting functions ϕ0(x)
and ϕ0(x) in Lemma 2.5 are not identically equal and they are ordered as ϕ0(x) ≥, ̸≡ ϕ0(x). We multiple
Eqs. (1.2) of ϕ0(x) and ϕ0(x) with the mth power of each other, and integrate over Ω to get∫

Ω

(pϕ0e
−aϕ0 − dϕ0)ϕm0 dx =

∫
Ω

D∇ϕm0 · ∇ϕm0 dx =
∫
Ω

(pϕ0e
−aϕ0 − dϕ0)ϕm0 dx.

That is, ∫
Ω

ϕ
m

0 ϕ
m

0

(
pϕ0e

−aϕ0 − dϕ0

ϕ
m

0
−
pϕ0e

−aϕ0 − dϕ0
ϕm0

)
dx = 0. (2.3)

We note that the function pue−au−du
um = pe−au−d

um−1 is strictly monotonically decreasing in (0, ln(p/d)/a], which
means that the integrand in (2.3) is non-positive and not identical to zero. This contradiction completes the
proof. □

Proof of Theorem 2.1. The existence and uniqueness of the positive steady state solution ϕ(x) follow
from Lemmas 2.5 and 2.6. □

Using the monotone method, we present the following convergence result. The proof is based on the
appropriate modification in So and Yang [6] suitable for the case with time delay.

Lemma 2.7. Assume the assumptions in Theorem 2.2 hold. Then u(t, x) ≥ 0 for all x ∈ Ω and t > 0,
u(t, x) > 0 for all x ∈ Ω and t > r, and lim supt→∞ u(t, x) ≤ p

ade .

Proof. This proof is similar to that of Lemma 5.1 in [6] except that the comparison principle is replaced
by Lemma 2.2. Here we omit the details. □

Proof of Theorem 2.2. The problem (1.1) is solved by a standard regularization method and the uniform
estimate ∇um ∈ L∞(0,+∞;L2(Ω)) holds. Lemma 2.7 shows that for large time t, the solution 0 < u(t, x) ≤
1/a for all x ∈ Ω since p/d < e. We note that the function b(u) = pue−au is monotonically increasing on
[0, 1/a]. In Lemma 2.3, we constructed upper and lower solutions ϕ(x) = 1

a ln p
d and ϕ(x) = εϕ

1
m
1 (x) for the

steady state problem (1.2). We can take ε even smaller such that

−D∆ϕm(x) + dϕ(x) < pϕ(x)e−aϕ(x), x ∈ Ω , (2.4)

ϕ(x) ≤ u0(s, x) for s ∈ [−r, 0] and x ∈ Ω . Let u(t, x) be the solution of (1.1) with initial data ϕ(x).
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We assert that ∂u/∂t ≥ 0 for all t ≥ 0 and x ∈ Ω . Define S = {t ≥ 0; ∂u/∂t ≥ 0,∀x ∈ Ω}. Then, S is not
empty since 0 ∈ S. The first step of the modification of monotone method suitable for the case with time
delay is to prove that (0, r) ⊂ S. For t ∈ (0, r), let wh(t, x) = u(t+ h, x) − u(t, x), where h > 0 is sufficiently
small such that t+ h ∈ (0, r] and u(h, x) − u(0, x) ≥ 0. If such kind of h exists, then we have

∂u(t+ h, x)
∂t

−D∆um(t+ h, x) + du(t+ h, x) = pϕ(x)e−aϕ(x)

=∂u(t, x)
∂t

−D∆um(t, x) + du(t, x), x ∈ Ω , t ∈ (0, r − h),

with the initial condition u(h, x) ≥ u(0, x) and the same Dirichlet boundary condition. Applying the
comparison principle Lemma 2.2, we get u(t+ h, x) ≥ u(t, x) for all t ∈ (0, r− h) and x ∈ Ω . It follows that
wh(t, x) ≥ 0 and hence ∂u/∂t ≥ 0. Since the choice of h can be as small as we want, we see that (0, r) ⊂ S.
Noticing that S is a closed set, we have [0, r] ⊂ S as well. We obtain by induction [0, nr] ⊂ S for any integer
n ≥ 0. Hence [0,+∞) ⊂ S and ∂u/∂t ≥ 0 for all t ≥ 0 and x ∈ Ω . Therefore, u(t, x) is monotonically
increasing and converges to the unique positive steady state solution ϕ(x) as t → ∞.

If the assumption u(h, x) − u(0, x) ≥ 0 for some h > 0 is not true, we modify the above procedure by an
approximation process as follows. Consider the regularized problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂uη(t, x)
∂t

= D∇ · (m(η + u2
η(t, x))

m−1
2 ∇uη(t, x)) − duη(t, x)

+puη(t− r, x)e−auη(t−r,x) + ηe−t, x ∈ Ω , t > 0,
uη(t, x) = 0, x ∈ ∂Ω , t > 0,
uη(s, x) = ϕη(x), x ∈ Ω , s ∈ [−r, 0],

(2.5)

where η > 0 and ϕη(x) is a smooth approximation of ϕ(x) such that

−D∇ · (m(η + ϕ2
η(x))

m−1
2 ∇ϕη(x)) + dϕη(x) ≤ pϕη(x)e−aϕη(x)

since ϕ(x) satisfies (2.4). The unique existence and regularity of the solution uη(t, x) of the problem (2.5) are
ensured by the theory of uniformly parabolic equations. And uη(t, x) uniformly converges to u(t, x) on any
compact set QT = [0, T ]×Ω . Then for the function uη(t, x) we have ∂uη(0, x)/∂t ≥ ηe−η > 0 and the Hölder
regularity of uη(t, x) implies the existence of a constant h > 0 such that ∂uη(t, x)/∂t ≥ 0 for t ∈ [0, h] and
x ∈ Ω . Now for uη(t, x), we apply the above argument above to find that ∂uη(t, x)/∂t ≥ 0 for all t ≥ 0 and
x ∈ Ω . The locally uniformly convergence of uη(t, x) to u(t, x) shows that u(t, x) is monotonically increasing
as well.

Similarly, let u(t, x) be the solution of (1.1) with initial data ϕ(x). Then we use the same argument as
above to obtain that u(t, x) is monotonically decreasing and converges to the unique positive steady state
solution ϕ(x).

Therefore, we have proved the pointwise convergence of u(t, x) to ϕ(x) and the lower bound u(t, x) ≥
εϕ

1
m
1 (x). For any µ > 0 sufficiently small, let Ωµ := {x ∈ Ω ; dist(x, ∂Ω) > µ}. Then there exists a positive

constant β(µ) > 0 such that u(t, x) ≥ εϕ
1
m
1 (x) > β(µ) for all t > 0 and x ∈ Ωµ

2
. We see that on (0,+∞)×Ωµ

2
,

u(t, x) satisfies a uniformly parabolic problem and the norm ∥u(t, x)∥Cα(Ωµ) is bounded by a constant C(µ)
for some fixed α ∈ (0, 1) according to the inner regularity estimates. The uniform Hölder continuity and the
pointwise convergence imply that u(t, x) converges to ϕ(x) in C(Ωµ). The proof is completed. □
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