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Abstract

This study focuses on a coupled 2 system of mixed type for viscosity-capillarity
with periodic initial-boundary condition in viscoelastitaterial. The main concern in
the present study is the stationary solutions. It is showanttie stationary system has
one or multiple stationary solutions depending on the vafuke viscosities; andes.

In particular, the non-trivial solutions always preseragdtransitions. The criteria for
the type of system responses (one or multiple solutionsypeeified. Furthermore,
the calculation formula for the number of multiple solusas provided. Finally, nu-

merical simulations on the prototypical system are repbtteverify the theoretical

results.

Keywords: Phase transitions, system of viscosity-capillarity, mixed type, stationary solu
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1. Introduction and Main Results

The viscous-capillarity system in the viscoelastic material dynamics (respothgressible
van der Waals fluids) can be written as a system>a2 2iscous conservation laws of mixed

*Corresponding author.
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type:

vt e = Elbaa, (z,t) € R x Ry. (1.1)
u — 0(V)y = E2Ugy,

In this paper, we study the coupled system with the initial condition
(v, w)]t=0 = (vo, uo)(z), x € (—00,00) (1.2)
and the2 L-periodic boundary condition
(v,u)(x,t) = (v,u)(z + 2L, t), (z,t) € (—00,00) x (0,00) (1.3)

whereL > 0 is a given constant. Note that from the compatibility condition, we have

vo(x) = vo(z +2L), wo(x) = uo(x + 2L). (1.4)

Herev(x, t) is the strain (resp. specific volumey),z, ¢) the velocity,s; > 0 andey > 0
the viscous constants|v) the stress function (resp. pressure function), which is assumed
to be sufficiently smooth and non-monotonic.

As a prototype, c.f. [15, 16], the simplest function:

ov) =0 —v (1.5)

is considered in this study. This function captures the basic featureseqhihse tran-

sition models. For such a stress functiefv), it has only two critical pointst% such
thata’(i%) = 0, ando’(v) > 0 forov € (—oo,—%) U (\if,oo), o'(v) < 0 for
v € (—%,%). Physically, this determines three phases, for example, water, vapor,
and water-vapor mixture phases in van der Waals fluids. Mathematicallyl.Egwith

g1 = g9 = 0 is hyperbolic in(—oc, — ) U (%,oo) and elliptic in(—%, %). Here,

V3
v = i% are the two phase boundaries. In the case of the van der Waals fluigsethe
sure is exactly given by-o(v) = UR—_eb — -z with positive constant®, 0, « andb satisfying

ROb/a < (2/3)% andv > b > 0. It is known that there are also two critical points of
o(v), saysv; andws, such that'(vy) = o'(vy) = 0, o/ (v) > 0 forv € (b,v1) U (v, )
ando’(v) < 0 for v € (v1,v2). The region(b,vy) is the water-region(wvy, 0o) is the
vapor-region, andv, v2) is the water-vapor mixture region, c.f. [1, 13].

Since the periodic solution®, u)(z, t) of (1.1)-(1.3) in the entire spage-oco, co) can
be regarded a8L-periodic extensions of that d, 2L], let us focus the system (1.1) on
the bounded intervdD, 2L]. Integrating (1.1) ovef0,2L] x [0,¢] and using the periodic
boundary condition (1.3), we obtain

Aﬂmﬁmmzénm@m% Anm%mmzéﬂwumm (1.6)

Let
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then
2L 2L
/ [v(x,t) — mgldz =0, / [u(z,t) —mi]dx = 0. (1.8)
0 0

Therefore,(mg, m1) is the average of the initial valugy, uo)(x) over|0,2L], and so the
average of the solutiofv, u)(z, t) over|0, 2L].

Phase transitions are very common and interesting phenomena arising thieamac,
and have been the hottest spots in mathematical and physical communities.fAyieao
progress in, for example, the construction of the solutions and their statisolations, the
behaviors of the solutions, as well as the asymptotic stabilities of the solutiasgden
made by many mathematicians and physicians, see [1]-[25] and the ederdrerein. In
this paper, we are interested in the steady-state solutions of the syster(il(2)1) The
corresponding stationary problem of (1.1)-(1.3) is

(—Uy = €1Vao,
—0(V)e = e2Usa,
(V,U)(z) = (V,U)(z + 2L), (1.9)
% OZ V(z)dz = my,
or Jo Ulw)dz = ma,

where(V,U) = (V,U)(x). Itis easy to see that the average initial data, m1) is a trivial
stationary solution of (1.9). In the present paper, we prove thatgifs in the hyperbolic
region(—oo, —%) or (%, o0) but not so close to the phase boundaties i%, or when
the viscosities; ande, are suitably large (regardless of the valuegf, then the stationary
problem (1.9) has and only has the trivial solutiony, m;). On the other hand, ifng is
in the elliptic region(—%, %) and the viscosities; andes are sufficiently small, then
the stationary problem (1.9) has multiple non-trivial solutions, and thesés@always
admit phase transitions. The number of those multiple solutions will be countetlysh
Here we provide a necessary preparation for our further study irl@]%n the asymptotic
behaviors of the solution of (1.1), specifically, the convergence ofdhgisn (v, u)(x,t)
to the stationary solutioV, U)(xz). We further present some numerical simulations in
different cases which confirm also our theoretical results.

Our main results are stated as follows.
Theorem 1.1 (Stationary Solutions)

1. If the viscosity is large, such that
L? 3
E1e0 > 5(1 - Zmo), (1.10)

then the stationary probleifl.9) has a unique solutioQV, U)(z) = (mg,m1). No
phase transition exhibits.
2. If the viscosity is sufficiently small such that

L? 5
€169 < ﬁ(l —3mg), (1.11)
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then besides the trivial solutiofing, m;), the stationary problenfl.9) has at least
one non-trivial solution, which is oscillating periodically, and must occuaigtran-
sitions.

Theorem 1.2 (Number of Non-Trivial Stationary Solutions)

1. Whenmy = 0 andeies < L—2(1 — 3m?), then there exist2N, + 1) solutions for

T2

(1.9), wherelV is the integer of

Ny = Lr 25152]' (1.12)

Here,[z] denotes the greatest integerz.

2. Wherd < mg < % andeies < %(1 — 3m(2)), there is a unique non-trivial station-
ary solution for(1.9).

3. When% < mp < % there exists a number* > %(1 - 3m(2)) such that, when

%(1 — 3m3) < g1e9 < ¥, there are two non-trivial solutions. However, when
g1e9 < %(1 — 3m3), there is only one non-trivial solution fdf..9).

Remark 1.3

1. Inthe first part of Theorem 1.1, the conditi@in10)implies large viscosities ifi is
2

in the elliptic region. However, whem, > % ormg < -, which implies that
myg is in the hyperbolic regions, even if the viscosity disappears,sie= €2 = 0,

the condition(1.10)still holds, and thus the stationary solution @.9)is unique and
(V,U)(x) = (mo, m1). Note that, in the second part of Theorem 1.1, the condition
(2.11) implies that the initial average: is in the elliptic region. The theorem in-
dicates that for the initial averagen in the elliptic region, when the viscosityes

is small, multiple non-trivial stationary solutiond’, U)(z) exist, and they exhibit

phase transitions.

2. Whenmy = 0, the conditiong1.10)and (1.11)become

€162 2 —5

which is the critical condition, and it will lead to one or multiple solutions.

3. Theorem 1.2 gives the exact numbers of the non-trivial stationaryicadufor dif-
ferent range of the initial average:,. These results are the same to [23, 9] for the
Cahn-Hilliard equation in Neumann boundary condition.
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2. Proof of Main Theorem

In this section, we are going to prove Theorem 1.1 and Theorem 1.2titRtibg the first
equation of (1.9) into the second equation and integrating the resultaricegoeer|0, x|,
we obtain the stationary equation fgi(z) as follows

€1€2V;mc = O‘(V) —a

V(z)=V(x+2L) (2.1)
% 02L V(x)dx = mo,

wherea = o(V(0)) — €1e2V4,(0) is a constant determined automatically by Eq. (2.1).
In fact, integrating Eq. (2.1) oveh,2L] and noticing the periodic boundary condition
V(z) = V(x + 2L), one verifies

1 2L

CL:E .

o(V(zx))dx. (2.2)

Eq. (2.1) is similar to the so-called Cahn-Hilliard equation which has been dtudie
widely by researchers in the mathematical physics community, for examplf8,s&el8,
19, 20, 23, 24], and the references therein. With the Neumann bguediadition, Zheng
[23] studied the existence of the trivial and non-trivial solutions (alttolg just gave a
roughly sufficient conditions on the size of viscosity), in particular, theniner of non-
trivial solutions for the initial meamny = 0 in the case of small viscosity was counted.
While in [8, 9, 18, 19, 20] Grinfeld, Novick-Cohen, Peletier, Segehl, specified the
values ofm, and the size of the viscosity for the existence of trivial or nontrivial sohstio
by the transversality arguments. All of these works will be a great helpahrdpwith (2.1)
for the periodic boundary condition.

Inspiring by [23] and [9], we can testify the existence of the non-trig@lutions by
specifying the size of viscosity, i.e., the criteria (1.10) and (1.11), anduwtkdr count the
number of the non-trivial solutions by specifying the location of the initiaragem,.

Letting

V(z) = V(z) — my, (2.3)

and applying (1.8), then we reduce (2.1) into

V(z) =V(z+2L) (2.4)
02L V(z)dz =0,
where
e B ) 1 2L
a(V):=o(V+mgy) —oc(mg), a:= 2L/0 a(V(x))dx. (2.5)

Define a periodic Sobolev space by

2L
v = {00)1o(0) € 1 (R). [ o)y = 0} 26)
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and a functional orf) . , by

2 eiey
G(v) = [Tvx + H(v)|dz, 2.7)
0
where 2
v 1 3 4
H(v) = / o (s)ds = ZU4 +mge® + 20T 22
0

we now have the first lemma as follows.

Lemma 2.1 The solutions of(2.4) are equivalent to the critical points of the functional
G(v) defined in(2.7)over H,,

er,0*

Proof. If V() is a solution of (2.4), then for any(z) € Hl}eno, multiplying (2.4) byw(x)
and integrating it ovejo0, 2L], and notinngQL aw(z)dr = afO2L w(z)dx = 0, one gets

2L
/ <€1€2Vz’wx + 6(V)w) dr =0, foranyw e H} (2.8)
0

per,0*

This impliesV () is a critical point ofG (v) over H,, .

On the other hand, l6t (x) be a critical point of5(v) overH;ervo, namely, (2.8) holds,

we prove thafi’ () is a solution of (2.4). For anyi(z) € H'(0,2L) satisfyingw(x) =
w(xz + 2L), it can be verified that

w(z) = w(r) — — /:L w(x)dr € H]%er,(] (2.9)

/OQL&(V(:U))- (i /Ong(x)dx)dx:/OQLu_J(x)-(;L /02L6(V(x))dac>dx. (2.10)
Thus, (2.8)—(2.10) gives

2L - -
0 = / (6162Vzwx+5(\/)w>d1‘
0

2L{
= [ [t + @V @) — ayita)] s @11)
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where we used (2.5). Thus, we prove in (2.11) friét) is a weak solution of the stationary
problem (2.4). Furthermore, by the usual bootstrap argument, we ctenttiatl’ (z) is the
classical solution of (2.4). The detail is omitted.

We now prove a useful inequality which is somewhat similar to the so-callec&bin
inequality.

Lemma 2.2 Letf/(z) € HleT0 be the solution of Eq(2.4). Then there exists at least one
pointz, such thatV (z,) = 0, and

_ L _
172 < 21l (2.12)

Proof. Itis easy to verify thad is a solution of (2.4). IV (x) = 0, then (2.12) automatically
holds. If V(z) # 0 on|[0,2L], then there must exist at least one point, says [0, 2L],
such thaf (z,) = 0. In fact, notice thagf02L V(s)ds = 0 andV (x) € C°(0,2L) (because
V(z) € H'(0,2L)), thenV (z) must change signs df, 2L], which implies that/ (z,) =
0 for someyak € o, 2L] OthenNise, eithe’/ (z) > 0 or V(z) < 0 on[0,2L] leads

to f s)ds > 0 or V(s)ds < 0, but this is a contradiction with the condition
0 V( )ds =0.
Consider the following eigenvalue problem
—Vgy = ﬁQﬁa
o(z) = o(x + 2L), (2.13)

f02L 0(z)dx = 0.
The eigenvalues are given by

kL
ﬁkziv k:172737"'7 (214)

™

and the corresponding eigenfunctions are

1 1
U1 k(z) = —=sinByx, Vop(xr) = —=cosfrx, k=1,2,3--- (2.15)
k] \/z s \/E
satisfying
1, i=4,k=1
<Oy =4 0 (2.16)
0, otherwise

where
2L
< B0 >= / B (2)554 () da
0

is the inner product oLpeT It is known that the sequend®; x(z)} (i = 1,2 andk =
1,2,3,---) forms an orthonormal basis for the space

2L
L;%er,() = {@(1"” ( € L?)er and /
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Therefore, as a periodic function satisfyidgz) = V(z + 2L) and fO2L V(z)dz = 0,

V(z)isinthe spaceLperO, and can be expressed in the Fourier form

where the coefficientd; and B, are determined by
A =< V,f}Lk >, B =< Vﬂb,k >

Its derivative is given by

Va(z) = > Br(Axbop(x) — By (x)).

Making the inner products, we have

2L
vz = V(x)dw

= > (A} +B}) (2.17)

Sincef, > py = 7 fork =1,2,---,then (2.17) and (2.18) give

[e.o]

IVel? = Zﬁk (Aj + B}) > p Z( i+ Bi) = 72 HVH2

k=1
which implies (2.12)O

Now we are ready to discuss the existence of the trivial and non-trieidbeary solu-
tions, as well as their phase transitions.
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Lemma 2.3 If (1.10)holds, then the stationary problefd.4) has and only has the trivial
solutionV (z) = 0.

Proof. Multiplying (2.4) by V' (x) and integrating by parts with respectit@ver [0, 2L], as
well as using the periodic boundary condition, we obtain

2L B B B 2L B o
0= / (—e169Vpe + (V) —a)V(z)dx = / (e162V2 4+ 5(V)V)dz. (2.19)
0 0

Since

V)V = V4 3meV3 + (3mi — 1)V?

= V? (V + gmo)2 + <Zm(2) — 1)V2
> (ng -~ (2.20)

applying (2.12) and (2.20) into (2.19), as well as noting (1.10), we have

2L
0 = / (e162V2 +a(V)V)dx
0

2L 2
61827r ) 3 2 )
> [ FE e (i - )
2

= [ ()] [ Pz, 221

which impliestQL V2(x)dr = 0,i.e.,V(x) = 0. Here, in order to obtain the non-negativity
of the last step of (2.21), we need

2
19T 3 5
L2 — <1 — Zmo) > 0,

which leads to the sufficient condition (1.10].

Lemma2.4 If (1.11)holds, then, except the trivial solutionthe stationary probler(2.4)
has at least one non-trivial solution.

Proof. Let V,,(z) be a minimizing sequence:

G(V,) —g= inf G(v), (2.22)

1
Uerer,O

whereG(V) is defined in (2.7). Notice that, is bounded inH )., ;, hence there exists a
subsequence, still denoting b§;, such that

V, =V weaklyin H, (2.23)

er,0r

and

V, — V strongly in L?(0,2L),1 < p < 6. (2.24)
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This implies
2L 2L
| v <tim, o [Tl (2.25)
0 0

and
2L 2L

H(V,)dx — H(V)dx. (2.26)
0 0
From (2.22), (2.25) and (2.26), we see th&tz) is a minimum element of functionat,
and by Lemma 2.1, it is also a solution of stationary problem (2.4).
It is known that0 satisfyingG(0) = 0 is the trivial solution of (2.4). We are now going
to prove that the minimum elemeht(x) is a non-trivial solution. In fact, we can prove
g = G(V) < 0, which implies that/ (x) # 0 is non-trivial.

Choosing a test function ag; 1(z), whered; ;(z) = %Sin ,andn > Ois a
constant such that )
8L €1E9T
2 2 1€2
< §(1 —3mj— =3 ) (2.27)

Itis known thatyo, 1 (x) € H,,, .. A straightforward calculation gives

er,0*

2L 71'2 2L
| Gae =75 [ 6t e
0 0

and

2L 2
B €1€ . N
G = [ [P0 + B |da
0

2
2L 2.2 4 2 2
E1€2M“T” 5 5 3mg — 1 5
= / [7222 v%l + %vfl + mongvil + 7( 0 5 )1 vil}d:c
0

2 2 2L 4 2L 2L
£1E9T 1—3m, 5 n 5 -
= ( 5z 5 0)772/0 vildx + v /0 v‘ildx + mon3/0 vildx

_ _(1 — 3m? B £1€972 3 772)772
2 212 16L
< 0, (2.28)

because of (1.11) and (2.27). Siné¢x) is the minimum element af(v) on H}}er, (2.28)

impliesG(V) =¢ < 0.0
Lemma 2.5 The non-trivial solutions are oscillatory, and always exhibit phase transtion

Proof. According to the periodicity, the non-trivial solution is always oscillatory.
Now we are going to prove that the non-trivial solutions always exhildgisphransi-
tions. In fact, differentiating (2.1) with respecttaives

J/(V)‘/ﬂb = e182Vong- (229)
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Notice thatV,..(x) is non-monotone, namely/,..(z) changes signs of0,2L]|. Let
Vzzz(x) # 0 at some points;, we have four possible cases:

Case 1V, () > 0 andV,(x) > 0;

Case 2V, ;. (x) > 0andV,(z) <0

Case 3V, () < 0andV,(z) > 0;

Case 4V, (x) < 0andV,(z) <0

For Case 1, whel,,,(z) > 0 andV,(z) > 0, then from (2.29) we have (V' (z)) > 0,
which is equivalent t§V (z)| > =, i.e, V(x) > % orV(z) < —%. This indicates that
the phase transitions exhibit. Similarly, we can verify that, for Case 2, thé@old at
doesn’t exhibit a phase transition, i.e., we hawé§ <V(z)< % while Case 3 like Case
1 exhibits a phase transition, and Case 4 like Case 2 doesn’t exhibit @ fpaasition.

If there are some points such that Case 1 or Case 3 occurs, we immediatadytipat
the non-trivial solutions exhibit phase transitions. This proves our lemintizere are only
Case 2 and Case 4, but no Case 1 and Case 3, we see that, wiatever0 or < 0, we
always havéd/, < 0. This is a contradiction to the non-monotonicity 6fz). Therefore,
the non-trivial stationary solutiolW () always occurs phase transitions.

Proof of Theorem 1.1. Thanks to Lemma 2.3, and notice tHatx) = V(z) + mg, we
proved Part 1 of Theorem 1.1. Furthermore, Lemma 2.4 implies the existénudtgple
non-trivial stationary solutions of (2.1) in Part 2 of Theorem 1.1, andio@ 2.5 proves that
all non-trivial stationary solutions are oscillatory and exhibit the phasesitians. Thus,
Theorem 1.1 is provedd]

Now we are going to prove Theorem 1.2, i.e., we count the number of thérinéi
solutions form € [0, %).

Firstly, whenmg = 0, for the stationary equation (2.1), if we change the periodic
interval from[0,2L] to [-L, L], then it is equivalent to

€169V =0 (V) —a
Vie—L)=V(z+ L) (2.30)
i f—LL V(x)dx = my.

Lety = 7, (2.30) can be rewritten as

FVyy =0(V) —a
Viy—1)=V(y+1) (2.31)
By a very similar method as shown in [2, 23] (see [23]: Egs. (3.16) and)®ripage 178

and Theorem 3.4 on page 179), we can prove that the modified statianzatian (2.31)
has2Ny + 1 solutions forNy satisfying (1.12). Here the detail of the proof is omitted.

Lemma 2.6 For mg = 0 andejes < %(1 — 3m3), there are(2N, + 1) solutions for the
stationary equatiorf2.31) wherelNy is the integer satisfyinfl.12) i.e.,

2L 2L
—1< Ny <

T\/E182 T\/E1€2

(2.32)
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Furthermore, whemy # 0, by the change of variablg = % + % then we deduce
(2.30) to

Zlfgvyy =o(V)-a

V(iy) =V(y+1) (2.33)
fo1 V(y)dy = mo.
By the transversality arguments as presented in [9], based on the sizeadity=,2 and

the location of the initial average,, we can very similarly count the number of stationary
solutions as follows. Here, the proof is also omitted.

Lemma 2.7

1. Whenm, € (0, %), if e169 > %(1 — 3m3), then there is no non-trivial stationary
solution to Eqg. (2.33) However, ife1eo < %(1 — 3m), then there is only one
non-trivial solution to Eq(2.33)

. .y 2

2. Whenmg € (%, %), there exists a positive numbet > £ (1 — 3m3) suc2h that,
if 129 > &%, then there is no non-trivial solution to E¢2.33) However, if%(l —
3m3) < e1e2 < %, then there are only two non-trivial solutions to £g-33) While,
if e160 < %(1 — 3m3), then there is only one non-trivial solution to E@.33)

Proof of Theorem 1.2. Combining Lemma 2.6 and Lemma 2.7, we immediately prove
Theorem 1.20J

3. Numerical Smulations

With the central finite difference for the second order derivative aadimpson’s rule for
the integral, system (2.1) is discretized as follows:

6182(’[)1',1 — 2v; + ’Ui+1) = hQ(’U? — ’Ui) —a, t1=12,---,n—1

Un = Vo
h Z?ﬁ(%Qi—Q +4vg;_1) = 6Lmg
a = h2(”8 - UO) — 6162(1)1 — 2v9 + Un—l)

(3.1)

wheren is even, and, = 2&.
The above scheme is a systemnot 1 nonlinear algebraic equations with+ 1 vari-

ables. The Newton-Raphson’s nonlinear solver is used with various igitedsing points.
The computer program uses a random generator for the initial gueseaéto case, a rea-
sonable number of sets of guessing values has been implemented. Thmeabsolution
could be unique or multiple depending on the system configuration, i.e. thesvafuthe
initial averagen and the viscosity; andes. The smaller the space stgjis, i.e. the larger

the number of grids: is, the more accurate the numerical solutions are. However, when
n is large, the computational cost for the nonlinear solver increases draityatieor the

chosenl, = 7 for the cases reported in the following,near 60 (i.e.h near 0.1) provides
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convergent solutions in a short time (within couple of minutes) and with goodracy.
Further increasing the valuedoes not change the solutions significantly.

To verify Theorem 1.1, first of all, by plugging = 0 ande;e2 = 4 in the numerical
program, we obtain only the trivial zero solutidh = 0. For small viscosities, the case
with mg = 0 andee9 = 0.49 is examined, and one non-trivial solution is found as shown
in Figure 3.1, which also verifies the first item of Theorem 1.2 uNth= 2.

MO:O, 81*£2:O.49, (1) in theorem 2

T T T T T T

V(x)

Figure 3.1. Case Ing = 0, e1e2 = 0.49, Item 1 in Theorem 1.2

m020.3, 81282:0.1, (2) in theorem 2

T T T T T T

V(x)
o

Figure 3.2. Case 2mg = 0.3, &1 = g9 = 0.1, Item 2 in Theorem 1.2 with a unique
non-trivial solution
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For Item 2 in Theorem 1.2, the chosen parametersigye= 0.3 ande; = e = 0.1,
and the unique non-trivial solution is found. See Figure 3.2.

Selectmy = 0.5 andee9 = 0.28 that satisfiesg(l — 3m3) < g169 < €*, we find two
non-trivial solutions as shown in Figure 3.3.

M0=0.5, 51*52=O.28, (3.1) in theorem 2

V(x)

0 1 2 3 4 5 6
X

MO:O.S, 51*52:0.28, (3.1) in theorem 2

0.8

0.6

041

0.2F

V(x)
o

-0.41

-0.6

-0.8F

Figure 3.3. Case 3ing = 0.5, e1e9 = 0.28, the first part of ltem 3 in Theorem 1.2 with
two non-trivial solutions.
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For the same value of the initial averagey = 0.5, when the viscosity is small as
2 . .. .
e1e9 = 0.02 such thatiey < %(1 - Sm%), the program only finds one non-trivial solution
as shown Figure 3.4.

m0:0.5, 5120.1, 52:0.2, (3.2) in theorem 2

T T T T T T

0.8} 1

0.6 b

0.4 b

0.2F d

Figure 3.4. Case 4ng = 0.5, e1e2 = 0.02, the second part of ltem 3 in Theorem 1.2 with
a unique non-trivial solutions.
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