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Abstract

This study focuses on a coupled 2×2 system of mixed type for viscosity-capillarity
with periodic initial-boundary condition in viscoelasticmaterial. The main concern in
the present study is the stationary solutions. It is shown that the stationary system has
one or multiple stationary solutions depending on the valueof the viscositiesε1 andε2.
In particular, the non-trivial solutions always present phase transitions. The criteria for
the type of system responses (one or multiple solutions) arespecified. Furthermore,
the calculation formula for the number of multiple solutions is provided. Finally, nu-
merical simulations on the prototypical system are reported to verify the theoretical
results.

Keywords: Phase transitions, system of viscosity-capillarity, mixed type, stationary solu-
tions, periodic boundary conditions.
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1. Introduction and Main Results

The viscous-capillarity system in the viscoelastic material dynamics (resp. thecompressible
van der Waals fluids) can be written as a system of 2×2 viscous conservation laws of mixed
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type:
{

vt − ux = ε1vxx,

ut − σ(v)x = ε2uxx,
(x, t) ∈ R × R+. (1.1)

In this paper, we study the coupled system with the initial condition

(v, u)|t=0 = (v0, u0)(x), x ∈ (−∞,∞) (1.2)

and the2L-periodic boundary condition

(v, u)(x, t) = (v, u)(x + 2L, t), (x, t) ∈ (−∞,∞) × (0,∞) (1.3)

whereL > 0 is a given constant. Note that from the compatibility condition, we have

v0(x) = v0(x + 2L), u0(x) = u0(x + 2L). (1.4)

Herev(x, t) is the strain (resp. specific volume),u(x, t) the velocity,ε1 > 0 andε2 > 0
the viscous constants,σ(v) the stress function (resp. pressure function), which is assumed
to be sufficiently smooth and non-monotonic.

As a prototype, c.f. [15, 16], the simplest function:

σ(v) = v3 − v (1.5)

is considered in this study. This function captures the basic features for the phase tran-
sition models. For such a stress functionσ(v), it has only two critical points± 1√

3
such

that σ′(± 1√
3
) = 0, and σ′(v) > 0 for v ∈ (−∞,− 1√

3
) ∪ ( 1√

3
,∞), σ′(v) < 0 for

v ∈ (− 1√
3
, 1√

3
). Physically, this determines three phases, for example, water, vapor,

and water-vapor mixture phases in van der Waals fluids. Mathematically, Eq.(1.1) with
ε1 = ε2 = 0 is hyperbolic in(−∞,− 1√

3
) ∪ ( 1√

3
,∞) and elliptic in(− 1√

3
, 1√

3
). Here,

v = ± 1√
3

are the two phase boundaries. In the case of the van der Waals fluids, thepres-

sure is exactly given by−σ(v) = Rθ
v−b − a

v2 with positive constantsR, θ, a andb satisfying
Rθb/a < (2/3)3 andv > b > 0. It is known that there are also two critical points of
σ(v), saysv1 andv2, such thatσ′(v1) = σ′(v2) = 0, σ′(v) > 0 for v ∈ (b, v1) ∪ (v2,∞)
andσ′(v) < 0 for v ∈ (v1, v2). The region(b, v1) is the water-region,(v2,∞) is the
vapor-region, and(v1, v2) is the water-vapor mixture region, c.f. [1, 13].

Since the periodic solutions(v, u)(x, t) of (1.1)-(1.3) in the entire space(−∞,∞) can
be regarded as2L-periodic extensions of that on[0, 2L], let us focus the system (1.1) on
the bounded interval[0, 2L]. Integrating (1.1) over[0, 2L] × [0, t] and using the periodic
boundary condition (1.3), we obtain

∫

2L

0

v(x, t)dx =

∫

2L

0

v0(x)dx,

∫

2L

0

u(x, t)dx =

∫

2L

0

u0(x)dx. (1.6)

Let

m0 :=
1

2L

∫

2L

0

v0(x)dx, m1 :=
1

2L

∫

2L

0

u0(x)dx, (1.7)
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then
∫

2L

0

[v(x, t) − m0]dx = 0,

∫

2L

0

[u(x, t) − m1]dx = 0. (1.8)

Therefore,(m0, m1) is the average of the initial value(v0, u0)(x) over [0, 2L], and so the
average of the solution(v, u)(x, t) over[0, 2L].

Phase transitions are very common and interesting phenomena arising thermodynamics,
and have been the hottest spots in mathematical and physical communities. A lot of great
progress in, for example, the construction of the solutions and their stationary solutions, the
behaviors of the solutions, as well as the asymptotic stabilities of the solutions, has been
made by many mathematicians and physicians, see [1]-[25] and the references therein. In
this paper, we are interested in the steady-state solutions of the system (1.1)-(1.3). The
corresponding stationary problem of (1.1)-(1.3) is































−Ux = ε1Vxx,

−σ(V )x = ε2Uxx,

(V, U)(x) = (V, U)(x + 2L),
1

2L

∫

2L
0

V (x)dx = m0,
1

2L

∫

2L
0

U(x)dx = m1,

(1.9)

where(V, U) = (V, U)(x). It is easy to see that the average initial data(m0, m1) is a trivial
stationary solution of (1.9). In the present paper, we prove that, ifm0 is in the hyperbolic
region(−∞,− 1√

3
) or ( 1√

3
,∞) but not so close to the phase boundariesv = ± 1√

3
, or when

the viscositiesε1 andε2 are suitably large (regardless of the value ofm0), then the stationary
problem (1.9) has and only has the trivial solution(m0, m1). On the other hand, ifm0 is
in the elliptic region(− 1√

3
, 1√

3
) and the viscositiesε1 andε2 are sufficiently small, then

the stationary problem (1.9) has multiple non-trivial solutions, and these solutions always
admit phase transitions. The number of those multiple solutions will be counted shortly.
Here we provide a necessary preparation for our further study in [15, 16] on the asymptotic
behaviors of the solution of (1.1), specifically, the convergence of the solution (v, u)(x, t)
to the stationary solution(V, U)(x). We further present some numerical simulations in
different cases which confirm also our theoretical results.

Our main results are stated as follows.

Theorem 1.1 (Stationary Solutions)

1. If the viscosity is large, such that

ε1ε2 >
L2

π2

(

1 − 3

4
m2

0

)

, (1.10)

then the stationary problem(1.9) has a unique solution(V, U)(x) = (m0, m1). No
phase transition exhibits.

2. If the viscosity is sufficiently small such that

ε1ε2 <
L2

π2
(1 − 3m2

0), (1.11)
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then besides the trivial solution(m0, m1), the stationary problem(1.9) has at least
one non-trivial solution, which is oscillating periodically, and must occur phase tran-
sitions.

Theorem 1.2 (Number of Non-Trivial Stationary Solutions)

1. Whenm0 = 0 and ε1ε2 < L2

π2 (1 − 3m2
0), then there exist(2N0 + 1) solutions for

(1.9), whereN0 is the integer of

N0 =
[ 2L

π
√

ε1ε2

]

. (1.12)

Here,[x] denotes the greatest integer≤ x.

2. When0 < m0 < 1√
5

andε1ε2 < L2

π2 (1 − 3m2
0), there is a unique non-trivial station-

ary solution for(1.9).

3. When 1√
5

< m0 < 1√
3
, there exists a numberε∗ > L2

π2 (1 − 3m2
0) such that, when

L2

π2 (1 − 3m2
0) < ε1ε2 < ε∗, there are two non-trivial solutions. However, when

ε1ε2 ≤ L2

π2 (1 − 3m2
0), there is only one non-trivial solution for(1.9).

Remark 1.3

1. In the first part of Theorem 1.1, the condition(1.10)implies large viscosities ifm0 is
in the elliptic region. However, whenm0 > 2√

3
or m0 < − 2√

3
, which implies that

m0 is in the hyperbolic regions, even if the viscosity disappears, i.e.,ε1 = ε2 = 0,
the condition(1.10)still holds, and thus the stationary solution of(1.9) is unique and
(V, U)(x) ≡ (m0, m1). Note that, in the second part of Theorem 1.1, the condition
(1.11) implies that the initial averagem0 is in the elliptic region. The theorem in-
dicates that for the initial averagem0 in the elliptic region, when the viscosityε1ε2

is small, multiple non-trivial stationary solutions(V, U)(x) exist, and they exhibit
phase transitions.

2. Whenm0 = 0, the conditions(1.10)and (1.11)become

ε1ε2 ≷
L2

π2
,

which is the critical condition, and it will lead to one or multiple solutions.

3. Theorem 1.2 gives the exact numbers of the non-trivial stationary solutions for dif-
ferent range of the initial averagem0. These results are the same to [23, 9] for the
Cahn-Hilliard equation in Neumann boundary condition.
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2. Proof of Main Theorem

In this section, we are going to prove Theorem 1.1 and Theorem 1.2. Substituting the first
equation of (1.9) into the second equation and integrating the resultant equation over[0, x],
we obtain the stationary equation forV (x) as follows











ε1ε2Vxx = σ(V ) − a

V (x) = V (x + 2L)
1

2L

∫

2L
0

V (x)dx = m0,

(2.1)

wherea = σ(V (0)) − ε1ε2Vxx(0) is a constant determined automatically by Eq. (2.1).
In fact, integrating Eq. (2.1) over[0, 2L] and noticing the periodic boundary condition
V (x) = V (x + 2L), one verifies

a =
1

2L

∫

2L

0

σ(V (x))dx. (2.2)

Eq. (2.1) is similar to the so-called Cahn-Hilliard equation which has been studied
widely by researchers in the mathematical physics community, for example, see[8, 9, 18,
19, 20, 23, 24], and the references therein. With the Neumann boundary condition, Zheng
[23] studied the existence of the trivial and non-trivial solutions (although he just gave a
roughly sufficient conditions on the size of viscosity), in particular, the number of non-
trivial solutions for the initial meanm0 = 0 in the case of small viscosity was counted.
While in [8, 9, 18, 19, 20] Grinfeld, Novick-Cohen, Peletier, Segelet al, specified the
values ofm0 and the size of the viscosity for the existence of trivial or nontrivial solutions
by the transversality arguments. All of these works will be a great help in dealing with (2.1)
for the periodic boundary condition.

Inspiring by [23] and [9], we can testify the existence of the non-trivialsolutions by
specifying the size of viscosity, i.e., the criteria (1.10) and (1.11), and we further count the
number of the non-trivial solutions by specifying the location of the initial averagem0.

Letting
V̄ (x) := V (x) − m0, (2.3)

and applying (1.8), then we reduce (2.1) into











ε1ε2V̄xx = σ̄(V̄ ) − ā

V̄ (x) = V̄ (x + 2L)
∫

2L
0

V̄ (x)dx = 0,

(2.4)

where

σ̄(V̄ ) := σ(V̄ + m0) − σ(m0), ā :=
1

2L

∫

2L

0

σ̄(V̄ (x))dx. (2.5)

Define a periodic Sobolev space by

H1
per,0 =

{

v(y)|v(y) ∈ H1
per(R),

∫

2L

0

v(y)dy = 0
}

(2.6)
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and a functional onH1
per,0 by

G(v) =

∫

2L

0

[ε1ε2

2
v2
x + H(v)

]

dx, (2.7)

where

H(v) =

∫ v

0

σ̄(s)ds =
1

4
v4 + m0v

3 +
3m2

0 − 1

2
v2,

we now have the first lemma as follows.

Lemma 2.1 The solutions of(2.4) are equivalent to the critical points of the functional
G(v) defined in(2.7)overH1

per,0.

Proof. If V̄ (x) is a solution of (2.4), then for anyw(x) ∈ H1
per,0, multiplying (2.4) byw(x)

and integrating it over[0, 2L], and noting
∫

2L
0

āw(x)dx = ā
∫

2L
0

w(x)dx = 0, one gets
∫

2L

0

(

ε1ε2V̄xwx + σ̄(V̄ )w
)

dx = 0, for anyw ∈ H1
per,0. (2.8)

This impliesV̄ (x) is a critical point ofG(v) overH1
per,0.

On the other hand, let̄V (x) be a critical point ofG(v) overH1
per,0, namely, (2.8) holds,

we prove that̄V (x) is a solution of (2.4). For anȳw(x) ∈ H1(0, 2L) satisfyingw̄(x) =
w̄(x + 2L), it can be verified that

w(x) := w̄(x) − 1

2L

∫

2L

0

w̄(x)dx ∈ H1
per,0 (2.9)

and
∫

2L

0

σ̄(V̄ (x)) ·
( 1

2L

∫

2L

0

w̄(x)dx
)

dx =

∫

2L

0

w̄(x) ·
( 1

2L

∫

2L

0

σ̄(V̄ (x))dx
)

dx. (2.10)

Thus, (2.8)–(2.10) gives

0 =

∫

2L

0

(

ε1ε2V̄xwx + σ̄(V̄ )w
)

dx

=

∫

2L

0

[

ε1ε2V̄x

(

w̄(x) − 1

2L

∫

2L

0

w̄(x)dx
)

x

+σ̄(V̄ (x))
(

w̄(x) − 1

2L

∫

2L

0

w̄(x)dx
)]

dx

=

∫

2L

0

[

ε1ε2V̄xw̄x + σ̄(V̄ (x))w̄(x)
]

dx

−
∫

2L

0

w̄(x)
( 1

2L

∫

2L

0

σ̄(V̄ (x))dx
)

dx

=

∫

2L

0

[

ε1ε2V̄xw̄x +
(

σ̄(V̄ (x)) − 1

2L

∫

2L

0

σ̄(V̄ (x))dx
)

w̄(x)
]

dx

=

∫

2L

0

[

ε1ε2V̄xw̄x + (σ̄(V̄ (x)) − ā)w̄(x)
]

dx, (2.11)
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where we used (2.5). Thus, we prove in (2.11) thatV̄ (x) is a weak solution of the stationary
problem (2.4). Furthermore, by the usual bootstrap argument, we conclude thatV̄ (x) is the
classical solution of (2.4). The detail is omitted.�

We now prove a useful inequality which is somewhat similar to the so-called Poincaŕe
inequality.

Lemma 2.2 Let V̄ (x) ∈ H1
per,0 be the solution of Eq.(2.4). Then there exists at least one

pointx∗ such thatV̄ (x∗) = 0, and

‖V̄ ‖L2 ≤ L

π
‖V̄x‖L2 . (2.12)

Proof. It is easy to verify that0 is a solution of (2.4). If̄V (x) ≡ 0, then (2.12) automatically
holds. If V̄ (x) 6≡ 0 on [0, 2L], then there must exist at least one point, saysx∗ ∈ [0, 2L],
such thatV̄ (x∗) = 0. In fact, notice that

∫

2L
0

V̄ (s)ds = 0 andV̄ (x) ∈ C0(0, 2L) (because
V̄ (x) ∈ H1(0, 2L)), thenV̄ (x) must change signs on[0, 2L], which implies that̄V (x∗) =
0 for somex∗ ∈ [0, 2L]. Otherwise, either̄V (x) > 0 or V̄ (x) < 0 on [0, 2L] leads
to

∫

2L
0

V̄ (s)ds > 0 or
∫

2L
0

V̄ (s)ds < 0, but this is a contradiction with the condition
∫

2L
0

V̄ (s)ds = 0.
Consider the following eigenvalue problem











−ṽxx = β2ṽ,

ṽ(x) = ṽ(x + 2L),
∫

2L
0

ṽ(x)dx = 0.

(2.13)

The eigenvalues are given by

βk =
kL

π
, k = 1, 2, 3, · · · , (2.14)

and the corresponding eigenfunctions are

ṽ1,k(x) =
1√
L

sinβkx, ṽ2,k(x) =
1√
L

cos βkx, k = 1, 2, 3, · · · (2.15)

satisfying

< ṽi,k, ṽj,l >=

{

1, i = j, k = l

0, otherwise,
(2.16)

where

< ṽi,k, ṽj,l >=

∫

2L

0

ṽi,k(x)ṽj,l(x)dx

is the inner product ofL2
per. It is known that the sequence{ṽi,k(x)} (i = 1, 2 andk =

1, 2, 3, · · · ) forms an orthonormal basis for the space

L2
per,0 =

{

ṽ(x)|ṽ(x) ∈ L2
per and

∫

2L

0

ṽ(x)dx = 0
}

.
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Therefore, as a periodic function satisfyinḡV (x) = V̄ (x + 2L) and
∫

2L
0

V̄ (x)dx = 0,
V̄ (x) is in the spaceL2

per,0, and can be expressed in the Fourier form

V̄ (x) =

∞
∑

k=1

(Akṽ1,k(x) + Bkṽ2,k(x)),

where the coefficientsAk andBk are determined by

Ak =< V̄ , ṽ1,k >, Bk =< V̄ , ṽ2,k > .

Its derivative is given by

V̄x(x) =
∞

∑

k=1

βk(Akṽ2,k(x) − Bkṽ1,k(x)).

Making the inner products, we have

‖V̄ ‖2 =

∫

2L

0

V̄ 2(x)dx

=

∫

2L

0

∞
∑

k=1

∞
∑

l=1

(Akṽ1,k(x) + Bkṽ2,k(x))(Alṽ1,l(x) + Blṽ2,l(x)) dx

=
∞

∑

k=1

∞
∑

l=1

(

AkAl

∫

2L

0

ṽ1,k(x)ṽ1,l(x)dx + AkBl

∫

2L

0

ṽ1,k(x)ṽ2,l(x)dx

+BkAl

∫

2L

0

ṽ2,k(x)ṽ1,l(x)dx + BkBl

∫

2L

0

ṽ2,k(x)ṽ2,l(x)dx
)

=
∞

∑

k=1

(A2
k + B2

k) (2.17)

and

‖V̄x‖2 =

∫

2L

0

V̄ 2
x (x)dx

=

∫

2L

0

∞
∑

k=1

∞
∑

l=1

βkβl(Akṽ2,k(x) − Bkṽ1,k(x))(Alṽ2,l(x) − Blṽ1,l(x)) dx

=
∞

∑

k=1

β2
k(A2

k + B2
k). (2.18)

Sinceβk ≥ β1 = π
L for k = 1, 2, · · · , then (2.17) and (2.18) give

‖V̄x‖2 =
∞

∑

k=1

β2
k(A2

k + B2
k) ≥ β2

1

∞
∑

k=1

(A2
k + B2

k) =
π2

L2
‖V̄ ‖2,

which implies (2.12).�

Now we are ready to discuss the existence of the trivial and non-trivial stationary solu-
tions, as well as their phase transitions.
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Lemma 2.3 If (1.10)holds, then the stationary problem(2.4)has and only has the trivial
solutionV̄ (x) ≡ 0.

Proof. Multiplying (2.4) byV̄ (x) and integrating by parts with respect tox over[0, 2L], as
well as using the periodic boundary condition, we obtain

0 =

∫

2L

0

(−ε1ε2V̄xx + σ̄(V̄ ) − ā)V̄ (x)dx =

∫

2L

0

(ε1ε2V̄
2
x + σ̄(V̄ )V̄ )dx. (2.19)

Since

σ̄(V̄ )V̄ = V̄ 4 + 3m0V̄
3 + (3m2

0 − 1)V̄ 2

= V̄ 2
(

V̄ +
3

2
m0

)2

+
(3

4
m2

0 − 1
)

V̄ 2

≥
(3

4
m2

0 − 1
)

V̄ 2, (2.20)

applying (2.12) and (2.20) into (2.19), as well as noting (1.10), we have

0 =

∫

2L

0

(ε1ε2V̄
2
x + σ̄(V̄ )V̄ )dx

≥
∫

2L

0

[ε1ε2π
2

L2
V̄ 2 +

(3

4
m2

0 − 1
)

V̄ 2
]

dx

=
[ε1ε2π

2

L2
−

(

1 − 3

4
m2

0

)]

∫

2L

0

V̄ 2(x)dx ≥ 0, (2.21)

which implies
∫

2L
0

V̄ 2(x)dx ≡ 0, i.e.,V̄ (x) ≡ 0. Here, in order to obtain the non-negativity
of the last step of (2.21), we need

ε1ε2π
2

L2
−

(

1 − 3

4
m2

0

)

> 0,

which leads to the sufficient condition (1.10).�

Lemma 2.4 If (1.11)holds, then, except the trivial solution0, the stationary problem(2.4)
has at least one non-trivial solution.

Proof. Let V̄n(x) be a minimizing sequence:

G(V̄n) → g = inf
v∈H1

per,0

G(v), (2.22)

whereG(V ) is defined in (2.7). Notice that̄Vn is bounded inH1
per,0, hence there exists a

subsequence, still denoting bȳVn, such that

V̄n → V̄ weakly in H1
per,0, (2.23)

and
V̄n → V̄ strongly in Lp(0, 2L), 1 < p < 6. (2.24)
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This implies
∫

2L

0

V̄ 2
x dx ≤ limn→∞

∫

2L

0

|(V̄n)x|2dx, (2.25)

and
∫

2L

0

H(V̄n)dx →
∫

2L

0

H(V̄ )dx. (2.26)

From (2.22), (2.25) and (2.26), we see thatV̄ (x) is a minimum element of functionalG,
and by Lemma 2.1, it is also a solution of stationary problem (2.4).

It is known that0 satisfyingG(0) = 0 is the trivial solution of (2.4). We are now going
to prove that the minimum element̄V (x) is a non-trivial solution. In fact, we can prove
g = G(V̄ ) < 0, which implies that̄V (x) 6≡ 0 is non-trivial.

Choosing a test function asηṽ1,1(x), where ṽ1,1(x) = 1√
L

sin πx
L , andη > 0 is a

constant such that

η2 <
8L

3

(

1 − 3m2
0 −

ε1ε2π
2

L2

)

. (2.27)

It is known thatηṽ1,1(x) ∈ H1
per,0. A straightforward calculation gives

∫

2L

0

|(ṽ1,1)x|2dx =
π2

L2

∫

2L

0

ṽ2
1,1dx.

and
∫

2L

0

ṽ2
1,1(x)dx = 1,

∫

2L

0

ṽ3
1,1(x)dx = 0,

∫

2L

0

ṽ4
1,1(x)dx =

3

4L
.

Hence,

G(ηṽ1,1) =

∫

2L

0

[ε1ε2η
2

2
|(ṽ1,1)x|2 + H(ηṽ1,1)

]

dx

=

∫

2L

0

[ε1ε2η
2π2

2L2
ṽ2
1,1 +

η4

4
ṽ4
1,1 + m0η

3ṽ3
1,1 +

(3m2
0 − 1)η2

2
ṽ2
1,1

]

dx

=
(ε1ε2π

2

2L2
− 1 − 3m2

0

2

)

η2

∫

2L

0

ṽ2
1,1dx +

η4

4

∫

2L

0

ṽ4
1,1dx + m0η

3

∫

2L

0

ṽ3
1,1dx

= −
(1 − 3m2

0

2
− ε1ε2π

2

2L2
− 3

16L
η2

)

η2

< 0, (2.28)

because of (1.11) and (2.27). SinceV̄ (x) is the minimum element ofG(v) onH1
per, (2.28)

impliesG(V̄ ) = g < 0. �

Lemma 2.5 The non-trivial solutions are oscillatory, and always exhibit phase transitions.

Proof. According to the periodicity, the non-trivial solution is always oscillatory.
Now we are going to prove that the non-trivial solutions always exhibit phase transi-

tions. In fact, differentiating (2.1) with respect tox gives

σ′(V )Vx = ε1ε2Vxxx. (2.29)
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Notice thatVxxx(x) is non-monotone, namely,Vxxx(x) changes signs on[0, 2L]. Let
Vxxx(x) 6= 0 at some pointsx, we have four possible cases:

Case 1.Vxxx(x) > 0 andVx(x) > 0;
Case 2.Vxxx(x) > 0 andVx(x) < 0;
Case 3.Vxxx(x) < 0 andVx(x) > 0;
Case 4.Vxxx(x) < 0 andVx(x) < 0.
For Case 1, whenVxxx(x) > 0 andVx(x) > 0, then from (2.29) we haveσ′(V (x)) > 0,

which is equivalent to|V (x)| > 1√
3
, i.e.,V (x) > 1√

3
or V (x) < − 1√

3
. This indicates that

the phase transitions exhibit. Similarly, we can verify that, for Case 2, the solution V at x
doesn’t exhibit a phase transition, i.e., we have− 1√

3
< V (x) < 1√

3
, while Case 3 like Case

1 exhibits a phase transition, and Case 4 like Case 2 doesn’t exhibit a phase transition.
If there are some points such that Case 1 or Case 3 occurs, we immediately prove that

the non-trivial solutions exhibit phase transitions. This proves our lemma. If there are only
Case 2 and Case 4, but no Case 1 and Case 3, we see that, whateverVxxx > 0 or < 0, we
always haveVx < 0. This is a contradiction to the non-monotonicity ofV (x). Therefore,
the non-trivial stationary solutionV (x) always occurs phase transitions.�

Proof of Theorem 1.1. Thanks to Lemma 2.3, and notice thatV (x) = V̄ (x) + m0, we
proved Part 1 of Theorem 1.1. Furthermore, Lemma 2.4 implies the existence of multiple
non-trivial stationary solutions of (2.1) in Part 2 of Theorem 1.1, and Lemma 2.5 proves that
all non-trivial stationary solutions are oscillatory and exhibit the phase transitions. Thus,
Theorem 1.1 is proved.�

Now we are going to prove Theorem 1.2, i.e., we count the number of the non-trivial
solutions form0 ∈ [0, 1√

3
).

Firstly, whenm0 = 0, for the stationary equation (2.1), if we change the periodic
interval from[0, 2L] to [−L, L], then it is equivalent to











ε1ε2Vxx = σ(V ) − a

V (x − L) = V (x + L)
1

2L

∫ L
−L V (x)dx = m0.

(2.30)

Let y = x
L , (2.30) can be rewritten as











ε1ε2

L2 Vyy = σ(V ) − a

V (y − 1) = V (y + 1)
1

2

∫

1

−1
V (y)dy = m0.

(2.31)

By a very similar method as shown in [2, 23] (see [23]: Eqs. (3.16) and (3.17) on page 178
and Theorem 3.4 on page 179), we can prove that the modified stationary equation (2.31)
has2N0 + 1 solutions forN0 satisfying (1.12). Here the detail of the proof is omitted.

Lemma 2.6 For m0 = 0 andε1ε2 < L2

π2 (1 − 3m2
0), there are(2N0 + 1) solutions for the

stationary equation(2.31), whereN0 is the integer satisfying(1.12), i.e.,

2L

π
√

ε1ε2

− 1 < N0 ≤ 2L

π
√

ε1ε2

. (2.32)
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Furthermore, whenm0 6= 0, by the change of variabley = x
2L + 1

2
, then we deduce

(2.30) to










ε1ε2

4L2 Vyy = σ(V ) − a

V (y) = V (y + 1)
∫

1

0
V (y)dy = m0.

(2.33)

By the transversality arguments as presented in [9], based on the size of viscosityε1ε2 and
the location of the initial averagem0, we can very similarly count the number of stationary
solutions as follows. Here, the proof is also omitted.

Lemma 2.7

1. Whenm0 ∈ (0, 1√
5
), if ε1ε2 ≥ L2

π2 (1 − 3m2
0), then there is no non-trivial stationary

solution to Eq. (2.33). However, ifε1ε2 < L2

π2 (1 − 3m2
0), then there is only one

non-trivial solution to Eq.(2.33).

2. Whenm0 ∈ ( 1√
5
, 1√

3
), there exists a positive numberε∗ > L2

π2 (1 − 3m2
0) such that,

if ε1ε2 > ε∗, then there is no non-trivial solution to Eq.(2.33). However, ifL
2

π2 (1 −
3m2

0) < ε1ε2 < ε∗, then there are only two non-trivial solutions to Eq.(2.33). While,
if ε1ε2 ≤ L2

π2 (1 − 3m2
0), then there is only one non-trivial solution to Eq.(2.33).

Proof of Theorem 1.2. Combining Lemma 2.6 and Lemma 2.7, we immediately prove
Theorem 1.2.�

3. Numerical Simulations

With the central finite difference for the second order derivative and the Simpson’s rule for
the integral, system (2.1) is discretized as follows:























ε1ε2(vi−1 − 2vi + vi+1) = h2(v3
i − vi) − a, i = 1, 2, · · · , n − 1

vn = v0

h
∑n/2

i=1
(2v2i−2 + 4v2i−1) = 6Lm0

a = h2(v3
0 − v0) − ε1ε2(v1 − 2v0 + vn−1)

(3.1)

wheren is even, andh = 2L
n .

The above scheme is a system ofn + 1 nonlinear algebraic equations withn + 1 vari-
ables. The Newton-Raphson’s nonlinear solver is used with various initialguessing points.
The computer program uses a random generator for the initial guess. For each case, a rea-
sonable number of sets of guessing values has been implemented. The convergent solution
could be unique or multiple depending on the system configuration, i.e. the values of the
initial averagem0 and the viscosityε1 andε2. The smaller the space steph is, i.e. the larger
the number of gridsn is, the more accurate the numerical solutions are. However, when
n is large, the computational cost for the nonlinear solver increases dramatically. For the
chosenL = π for the cases reported in the following,n near 60 (i.e.h near 0.1) provides
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convergent solutions in a short time (within couple of minutes) and with good accuracy.
Further increasing the valuen does not change the solutions significantly.

To verify Theorem 1.1, first of all, by pluggingm0 = 0 andε1ε2 = 4 in the numerical
program, we obtain only the trivial zero solutionV ≡ 0. For small viscosities, the case
with m0 = 0 andε1ε2 = 0.49 is examined, and one non-trivial solution is found as shown
in Figure 3.1, which also verifies the first item of Theorem 1.2 withN0 = 2.
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Figure 3.1. Case 1:m0 = 0, ε1ε2 = 0.49, Item 1 in Theorem 1.2
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Figure 3.2. Case 2:m0 = 0.3, ε1 = ε2 = 0.1, Item 2 in Theorem 1.2 with a unique
non-trivial solution
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For Item 2 in Theorem 1.2, the chosen parameters arem0 = 0.3 andε1 = ε2 = 0.1,
and the unique non-trivial solution is found. See Figure 3.2.

Selectm0 = 0.5 andε1ε2 = 0.28 that satisfiesL
2

π2 (1− 3m2
0) < ε1ε2 < ε∗, we find two

non-trivial solutions as shown in Figure 3.3.
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Figure 3.3. Case 3:m0 = 0.5, ε1ε2 = 0.28, the first part of Item 3 in Theorem 1.2 with
two non-trivial solutions.
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For the same value of the initial averagem0 = 0.5, when the viscosity is small as
ε1ε2 = 0.02 such thatε1ε2 < L2

π2 (1−3m2
0), the program only finds one non-trivial solution

as shown Figure 3.4.
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Figure 3.4. Case 4:m0 = 0.5, ε1ε2 = 0.02, the second part of Item 3 in Theorem 1.2 with
a unique non-trivial solutions.
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