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Abstract 

We study the asymptotic stability of a critical viscous shock wave for a 2 x 2 
system of viscous conservation laws. The corresponding inviscid system is 
hyperbolic except a t  one critical state. Physical examples include the isentropic 
gas dynamics for van der Waals fluids. A critical shock is a shock wave with 
one end state being the forementioned critical state. Our main result shows 
that such a critical shock wave is stable under small perturbation. Further, our 
result is not limited to weak shock cases. A weighted energy method is adopted 
to prove this stability theorem. The new technical part is the introduction of 
a new weighted function to handle the difficulty near the critical state. 

'This work was supported by the National Science Council of the Republic of China under 
Contract NSC85-2121-M002-005-MS, and the Ministry of Education of Japan Grant-in-Aid 
for JSPS under Contract P-96169. 
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CHERN AND ME1 

1 Introduction 
We consider the stability of viscous shock wave for the following 2 x 2 systems 
of viscous conservation laws: 

Here, p > 0 is the viscous coefficient. Physical systems that have this form 
include, for example, the viscoelasticity and the viscous isentropic gas dynam- 
ics (psystem) in Lagrangian form [I]. In the viscoelasticity, u is the velocity, 
v, the strain, and o ,  the stress-strain function. In the viscous isentropic gas 
dynamics, u is the velocity, v, the specific volume, and -u(u) is the pressure 
p(v). The usual assumption for o is 

for v under consideration. In this case, the corresponding inviscid system 
is strictly hyperbolic. The theory for the stability of viscous shock for this 
case is quite complete, see [8, 12, 221 and references therein. However, for 
the case when d ( v )  < 0 in some region, the corresponding stability theory 
is incomplete. The gas dynamic equation of van der Waals fluids is one such 
example. The region where of(v) < 0 is called an elliptic region, in which all 
states are unstable. We call its border state (i.e. a t  which ol(v) = 0) a critical 
state. We are insterested in the stability of viscous shocks with one end state 
being such a critical state. We shall call such a shock a critical shock. 

For the theory of the stability of viscous shock, historically the first result 
was due to Il'in-Oleinik (51 for single equation with convex flux. Their proof 
was based on maximal principle. Many years later, Sattinger 1211 gave another 
proof based on spectral analysis. For system cases, several energy methods 
in Matsumura-Nishihara [14] , Goodman [3] and Liu [lo] were introduced in- 
dependently to tackle this stability problem for genuinely nonlinear systems 
with weak shocks. It was shown that perturbations of a viscous shock cause 
a translation of that shock and appearance of a sequence of diffusion waves in 
the characteristic fields other than the shock field [lo]. For a thorough result 
based on the weighted energy method, please see Szepessy-Xin [22]. Also, for 
pointwise convergence estimate, see the Green's function method by Liu (121. 

For single equation with non-convex flux, Weinberger (23) obtained the sta- 
bility result based on maximal principle. Jone-Gardner-Kapitula [6] gave an- 
other proof based on spectral method. Mei [17] and Matsumura-Nishihara [15] 
showed the stability of viscous Lax shocks and contact shocks with conver- 
gent rate estimates by a weighted energy method. See also recent work by 
Freistiihler-Serre [2]. For system cases with non-convex fluxes (non-genuine 
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CRITICAL VISCOUS SHOCK WAVES 87 1 

nonlinearity), very recently Kawashima and Matsumura [8] use a weighted en- 
ergy to show the stability of viscous shock for the 2 x 2 viscoelasticity and the 
2 x 2 psystem with non-convex pressure function p. See also Nishihara [19], 
Mei-Nishibara[l8] and Matsumura-Mei[l3], however, their results are limited 
to weak shock cases, except for [13]. 

In this paper, we mainly adopt Kawashima and Matsumura's weighted 
energy method to prove the stability of a critical viscous shock. The new 
difficulty is the appearance of the critical state, a t  which the Lagrangian sound 
speed is zero. Previous weighted function for psystem or viscoelasticity is not 
applicable here. A new weighted energy function is designed to obtain a desired 
high order energy estimate. 

Finally, due to similar technical difficulty that Kawashima and Matsumura 
had in the viscoelasticity [8], we also have similar restriction on the higher order 
derivatives of the pressure function. These conditions are carefully studied 
here and they cover most physical applications. Moreover, no restriction on 
the smallness of shock strength is required. 

This paper is organized as follows. Section 2 is the reformulation of the 
problem and the statement of the main stability theorem. Section 3 is the 
proof of the stability theorem based on an a priori estimate. Section 4 is the 
proof of the a priori estimate. Section 5 is devoted to the application to the 
gas dynamics for van der Waals fluids. 
Some Notation 

Let L2 and H1(l 2 0) denote for the L2-space and Sobolev spaces, respectively. 
Their norms are denoted by 11 . ( 1  and 11 . I l r  Let L i  denote for the weighted 
L2-space with the following weighted norm: 

where w ( x )  > 0 is the weighted function. Similarly, Hb(1 3 0) denotes for the 
weighted Sobolev space with the weighted norm: 

1 

llf I l b  = (x l l%f  11;) 
j=O 

We shall denote by f (x) - g(x) if C-lg 5 f <_ Cg for some positive constant 
C .  We shall also use C for a generic positive constant in our calculation. 

2 Critical Viscous Shock and the Main The- 
orem 

We consider system (1.1) and (1.2) with a satisfying 

u' ( v )  > 0 for v > 0, and af(0) = 0 (2.1) 
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872 CHERN AND ME1 

and only the states v 2 0 are under consideration. Suppose that a t  the critical 
point 

U1(O) = . . . = 0 ( ~ - " ( 0 )  = 0 ,  d k ) ( 0 )  # 0 ,  

for some integer k 2 2. Then ul(v)  = O(l)vk-- '  for v near 0. 
The characteristic speeds for the inviscid system of (1.1), (1.2) are X1,2 = 

P Jo'o, the corresponding eigenvectors are rlt2(v,  u ) .  Thus, the inviscid part 
of the system (1.1), (1.2) is strictly hyperbolic for v > 0 and degenerate hy- 
perbolic a t  v = 0. 

The viscous shock that we consider here is a traveling wave solution of (1.1) 
and (1.2): 

(v ,  u ) ( t ,  Z )  = (V, W C ) ,  E = x - st ,  

(V,U)(C) -t (v*, 4 t + * 00. 
Here, s  is the shock speed, (v*, u*) are the end states which satisfy the fol- 
lowing Rankine-Hugoniot condition: 

and the entropy condition [9]: 

for all v between v- and v+. We say a viscous shock is critical if one of its 
end state is the critical state 0. From the entropy condition (2.3), this critical 
state must be v+ and we must have 

Remark: There are only two kinds of critical shock here: either v+ is the 
critical state or v- is. If v- is the critical state, then the entropy condition 
(2.3) implies v+ < v- and s c 0. In this case, we may make the following 
change-of-variables: x + -x ,  v -t -v and o ( v )  = -u(v- - v ) .  Then the 
second case is reduced to the first case. 

To find the critical viscous shock (U, V ) ,  we plug ( a ,  v ) ( x ,  t )  = (U, V )  ( x  - s t )  
into (1.1) and (1.2), then we arrive 

Integrating (2.5) and eliminating U ,  we obtain a single ordinary differential 
equation for V(E) :  
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CRITICAL VISCOUS SHOCK WAVES 

where 
2 a = -s v* + u(v*) 

For the existence of viscous shock, we have the following proposition. Its proof 
is identical to that of Kawashima-Matsumura [8]. 

Proposi t ion  1 (Existence of viscous shocks). Suppose that (2.1) and (2.4) 
hold. 

(i) If (1.1) and (1.2) admit a viscous shock wave ( V ( x  - s t ) ,  U ( x  - s t ) )  
connecting (v- ,  u - )  and (v+, u+),  then (v*, u*) and s must satisfy the Rankine- 
Hugoniot condition (2.2) and the entropy condition (2.3). 

(ii) Conversely, suppose that (2.2) and (2.3) hold, then there exists a viscous 
shock wave (V ,  U ) ( x  - s t )  of (1.1),(1.2) connecting (v- ,  u - )  and (v,, u+) .  The 
viscous shock is unique up to a shift in ( and is monotonic: 

for all ( E R. Moreover, 

where c* =: lu1(v*) - s1/2 > 0 are determined constants. 

Now, let us consider a perturbation of such a viscous shock a t  the initial time: 

where (vo(x ) ,  u O ( x ) )  -+ (vr ,  u*) as x 4 FCO. From conservation laws, this 
perturbation will cause a translation and produce a diffusion wave in other 
characteristic field (101. The distance of the translation so and the mass m 1  of 
the diffusion wave can be determined by 

xo and m l  can be determined uniquely because (v+-V-, u+-U-) and rl(v-, u - )  
are linearly independent. The energy estimate for the stability of viscous shock 
with appearance of diffusion waves can be found in Szepessy-Xin [22]. Here, 
we shall focus on the problem of critical state. Thus, we may assume 

for simplicity. In this case, we may also assume 
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874 CHERN AND ME1 

after we make a translation in x by xo. Now, from conservation laws, we have 

m 

Lm ( v ( x ,  t )  - V ( X  - s t ) ,  U ( X ,  t )  - U ( x  - s t ) )  dx = (0,O) 

for all t > 0. Thus, we may write 

and use (4,  $) as our new unknown variables. Let us denote the initial data 
of (4, $1 by (do, $0).  That is 

To state our main theorem, we define the weighted function: 

11 5 1 0  
~ ( r )  = (2.13) 

eK, < L 01 

where b = (k - l)c+ > 0. We also need the following two technical assumptions 
on a which will be discussed in detail in the last section. 

af l (v )  > 0, for v E [v+,v-1, (2.14) 

- h(v)af' ( v )  < 4s2, for v E [v+, v-1. 
4 4  

Condition (2.14) implies k = 2 in our case. Now, our main theorem can be 
stated as follows. 

Theorem 1 Suppose that (2.1)) (2.2)) (2.3)) (2.1 I), (2.14)) (2.15), do E H z ,  
4 0 , ~  E HA and qo E Hz hold. Then there exists a positive constant 61 such that 
if l l ~ o I l 2  + Il4o,~lll,~ + Il$0ll2,~ < 61, then (1.1),(1.2) and (2.10) have a unique 
global solution ( v ,  u ) ( t ,  x )  satisfying 

u - U E cO([o,~);  H:) n L2([0, CO); H:). 

Furthermore, 

Remarks 
1. Assumption (2.15) can be replaced by the following stronger condition: 

U ' ~ ~ ( V )  < 0 for v E [v+,v-1. (2.16) 
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CRITICAL VISCOUS SHOCK WAVES 875 

In fact, let f (v)  := s2a'(v) + h(v)al'(v). Then f f (v )  = al(v)a"(v) + 
h(v)a"'(v) > 0 due to ol(v) > 0, afl(v) > 0, al"(v) < 0 and h(v) < 0. So, 
f (v) is monotonic increasing in [v+, v-1. Hence, f (v) > f (v+) = 0, for 
v E [v+, v-1. With this, we see that 

h (v) a" (v) 
4s2 + 2 3s2 > 0 

al(v) 

for v E [v+, v-1. 

2. Assumption (2.15) can also be replaced by the smallness condition on the 
shock strength, namely, v- v+. In fact, by 1'Hospital rule, lim,,,, = 

s2. Hence (2.15) is always true for v- in a neighborhood of v+. 

3. In the case that  v- is the critical state, we see from the Remark of section 
2 that the conditions (2.14) should be replaced by 

af'(v) < 0, for v E [v+, v-1. (2.17) 

3 Proof of the Stability Theorem 

To prove the stability theorem, as in the previous works, we reformulate the 
problem b:y integrating (1.1),(1.2) in [ and using 4 and 11 as our new variables. 
The problem (1.1),(1.2) and (2.10) is then reduced to  the following "integrated" 
system 

where 
F = a ( V  + 4,) - a (V)  - ol(V)& = O ( I & [ ~ ) .  

We consider the following solution space for our Cauchy problem (3.1): for 
any fixed t E (0, m) define 

Then our stability theorem is a direct consequence of the following theorem. 

Theorem 2 Under the crssumptions in Theorem 1, there exist positive con- 
stants 62 and C such that if lldo112 + Il40,~ll1,~ + I I + 0 l l 2 , ~  < 62, then (3.1) has a 
unique global solution (4,  $) E X(0, CQ) satisfying 
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876 CHERN AND ME1 

5 ~~l l4o l l ;  + l ld~ ,€ l I ; ,~  + l l ~ o l l ; , w ~  

for any t 2 0,  and 

Theorem 2 can be proved by a standard continuation method [7] with the use 
of the following local existence theorem and a priori estimate. 

Theorem 3 (Local Ezistence). Let 

For any 60 > 0 ,  there exists a positive constant to depending on bo such that, 
if $0 E H Z ,  4 0 , ~  E HL, $0 E H: and N ( 0 )  1: bO, then the Cauchy problem 
(3.1) has a unique local solution ($,$I) E X(O,to) satisfying N ( t )  5 2b0 for 
0 5 t 5 to.  

Theorem 4 (A Priori Estimates). Suppose that the assumptions in Theo- 
rem 1 hold, and (4, $) E X ( 0 ,  t l )  is a solution of (3.1) for a positive t l .  Then 
there exist positive constants b3 and C which are independent o f t ,  such that 
if N ( t )  < 63) then (4,  $) satisfies 

The proof of the local existence theorem is standard (see, for example, (7)). 
The proof of the a priori estimate will be our main effort. 

4 Proof of A Priori Estimates 
There are two key lemmas t o  establish the a priori estimate (3.3). The first 
one is the following basic energy estimate. 

Lemma 1 It holds that 

I I ~ ( ~ ) I I ~ + I I $ ( ~ ) I I : + ~  O II~WII: d~ 5 C { I I ~ ~ I I ~ + I I $ ~ I I : + N ( ~ )  J t  IIWII: w. 
0 

(4.1) 

To prove Lemma 1, we need the following lemma. 
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CRITICAL VISCOUS SHOCK WAVES 877 

Proof. From the Taylor expansion of a near u = 0, we have a(u) = O(uk),  and 
d ( u )  = O(uk-I). From these, (2.9) and (2.13), we see that w(<) and l / d ( V ( < ) )  
are equivalent to each other near < = m. On the other hand, both w(<) and 
o(V(<))  are bounded above zero for < E [-w, c] for some sufficiently large <. 
Thus, we have 0 < C1 5 w(<)  . o t (V(J ) )  5 C2 for all J E R. For the estimation 
of (al'(V)&/a'(V)l, similarly, we have that it is bounded for < E [-m,G. And 
o"(V(<)) = O(V(J)k-2)  with k > 1 and IspV<(<)I = Ih(V(<))l = O(V(<))  
for < -+ m. Hence, from (2.9) we also have that Iu"(V)&/at(V)I = O(1) as 
t + m .  I 

Proof of Lemma 1. We multiply the first equation of (3.1) by 4 and the 
second one by +al(V)-' respectively, and add them to yield 

By Schwarz's inequality, we note that 

where 0 <: q < 1 is a constant to be chosen later. Substituting (4.5) into (4.4) 
yields 

d2 +2 P 
2c1(v)  

S62 s+2 +m*+-*+<}c { T + - ) t - t ~ + ~  
g'(V) 

with 

Here, we have used s p b  = h(V).  From (2.15), we can choose q such that 
O < q <  1 and 

14(9 - l)s2a'(u)l 5 4s2a'(u) + h(u)a"(u) 

for u E (0, u-1. Then we arrive 
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878 CHERN AND ME1 

By these facts, integrating (4.6) over [0, t] x R and using that w ( ( )  - al(V)-I, 
SUP((,~),RX[O,~] 1% 711 5 CN(t), and 

by JFI = O(l)q$, then we arrive 

Finally, we can drop the term $,' SF, z(V)$~/U'(V) d< d~ in (4.7) to obtain 
(4.1) because of its positivity. I 

The following steps are to treat the energy estimates for (&, $0 in HA. 
Differentiating (3.1) in ( and multiplying the first equation by & and the 
second one by ol(V)-'* then adding them, we obtain 

From Lemma 2: lal'(V)V,/ol(V)I 5 C and la"(V)q(  5 C, we get by Cauchy 
ineaualitv that 

where 0 < E < 1 is a constant to be chosen later (by (4.27)). Substituting 
(4.9) and (4.10) into (4.8), integrating (4.8) over [0, t] x R and using (4.2) and 
(4.3) yield 

I14dt)l12 + llh(t)ll: + I t  l l k ( r ) l l ?  d r  
0 

( 1  + - I  J t  o I + 1 it J W  d d  (4.11) -, 0 (V) 
From (4.1), we have 
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CRITICAL VISCOUS SHOCK WAVES 

By integration by parts and (4 .3 ) ,  we get 

5 C N ( ~ )  / t ( ~ ~ 4 ~ ( r ) ~ ~ ~  o + ll@&m d r .  (4 .13)  

Plugging (4 .12)  and (4 .13)  into (4 .11) ,  we have proved the following lemma. 

Lemma 3 It holds that 

The next lemma is devoted to estimate $,' I I $ t ( ~ ) l l w  d ~ .  It is the second key 
lemma in this section. 

L e m m a  4 It holds that 

Remark .  Previous works (see [8, 13, 14, 17, 18, 191) that obtained an energy 
estimate like (4 .15)  used u l ( V )  2 C > 0 which is not valid in our case. Thus, 
the proof of this lemma is another key point of this paper. 
Proof. From the first equation of (3 .1 ) ,  we have 

dEt - ~ 4 ( <  - $CC = 0. 

Multiplying this equation by w ([)$cC yields 
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880 CHERN AND ME1 

Equation (4.16) holds for both < E (-m,0) and J E (0, m ) ,  respectively. We 
integrate (4.16) in J from -oo to 0 and use w(J) = 1, wl(J) = wl'(J) = 0 for 
J E (-m,0) to obtain 

Similarly, we integrate (4.16) in J from 0 to oo and use w(t )  = eM, w{(J) = 
bw(<) and wy(l) = b2w(l) for ( E [0, m ) ,  then we get 

Substituting (4.17) into (4.18) and using w(<) being continuous on R, we obtain 

By the Cauchy inequality: 

and integrating (4.19) in r from 0 to t ,  dropping the positive term $w(<)#/,=~, 
we obtain 

lww(04 : ( t7  I) d t  + It o I* o w(04:(t. C) 4 

5 ~ { l l + ~ , t l l l  + It o l l ~ c ( d 6  d r ) .  

From this inequality and (4.14), we get 

~ 4 c t  - shCc + U ' ( V ) ~ ~  + s$, - $Jt = -F. (4.21) 

Multiply (4.21) by 4, to obtain 
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CRITICAL VISCOUS SHOCK WAVES 88 1 

Substituting (4.23) into (4.22) yields 

Integrating (4.24) over [0, t ]  x R, using the Cauchy inequality: 

5 ! I I W ) I I ~  + CP-~IIWII:, 

also noting al(V(J)) 2 al(V(0)) > 0 for J 5 0 (since aU(V) > 0 and Vc < O), 
we then get 

Finally, (4.15) follows from (4.1), (4.20) and (4.25). 1 
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Now, we choose E such that 
CE 1 
- < 4, 2 

then choose N(t)  such that 

CHERN AND ME1 

(4.27) 

then we obtain (4.26). 1 

The energy estimate for qFE)  can be obtained by repeating the same 
procedure in Lemmas 1-4. We list the result as follows and omit the details. 

Lemma 6 It holds that 

Proof  of Theorem 4. Commbining Lemmas 1-6, we have proved (3.3) 
provided that N(T) is less than a suitably small constant, say 63 > 0. I 

5 Application to the van der Waals Model 

For applications, we consider the viscous psystem for van der Waals fluids: 

where u is the velocity, v, the specific volume, p, the pressure, and p > 0, the 
viscous coefficient. The equation of state considered here is given by van der 
Waals: 

RO a 
p(v) = - - - for v > b, 

v - b  v2'  
where R > 0 is the gas constant, 8 > 0 the absolute temperature (assumed to 
be constant), and a and b are positive constants (See Figure 1). 

When RObla > (2/3)3, then pl(v) < 0 for all v > b and the corresponding 
inviscid equation is strictly hyperbolic. The fluid is in vapor phase. In this 
case, the stability of viscous shock waves has been studied by Kawashima- 
Matsumura [8] Mei [16], and Matsumura-Mei [13] for the Lax shock case, 
and by Nishihara [19] and Mei-Nishihara [18] for the contact shock case (i.e. 
-pi(v) = s2 at  v = v- or v,). 
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Figure 1: The graph of a(v) = Figure 2: The graph of f,(rn), i = 
-p(v) (5.3) with R6 = 2.35, a = 3 1 ,2 ,3  
and b =  113. 

When Robla < (2/3)3, there exists an interval (vl,v2), where pl(v) > 0. 
In this case, the corresponding inviscid equation is elliptic in this region and 
hyperbolic elsewhere. This equation of state is used to model fluid that exhibits 
water-vapor phase transition. The state in the region (v2, oo) is called in vapor 
phase, while the state in (b, vl) the water phase. The state in the elliptic region 
is linearly unstable. 

The van der Waals gas dynamics has been investigated by many researchers 
recently (see [4, 8, 11, 13, 14, 17, 18, 191 and references therein). The stability 
of a phase interface was obtained by Hoff (41 for the 3 x 3 Navier-Stokes van 
der Waals model. Here, our stability analysis covers the case: Robla 5 (2/3)3. 
The critical shock we consider is in one phase (i.e. either entilely in (v2, m) 
or in (b, v,)), but one of its end state is the boundary state of that phase, a t  
which the Lagrangian sound speed is zero. 

We now investigate the technical conditions (2.14) and (2.15) for the van 
der Wads fluids. 

Let us rescale v by v = mb. Then the derivatives of a(v) are given by the 
follows. 

for m E (1, co). The graphs of fi(m) (i = 1,2 ,3)  are plotted in Figure 2. 
When Robla < (2/3)3, each fl intersects y = Robla a t  only two points: 

mi,, j = l, 2. They satisfy the following ordering relation (see Figure 2): 
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Regarding to the sign of a('), let vij = mijb, i = 1,2 ,3 ,  j = 1,2,  from (5.4) and 
(5.5), we have for i = 1 ,2 ,3  that 

( - ~ ) ~ o ( ' ) ( v )  { > 0 for v E (vil, vi2) 
< 0 otherwise. 

This equation of state models water-vapor phase transition. The region (b, vll) 
is the water-phase region, (v12, m), the vapor-phase region, and (vll, v12), the 
water-vapor mixed region. The inviscid part of (5.1) and (5.2) becomes elliptic 
in (vll, v12) It is easy to see this region is linearly unstable by simple Fourier 
method. 

Our first interesting region is the region (v12, vz2), where ol(v) > 0, o1l(v) > 
0, ul"(v) < 0 and v12 is the critical point. We see that our Theorem 1 is 
applicable in this vapor-phase region. For the water-phase region, we see that 
in (b, vll), ul(v) > 0 and ol'(v) < 0. Unfortunately, u"'(v) > 0 which is in 
wrong sign. However, as we have mentioned in Remark 2 of Theorem 1 that 
we can always find a state 6 in a neighborhood of v+ such that (2.15) is satisfied 
in region (17, vll). 

When ROb/a = (2/3)3, we see that ul(v) = 0 only a t  the point v = 36, 
and ol(v) > 0 otherwise. This model has water and vapor phases but no 
water-vapor mixed region. In this case we can see from Figure 2 that 

We then obtain that Theorem 1 is applicable for the water region (b,36) as 
well as a vapor region (3b, C), where 6 is a neighboring state of 3b. 
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