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Abstract

This paper is concerned with the stability of critical traveling waves for a kind of non-monotone time-
delayed reaction–diffusion equations including Nicholson’s blowflies equation which models the population 
dynamics of a single species with maturation delay. Such delayed reaction–diffusion equations possess 
monotone or oscillatory traveling waves. The latter occurs when the birth rate function is non-monotone 
and the time-delay is big. It has been shown that such traveling waves φ(x + ct) exist for all c ≥ c∗ and are 
exponentially stable for all wave speed c > c∗ [13], where c∗ is called the critical wave speed. In this paper, 
we prove that the critical traveling waves φ(x + c∗t) (monotone or oscillatory) are also time-asymptotically 
stable, when the initial perturbations are small in a certain weighted Sobolev norm. The adopted method 
is the technical weighted-energy method with some new flavors to handle the critical oscillatory waves. 
Finally, numerical simulations for various cases are carried out to support our theoretical results.
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1. Introduction

Model equations. We are interested in the stability of oscillatory traveling waves for the follow-
ing time-delayed reaction–diffusion equation

∂v(t, x)

∂t
− D

∂2v(t, x)

∂x2
+ dv(t, x) = b(v(t − r, x)), (t, x) ∈ R+ ×R. (1.1)

The traveling wave is of the form φ(x + ct) and the initial data

v(s, x) = v0(s, x), s ∈ [−r,0], x ∈ R (1.2)

considered is a perturbation of φ. This equation models the population dynamics of a single 
species with nonzero maturation delay, the time required for a newborn to become matured [8,9,
16,17,20,28]. Here, v(t, x) represents the mature population at time t and location x, D > 0 is the
spatial diffusion rate of the mature species, d > 0 is the death rate, and r > 0 is the maturation 
delay. The function b : [0, ∞) → (0, ∞) is called the birth rate function, which is assumed to 
satisfy the following hypothesis:

(H1) There are only two equilibria, say v±, for the homogeneous part of (1.1). That is, b(v±) −
dv± = 0. We may take v− = 0 and thus b(0) = 0. We further assume that v− is unstable and 
v+ is stable for the homogeneous part of (1.1). That is, d − b′(0) < 0 and d − b′(v+) > 0.

(H2) The uni-modality condition: there is a v∗ ∈ (0, v+) such that b(·) is increasing on [0, v∗]
and decreasing on [v∗, +∞). In particular, b′(0) > 0 and b′(v+) < 0.

(H3) b ∈ C2[0, ∞) and |b′(v)| ≤ b′(0) for v ∈ [0, ∞).

Hypothesis (H1) means that (1.1) is a mono-stable system. A typical example is the classic 
Fisher–KPP equation

vt − vxx = v(1 − v).

Hypothesis (H2) implies that b(v) is not monotone for v ∈ [0, v+]. As we shall see later this leads 
to some oscillations for traveling waves when the time-delay r is big.

The hypotheses (H1)–(H3) are summarized from the following concrete models.

• Nicholson’s blowflies model [8,9,16,17,20,28]: The so-called Nicholson’s birth rate function 
(also called the Ricker’s type function) is

b(v) = pve−av, a > 0, p > 0, (1.3)

where p > 0 is the maximal egg daily production rate per blowfly. Since b(v) reaches its 
maximum at v = 1/a, the biological meaning of 1

a
> 0 is the new-born population at which 

the population reaches its maximal growth rate. The corresponding constant equilibria are
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v− = 0 and v+ = 1

a
ln

p

d
.

When p/d > e, the birth rate function b(v) is unimodal on v ∈ [0, v+], and reaches its unique 
global maximum at v∗ := 1

a
∈ (0, v+). Furthermore, it can be verified that |b′(v)| ≤ b′(0) for 

v ∈ [0, ∞).
• Mackey–Glass model [7,12,16,17]: The birth rate function is the Beverton–Holt function

b(v) = pv

1 + avq
, a > 0, p > 0, q > 1, (1.4)

where

v− = 0 and v+ =
(p − d

da

) 1
q
.

When p
d

>
q

q−1 , b(v) is unimodal for v ∈ [0, v+], and reaches its unique global maximum at 

v∗ := [a(q − 1)]−1/q ∈ (0, v+). It can also be verified that |b′(v)| ≤ b′(0) for v ∈ [0, ∞).

Traveling waves. A traveling wave for (1.1) is a special solution to (1.1) of the form 
φ(x + ct) ≥ 0 with φ(±∞) = v±. We say such traveling wave connecting v− to v+. By plugging 
it into (1.1), we get that

{
cφ′(ξ) − Dφ′′(ξ) + dφ(ξ) = b(φ(ξ − cr)),

φ(±∞) = v±,
(1.5)

where ξ = x + ct , ′ = d
dξ

, and c is the wave speed. The traveling wave can be viewed as a 
heteroclinic orbit connecting two equilibria v± from ξ = −∞ to ξ = ∞. It can be monotone or 
oscillatory. The existence and uniqueness of the monotone/oscillatory traveling waves of (1.1)
have been studied extensively [1,3–7,14,29,32,33], see the references therein. We briefly describe 
the results we need below.

(i) Behavior of φ(ξ) for ξ ∼ −∞. Since φ(ξ) → v− as ξ → −∞, we expect that φ(ξ) is 
close to a function v(ξ) which satisfies the linearized equation of (1.5) around v− for ξ ∼ −∞:

cv′(ξ) − Dv′′(ξ) + dv(ξ) = b′(0)v(ξ − cr), v(−∞) = 0. (1.6)

By plugging v(ξ) = eλξ into (1.6), we get the following characteristic equation for λ > 0:

cλ − Dλ2 + d = b′(0)e−λcr . (1.7)

Denote

Fc(λ) := cλ − Dλ2 + d, Gc(λ) := b′(0)e−λcr .

As shown in [16] that, for each r ≥ 0, there exists a unique c∗ = c∗(r) > 0 at which the two 
graphs of Fc and Gc are tangent at λ∗. This means that (c∗, λ∗) are determined by

Fc∗(λ∗) = Gc∗(λ∗), F ′ (λ∗) = G′ (λ∗),
c∗ c∗
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namely,

c∗λ∗ − Dλ2∗ + d = b′(0)e−λ∗c∗r and c∗ − 2Dλ∗ = −c∗rb′(0)e−λ∗c∗r . (1.8)

We have

• for c > c∗, the characteristic equation (1.7) has two distinct solutions 0 < λ1 < λ2;
• for c = c∗, (1.7) has multiple root λ1 = λ2 = λ∗;
• for c < c∗, (1.7) has no positive root.

When c < c∗, there will be no traveling wave for Eq. (1.5). For it would satisfy the linearized 
equation for ξ ∼ −∞, and would have the form eλξ for ξ ∼ −∞, but no such λ can exist. When 
c ≥ c∗ > 0, on the other hand, the traveling wave φ(x + ct), if exists, should satisfy

{
φ(ξ) = O(1)eλ1ξ → 0 as ξ → −∞, for c > c∗,
φ(ξ) = O(1)|ξ |eλ∗ξ → 0 as ξ → −∞, for c = c∗.

(1.9)

(ii) Behavior of φ(ξ) for ξ ∼ ∞. The asymptotic behavior of the traveling wave φ at ξ = ∞
is solely determined by the linearized ODE around v+:

c(φ − v+)′ − D(φ − v+)′′ + d(φ − v+) = b′(v+)(φ(ξ − cr) − v+).

Let v+ − φ(ξ) = e−λ+ξ as ξ → +∞, we get

−cλ+ − λ2+ + d = b′(v+)eλ+cr ,

which uniquely solves for λ+ = λ+(c) > 0 and λ∗+ = λ∗+(c∗) > 0. Thus, the asymptotic behavior 
of the traveling wave as ξ → ∞ is

|v+ − φ(ξ)| =
{

O(1)e−λ+ξ , for c > c∗,
O(1)e−λ∗+ξ , for c = c∗,

as ξ → ∞.

Now we are going to see the possible oscillations for some traveling waves around v+ when 
ξ 
 1. Let x = y/ε. Then (1.1) is reduced to

vt (t, y) − ε2Dvyy(t, y) + dv(t, y) = b(v(t − r, y)).

Let η = t + y
c

and v(η) = φ(cη) = φ(c(t + y/c)) = φ(ct + y) be the traveling wave, then v(η)

satisfies

v′(η) − ε2Dc−2v′′(η) + dv(η) = b(v(η − r)). (1.10)

For fixed t , when ξ = x + ct 
 1, it is equivalent to x 
 1. Then, for fixed y, x = y
ε


 1 implies 
ε � 1. Hence, to discuss the behavior of the traveling waves φ(ξ) as ξ → ∞ is equivalent to 
look for the asymptotic behavior of the solution v(η) for Eq. (1.10) as ε → 0. This leads an 
approximation to (1.10) by
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v′(η) + dv(η) = b(v(η − r)). (1.11)

As shown in [5,6,33], when b′(v+) < 0 and

|b′(v+)|redr+1 > 1, (1.12)

some traveling waves v(c−1x + t) = φ(x + ct) may slowly oscillate around v+ as r 
 1. The 
condition (1.12) for traveling waves with oscillations is equivalent to r > r > 0, where, r , given 
by

|b′(v+)|redr+1 = 1, (1.13)

is the critical point for the solution to the delayed ODE

v′(t) + dv(t) = b′(v+)v(t − r) (1.14)

to possibly occur oscillations [30,33]. That is, for b′(v+) < 0, the solution of the delayed ODE 
(1.14) is monotone for 0 < r < r and it may be oscillatory for r > r (cf. [30]). However, if 
d < |b′(v+)|, there exists a Hopf-bifurcation point to (1.14) [2,3]

r := π − arctan(
√|b′(v+)|2 − d2/d)√|b′(v+)|2 − d2

, (1.15)

where r > r . When r ≥ r , the solution v(η) will not converge to v+ as η → ∞. In this case, the 
traveling waves do not exist.

(iii) Existence, uniqueness, monotone/oscillatory of the traveling waves.

• When d ≥ |b′(v+)|, the traveling wave φ(x + ct) exists uniquely (up to a shift) for every 
c ≥ c∗ = c∗(r), where the time-delay r is allowed to be any number in [0, ∞). If 0 ≤ r < r , 
then these traveling waves are monotone [7]; while, if r ≥ r , then the traveling waves are 
still monotone for (c, r) ∈ [c∗, c∗] × [r, r0], where c∗ = c∗(r) is the minimum wave speed 
as mentioned before, c∗ = c∗(r) is given by the characteristic equation for (1.5) around v+, 
and r0 (> r) is the unique intersection point of two curves c∗(r) and c∗(r); and the traveling 
waves are oscillating around v+ for (c, r) /∈ [c∗, c∗] ×[r, r0], namely, either c > c∗ or r > r0
(cf. [7,13]).

• When d < |b′(v+)|, on the other hand, the traveling wave φ(x + ct) with c ≥ c∗ can exist 
only when r < r , and no traveling wave can exist for r ≥ r . In the case of r < r , the waves 
are monotone for 0 < r < r and oscillating for r ∈ (r, r) (cf. [7,13]).

For details, we refer to [3,5,7,14,32,33], see also the summary in [13].

Goal of this paper. The main goal of this paper is to prove the stability of the monotone/os-
cillatory critical traveling waves φ(x + c∗t) to the Cauchy problem (1.1) and (1.2). In [13], all 
non-critical traveling waves φ(x + ct) with the wave speed c > c∗, monotone or oscillatory, are 
proven to be time-exponentially stable, by the technical weighted-energy method. But the sta-
bility of the critical oscillatory wavefronts (traveling waves) φ(x + c∗t) still remains open. This 



1508 I-L. Chern et al. / J. Differential Equations 259 (2015) 1503–1541
problem is important because the spreading speeds c of the traveling waves in the biological 
applications usually are the minimum speed (i.e. the critical speed) [27,36]. This problem is also 
challenging because the analytical approaches for stability of critical wavefronts by now are very 
limited, only case by case studies [18,21]. Furthermore, when the critical traveling waves are os-
cillatory, their stability analysis is even more difficult. In this paper, with some new observations 
described in the next section, and using the technical weighted-energy method with some new 
ingredients, fortunately, we can prove the stability of oscillatory critical traveling waves.

Outline of the paper. The paper is organized as follows. Section 2 contains the main theorems of 
global existence, uniqueness, uniform boundedness and asymptotic stability. We will work on the 
perturbed equation. The proof of main theorems will be carried out in Sections 3–5, respectively. 
In Section 3, we shall prove the global existence and uniqueness of the solution for the perturbed 
equation, where the initial perturbation can be allowed to be arbitrarily large. In Section 4, when 
the initial perturbation is suitably small, the solution of the perturbed equation can be proved to 
be uniformly bounded by the anti-weighted energy method. Based on the uniform boundedness, 
we shall further prove the asymptotic stability in Section 5. In Section 6, we shall make a remark 
that our stability theorem for the critical traveling waves is not just valid for the uni-modality 
birth rate function, it is also valid for multi-modality birth rate functions. Finally, in Section 7, 
we shall carry out four numerical simulations for Nicholson’s blowflies model. The solutions 
are simulated to behave time-asymptotically stable monotone/non-monotone critical traveling 
waves in different cases, and the traveling speeds of the solutions v(t, x) are also tested to be 
close to the corresponding critical wave speeds c∗. These numerical experiments further support 
our theoretical stability results.

2. Main theorems

The perturbed equation. In order to prove the stability of critical traveling waves, let us refor-
mulate the working equations (1.1) and (1.2) to a perturbed equation around the critical wave.

Let φ(x + c∗t) = φ(ξ), ξ = x + c∗t , be a given critical traveling wave, and define

u(t, ξ) := v(t, x) − φ(x + c∗t), u0(s, ξ) := v0(s, x) − φ(x + c∗s).

Then, from (1.1)–(1.5), u(t, ξ) satisfies

⎧⎨
⎩

∂u

∂t
+ c∗

∂u

∂ξ
− D

∂2u

∂ξ2
+ du = P(u(t − r, ξ − c∗r)), (t, ξ) ∈R+ ×R,

u(s, ξ) = u0(s, ξ), s ∈ [−r,0], ξ ∈R,

(2.1)

where

P(u) := b(φ + u) − b(φ) (2.2)

with u = u(t − r, ξ − c∗r) and φ = φ(ξ − c∗r). Furthermore, let us linearize the delay term 
P(u(t − r, ξ − c∗r)), we equivalently have
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⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
+ c∗

∂u

∂ξ
− D

∂2u

∂ξ2
+ du − b′(φ(ξ − c∗r))u(t − r, ξ − c∗r)

= Q(u(t − r, ξ − c∗r)), (t, ξ) ∈R+ ×R,

u(s, ξ) = u0(s, ξ), s ∈ [−r,0], ξ ∈ R,

(2.3)

where

Q(u) := b(φ + u) − b(φ) − b′(φ)u, (2.4)

with φ = φ(ξ − c∗r) and u = u(t − r, ξ − c∗r), and satisfies, by Taylor’s formula,

|Q(u)| = O(1)|u|2. (2.5)

Notations. Throughout this paper, we denote a generic constant by C > 0, and specific posi-
tive constants by Ci > 0 (i = 0, 1, 2, · · ·). Let L2(R) denote the space of the square integrable 
functions, Hk(R) the Sobolev space, C(R) the space of bounded continuous functions equipped 
with the sup norm. Let T > 0 and B be a Banach space. We denote by C([0, T ]; B) the space 
of the B-valued continuous functions on [0, T ] and L2([0, T ]; B) is the space of the B-valued 
L2-functions on [0, T ].

Associated with the eigenvalue λ∗ (defined in (1.8)), we define a weight function

w(ξ) := e−2λ∗ξ , ξ ∈ (−∞,∞). (2.6)

Notice that lim
ξ→−∞w(ξ) = +∞ and lim

ξ→+∞w(ξ) = 0, because λ∗ > 0. To handle delay equation 

with delay r , we define Cunif [−r, T ], for 0 < T ≤ ∞, by

Cunif [−r, T ] := {v(t, x) ∈ C([−r, T ] ×R) such that

lim
x→+∞v(t, x) exists uniformly in t ∈ [−r, T ], and (2.7)

lim
x→+∞vx(t, x) = lim

x→+∞vxx(t, x) = 0

uniformly with respect to t ∈ [−r, T ]}.
We also denote

X0(−r,0) = {u|u ∈ C([−r,0];C(R)) ∩ Cunif [−r,0],
√

wu ∈ C([−r,0];H 1(R)), and

(
√

wu) ∈ L2([−r,0];H 2(R))}, (2.8)

with

M2
0 := sup

t∈[−r,0]

(
‖u(t)‖2

C(R) + ‖(√wu)(t)‖2
H 1(R)

)
+

0∫
−r

‖(√wu)(s)‖2
H 2(R)

ds, (2.9)

and



1510 I-L. Chern et al. / J. Differential Equations 259 (2015) 1503–1541
Xloc(0,∞) = {u|u ∈ Cloc([0,∞);C(R)) ∩ Cunif [0,∞),
√

wu ∈ Cloc([0,∞);H 1(R)), and
√

wu ∈ L2
loc([0,∞);H 2(R))}, (2.10)

where L2
loc([0, ∞); H 2(R)) is the space whose H 2-valued functions are locally L2-integrable in 

[0, ∞), namely, for any 0 < T < ∞, it holds

T∫
0

‖u(t)‖2
H 1dt ≤ CT < ∞.

The local continuous spaces Cloc([0, ∞); C(R)) and Cloc([0, ∞); H 1(R)) are similarly defined. 
We further define

X(0,∞) = {u|u ∈ C([0,∞);C(R)) ∩ Cunif [0,∞),
√

wu ∈ C([0,∞);H 1(R)),√
φwu ∈ L2([0,∞);L2(R)), and

∂ξ (
√

wu) ∈ L2([0,∞);H 1(R))}, (2.11)

with

M2∞ := sup
t∈(0,∞)

(
‖u(t)‖2

C(R) + ‖(√wu)(t)‖2
H 1(R)

)

+
∞∫

0

‖√φwu(s)‖2
L2(R)

ds +
∞∫

0

‖∂ξ (
√

wu)(s)‖2
H 1(R)

ds. (2.12)

Main results. Now we state the global existence, uniqueness, uniform boundedness and stability 
for the solution to Eq. (1.1) with a general non-monotone birth rate b(v) as the following three 
theorems, respectively.

Theorem 2.1 (Global existence and uniqueness). Assume that (H1)–(H3) hold. Let b′(v+) and r
satisfy, either d ≥ |b′(v+)| with arbitrarily given r > 0, or d < |b′(v+)| with 0 < r < r , where r
is defined in (1.15). Let φ(x + c∗t) = φ(ξ) be any given critical traveling wave, and the initial 
perturbation u0(s, ξ) := v0(s, ξ) − φ(ξ) ∈ X0(−r, 0) be arbitrary, then the solution u(t, ξ) of 
the perturbed equation (2.3) globally and uniquely exists in Xloc(0, ∞).

Theorem 2.2 (Uniform boundedness). Under the conditions of Theorem 2.1, if the initial pertur-
bation u0 ∈ X0(−r, 0) is small enough, namely, there exists a constant δ0 > 0 such that M0 ≤ δ0, 
then the solution u(t, ξ) of the perturbed equation (2.3) satisfies u ∈ X(0, ∞), and u(t, ξ) is 
uniformly bounded in X(0, ∞):

M2∞ ≤ CM2
0 . (2.13)
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Theorem 2.3 (Stability). Under the conditions in Theorem 2.2, then it holds that

lim
t→∞ sup

ξ∈R
|u(t, ξ)| = 0. (2.14)

From Theorems 2.1–2.3, we immediately obtain the stability of the monotone/non-monotone 
critical traveling waves for Nicholson’s blowflies equation and Mackey–Glass equation, respec-
tively.

Corollary 2.1 (Stability for Nicholson’s blowflies equation). Let b(v) = pve−av for p > 0 and 
a > 0. For any given critical traveling wave φ(x + c∗t) = φ(ξ), there exists a constant δ0 > 0
such that if the initial perturbation u0(s, ξ) := v0(s, ξ) −φ(ξ) ∈ X0(−r, 0) and satisfies M0 ≤ δ0, 
then:

1. when e <
p
d

≤ e2 (equivalently to d ≥ |b′(v+)|), for any time-delay r > 0, then, the solution 
u(t, ξ) = v − φ ∈ X(0, ∞) satisfies (2.14);

2. when p
d

> e2 (equivalently to d < |b′(v+)|) but with a small time-delay 0 < r < r , where

r :=
π − arctan

√
ln p

d
(ln p

d
− 2)

d

√
ln p

d
(ln p

d
− 2)

, (2.15)

then, the solution u(t, ξ) = v − φ ∈ X(0, ∞) satisfies (2.14).

Corollary 2.2 (Stability for Mackey–Glass equation). Let b(v) = pv
1+avq for p > 0, q > 1 and 

a > 0. For any given critical traveling wave φ(x + c∗t) = φ(ξ), there exists a constant δ0 > 0
such that if the initial perturbation u0(s, ξ) := v0(s, ξ) −φ(ξ) ∈ X0(−r, 0) and satisfies M0 ≤ δ0, 
then:

1. when q
q−1 <

p
d

≤ q
q−2 (equivalently to d ≥ |b′(v+)|), for any time-delay r > 0, then, then, 

the solution v(t, x) ∈ X(0, ∞) satisfies (2.14);
2. when p

d
>

q
q−2 (equivalently to d < |b′(v+)|) but with a small time-delay 0 < r < r , where

r :=
π − arctan

(
d−1

√
[(q − 1)

p
d

− q]2 − d2
)

√
[(q − 1)

p
d

− q]2 − d2
, (2.16)

then, the solution v(t, x) ∈ X(0, ∞) satisfies (2.14).

Key observations. The key observations which differ from the proof of the stability of non-
critical traveling waves are illustrated briefly below.

Observation 1. The first crucial step for the stability proof in [13] is to get an energy estimate 
for the perturbed equation in a weighted L2

w(R)-space (see Lemma 3.1 and Lemma 3.2 for the 
details in [13]):
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∫
R

w(ξ)|u(t, ξ)|2dξ +
t∫

0

∫
R

Aη,w(ξ)w(ξ)|u(s, ξ)|2dξds

≤ C

∫
R

w(ξ)|u0(0, ξ)|2dξ + O(1)

t∫
0

∫
R

w(ξ)|u(s, ξ)||u(s − r, ξ − c∗r)|2dξds.

The function Aη,w(ξ) is estimated in (3.11) of [13] as

Aη,w(ξ) ≥ C1 > 0 with c > c∗

for some positive constant C1. It is this estimate that allows us to control the nonlinear term 
on the left-hand-side of the above inequality when the initial perturbation is small enough, and 
makes us to derive the exponential decay for the perturbed solution. However, when c = c∗, we 
can only have

Aη,w(ξ) ≥ C1 = 0 for c = c∗,

which seems not enough to control the nonlinear term, and the stability for the critical oscillating 
waves was open in [13]. But, after a deep observation, here we realize that, when c = c∗,

Aη,w(ξ) ≈ O(1)φ(ξ) = O(1)|ξ |e−λ∗|ξ | → 0 as ξ → −∞.

Now we rewrite the nonlinear term by

t∫
0

∫
R

w(ξ)|u(s, ξ)||u(s − r, ξ − c∗r)|2dξds

=
t∫

0

∫
R

φ(ξ)w(ξ)
|u(s, ξ)|

φ(ξ)
|u(s − r, ξ − c∗r)|2dξds,

and recognize that |u(s,ξ)|
φ(ξ)

= O(1)e−λ∗|ξ | as ξ → −∞. Thus, we may control the nonlinear term 

by the positive term 
∫ t

0

∫
R
Aη,w(ξ)w(ξ)|u(s, ξ)|2dξds when the initial perturbation is small. 

Such an observation seems to open a door for the proof of the stability of these oscillatory critical 
traveling waves.

Observation 2. The second crucial step is to get a bound for 
∫ t

0 ‖∂ξu(s)‖2
H 1

w
ds, which, to-

gether with the bound of ‖u(t, ·)‖H 1
w

, leads to a desired decay of |u(t, ·)| as t → ∞. Notice that, 
when we apply the standard weighted-energy approach like that in [13], we have to fully use 
the positive term w(ξ)|uξ |2 to control the bad term w(ξ)|uuξ | by Cauchy–Schwarz inequality, 
which causes us impossibly to get the desired estimate of 

∫ t

0 ‖∂ξu(s)‖2
L2

w
ds. So, we need to look 

for other strategies. Inspired by the classic result [22] for Fisher–KPP equation with compactly 
supported initial data, and by [15] for p-system of hyperbolic conservation laws, as well as by 
our recent study [11] for the nonlocal equation (the integro-differential equation), we find that, 
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the so-called anti-weighted-energy method (a special transform to the equation) works out per-
fectly, and we can get the desired bound for 

∫ t

0 ‖uξ (s)‖2
H 1

w
ds in the first crucial energy estimates. 

Hence, we are able to get the stability for the critical oscillatory traveling waves.
Observation 3. In the previous studies [13,15–20], the proof approach is the weighted energy 

method together with the continuity extension method, based on the local existence and the a pri-
ori estimates. Notice that, for each time-interval [0, T ], the uniform convergence lim

ξ→∞u(t, ξ) = 0

for all t ∈ [0, T ] implies the boundedness |u(t, ξ)| < ε for ξ ≥ x0(ε, T ) 
 1. Since x0(ε, T )

can vary in T , this causes us difficultly to get the uniform boundedness |u(t, ξ)| ≤ ε for all 
t ∈ [0, ∞) when ξ 
 1. To avoid such a trouble, here we adopt a different approach to get the 
global existence and the asymptotic stability. That is, we first prove the global existence and 
uniqueness for u ∈ Xloc(0, ∞) with any initial perturbation u0 ∈ X0(−r, 0); secondly we estab-
lish the uniform boundedness of solution (2.13) for all t ∈ [0, ∞) when the initial perturbation 
is small; finally we derive the stability (2.14) with the small initial perturbation. In fact, we ob-
serve that, the perturbed equation (2.1) is a linear equation for t ∈ [0, r], because the delay term 
P(u(t − r, ξ − c∗r)) = P(u0(t − r, ξ − c∗r)) due to t − r ∈ [−r, 0]. Thus, we can easily get 
the existence and uniqueness of the solution u ∈ Xloc(0, r). Similarly, we may have the exis-
tence of the solution u ∈ Xloc(r, 2r), and step by step to get the global existence u ∈ Xloc(0, ∞)

including u ∈ Cunif (0, ∞). With this global existence u ∈ Xloc(0, ∞), by the anti-weighted en-
ergy method, we can further establish the uniform boundedness of the solution M∞ ≤ CM0 for 
u(t, ξ) ∈ X(0, ∞) with t ∈ [0, ∞) as well as the convergence (2.14).

Remarks. 1. In above main theorems, for the global existence of the solution, the initial data 
u0 ∈ X0(−r, 0) can be arbitrarily large. However, to have the uniform boundedness (2.13) and 
the asymptotic stability (2.14), the initial data u0 must be small enough.

2. In Theorem 2.3, the critical traveling waves φ(x + c∗t), no matter they are monotone or 
oscillatory, are proven to be time-asymptotically stable when the initial perturbations are small 
enough. However, the expecting optimal convergence rate O(t− 1

2 ) is unable to get at this mo-
ment, due to some technical restrictions. To obtain such convergence rate result, to our best 
knowledge, the usual approaches are: either the monotone technology plus the optimal decay es-
timates on the corresponding linearized equations [16,18], or the Fourier’s transform plus energy 
estimates [10,21], or the approximate Green function method [23,35], or the multiplier method 
[24,31]. Unfortunately, we may not be able to adopt the monotone method, because our equation 
is lack of monotonicity and the traveling waves may be oscillatory; nor the Fourier’s transform 
method, because the correspondingly linearized equation is with variable coefficients that de-
pend on the wavefronts φ(x + c∗t), rather than some constants, which makes us impossible to 
carry out Fourier transform; nor the approximate Green function method, because it is really 
complicated and difficult to construct a suitable approximate-Green-function due to the effect of 
the time-delay; nor the multiplier method because of the bad effect by the time-delay. So, the 
optimal convergent rate result to critical oscillatory traveling waves φ(x + c∗t) remains open, 
which will be our future target.

3. Global existence and uniqueness

In this section, we are going to prove Theorem 2.1, namely, the global existence and unique-
ness of the solution for the Cauchy problem (2.1).
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When t ∈ [0, r], Eq. (2.1) is linear, because t − r ∈ [−r, 0] such that P(u(t − r, ξ − c∗r)) =
P(u0(t − r, ξ − c∗r)). Thus, the solution of (2.1) can be explicitly and uniquely solved by, for 
t ∈ [0, r],

u(t, ξ) = e−dt

∫
R

G(η, t)u0(0, ξ − η)dη

+
t∫

0

e−d(t−s)

∫
R

G(η, t − s)P (u0(s − r, ξ − η − c∗r))dηds, (3.1)

where G(η, t) is the heat kernel

G(η, t) = 1√
4πDt

e− (η+c∗ t)2

4Dt .

When u0 ∈ X0(−r, 0), we are going to prove u ∈ Xloc(0, r).
Multiplying (2.1) by w(ξ)u, and using Cauchy–Schwarz inequality

|Dwξuuξ | ≤ Dwu2
ξ + D

4
(
wξ

w
)2wu2,

and integrating it with respect to ξ over R, we then have

1

2

d

dt
‖√wu(t)‖2

L2 + m1‖√wu(t)‖2
L2

≤
∫
R

w(ξ)u(t, ξ)P (u0(t − r, ξ − c∗r))dξ, (3.2)

where

m1 := c∗λ∗ − Dλ2∗ + d = b′(0)e−c∗λ∗r > 0.

Again, by using Cauchy–Schwarz inequality, the right-hand-side of (3.2) can be estimated by

∫
R

w(ξ)u(t, ξ)P (u0(t − r, ξ − c∗r))dξ

≤ C

∫
R

w(ξ)|u(t, ξ)||u0(t − r, ξ − c∗r)|dξ

≤ ε‖√wu(t)‖2
L2 + C

4ε
‖√wu0(t − r)‖2

L2

for some small constant ε > 0. Substituting this into (3.2), we have

1 d ‖√wu(t)‖2
2 + (m1 − ε)‖√wu(t)‖2

2 ≤ C‖√wu0(t − r)‖2
2 . (3.3)
2 dt L L L
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Integrating (3.3) over [0, t] for t ∈ [0, r], and taking ε < m1, we get

‖√wu(t)‖2
L2 +

t∫
0

‖√wu(s)‖2
L2ds

≤ C‖√wu0(0)‖2
L2 + C

t∫
0

‖√wu0(s − r)‖2
L2ds

= C‖√wu0(0)‖2
L2 + C

t−r∫
−r

‖√wu0(s)‖2
L2ds

≤ C‖√wu0(0)‖2
L2 + C

0∫
−r

‖√wu0(s)‖2
L2ds

< ∞, for t ∈ [0, r]. (3.4)

On the other hand, we multiply (2.1) by w(ξ)u, and integrate it with respect to ξ over R, but use 
Cauchy–Schwarz inequality in a different form

|Dwξuuξ | ≤ D

2
wu2

ξ + D

2
(
wξ

w
)2wu2,

we then get

1

2

d

dt
‖√wu(t)‖2

L2 + D

2
‖√wuξ (t)‖2

L2

≤ m2‖√wu(t)‖2
L2 +

∫
R

w(ξ)u(t, ξ)P (u0(t − r, ξ − c∗r))dξ, (3.5)

where m2 := |2Dλ2∗ − c∗λ∗ − d|. Integrating (3.5) over [0, t], and using Cauchy–Schwarz in-
equality to the nonlinear term, and the bounded estimate for 

∫ t

0 ‖√wu(s)‖2
L2ds in (3.4), we get 

the estimate for 
∫ t

0 ‖√wuξ (s)‖2
L2ds:

‖√wu(t)‖2
L2 +

t∫
0

‖√wuξ (s)‖2
L2ds

≤ C‖√wu0(0)‖2
L2 + C

0∫
−r

‖√wu0(s)‖2
L2ds

< ∞, for t ∈ [0, r]. (3.6)

Similarly, differentiating (2.1) with respect to ξ and multiplying it by w(ξ)uξ (t, ξ), and integrat-
ing the resultant equation over [0, t] ×R for t ∈ [0, r], we can prove



1516 I-L. Chern et al. / J. Differential Equations 259 (2015) 1503–1541
‖√wuξ (t)‖2
L2 +

t∫
0

‖√wuξξ (s)‖2
L2ds

≤ C‖√wu0,ξ (0)‖2
L2 + C

0∫
−r

‖√wu0(s)‖2
H 1ds

< ∞, for t ∈ [0, r]. (3.7)

From (3.1) and the property of heat kernel: 
∫
R

G(ξ, t)dξ = 1, we have

‖u(t)‖C ≤ e−dt‖u0(0)‖C + C sup
s−r∈[−r,0]

‖u0(s − r)‖C

t∫
0

e−d(t−s)ds

≤ e−dt‖u0(0)‖C + C sup
t−r∈[−r,0]

‖u0(t − r)‖C

< ∞, for t ∈ [0, r]. (3.8)

On the other hand, since u0 ∈ Cunif (−r, 0), namely, lim
ξ→∞u0(t, ξ) =: u0,∞(t) ∈ C[−r, 0] and 

lim
ξ→∞ ∂k

ξ u0(t, ξ) = 0 all exist uniformly in t for k = 1, 2, we can prove u ∈ Cunif [0, r]. In fact,

lim
ξ→∞u(t, ξ) = e−dt

∫
R

G(η, t) lim
ξ→∞u0(0, ξ − η)dη

+
t∫

0

e−d(t−s)

∫
R

G(η, t − s) lim
ξ→∞P(u0(s − r, ξ − η − c∗r))dηds

= u0,∞(0)e−dt

∫
R

G(η, t)dη

+
t∫

0

e−d(t−s)P (u0,∞(s − r))

∫
R

G(η, t − s)dηds

= u0,∞(0)e−dt +
t∫

0

e−d(t−s)P (u0,∞(s − r))ds

=: g1(t), uniformly with respect to t ∈ [0, r]. (3.9)

Similarly, noting the facts

G(η, t)|η=±∞ = 0 and (∂ηG(η, t))|η=±∞ = 0,

we can prove that, for k = 1, 2,
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lim
ξ→∞ ∂k

ξ u(t, ξ) = e−dt

∫
R

∂k
ηG(η, t) lim

ξ→∞u0(0, ξ − η)dη

+
t∫

0

e−d(t−s)

∫
R

∂k
ηG(η, t − s) lim

ξ→∞P(u0(s − r, ξ − η − c∗r))dηds

= u0,∞(0)e−dt

∫
R

∂k
ηG(η, t)dη

+
t∫

0

e−d(t−s)P (u0,∞(s − r))

∫
R

∂k
ηG(η, t − s)dηds

= 0, uniformly with respect to t ∈ [0, r]. (3.10)

Thus, (3.4)–(3.10) imply u ∈ Xloc(0, r) and

‖u(t)‖2
C + ‖√wu(t)‖2

H 1 +
t∫

0

‖√wu(s)‖2
H 2ds

≤ C
(
‖u0(0)‖2

C + ‖√wu0(0)‖2
H 1 +

0∫
−r

‖√wu0(s)‖2
H 2ds

)
, t ∈ [0, r], (3.11)

for some C > 1.
When t ∈ [r, 2r], Eq. (2.1) with the initial data u(s, ξ) for s ∈ [0, r] is still linear because the 

source term P(u(t − r, ξ − c∗r)) is known due to t − r ∈ [0, r] and u(t − r, ξ − c∗r) is solved 
in (3.1). So the solution u(t, ξ) for t ∈ [r, 2r] is uniquely and explicitly given by,

u(t, ξ) = e−dt

∫
R

G(η, t)u(r, ξ − η)dη

+
t∫

r

e−d(t−s)

∫
R

G(η, t − s)P (u(s − r, ξ − η − c∗r))dηds. (3.12)

By taking the same estimates as in (3.4)–(3.10), we can prove u ∈ Xloc(r, 2r), that is

‖u(t)‖2
C + ‖√wu(t)‖2

H 1 +
t∫

r

‖√wu(s)‖2
H 2ds

≤ C
(
‖u(r)‖2

C + ‖√wu(r)‖2
H 1 +

r∫
0

‖√wu(s)‖2
H 2ds

)

≤ C2
(
‖u0(0)‖2

C + ‖√wu0(0)‖2
H 1 +

0∫
‖√wu0(s)‖2

H 2ds
)
, t ∈ [r,2r], (3.13)
−r
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where, in the last step we used (3.11); and as similarly shown in (3.9) and (3.10) that

lim
ξ→∞u(t, ξ) = e−dt

∫
R

G(η, t) lim
ξ→∞u(r, ξ − η)dη

+
t∫

r

e−d(t−s)

∫
R

G(η, t − s) lim
ξ→∞P(u(s − r, ξ − η − c∗r))dηds

= g1(r)e
−dt

∫
R

G(η, t)dη

+
t∫

r

e−d(t−s)P (g1(s − r))

∫
R

G(η, t − s)dηds

= g1(r)e
−dt +

t∫
r

e−d(t−s)P (g1(s − r))ds

=: g2(t), uniformly with respect to t ∈ [r,2r],
and

lim
ξ→∞ ∂k

ξ u(t, ξ) = e−dt

∫
R

∂k
ηG(η, t) lim

ξ→∞u(r, ξ − η)dη

+
t∫

r

e−d(t−s)

∫
R

∂k
ηG(η, t − s) lim

ξ→∞P(u(s − r, ξ − η − c∗r))dηds

= g1(r)e
−dt

∫
R

∂k
ηG(η, t)dη

+
t∫

r

e−d(t−s)P (g1(s − r))

∫
R

∂k
ηG(η, t − s)dηds

= 0, uniformly with respect to t ∈ [r,2r].
Repeating the above procedure, step by step, we can prove that u ∈ Xloc((n −1)r, nr) uniquely 

exists, and satisfies

‖u(t)‖2
C + ‖√wu(t)‖2

H 1 +
t∫

(n−1)r

‖√wu(s)‖2
H 2ds

≤ Cn
(
‖u0(0)‖2

C + ‖√wu0(0)‖2
H 1 +

0∫
‖√wu0(s)‖2

H 2ds
)

(3.14)
−r
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for t ∈ [(n − 1)r, nr], and finally we prove that u is unique, and u ∈ Xloc(0, ∞) with, for any 
T > 0, that

‖u(t)‖2
C + ‖√wu(t)‖2

H 1 +
t∫

0

‖√wu(s)‖2
H 2ds

≤ CT

(
‖u0(0)‖2

C + ‖√wu0(0)‖2
H 1 +

0∫
−r

‖√wu0(s)‖2
H 2ds

)
, t ∈ [0, T ]. (3.15)

The proof is complete. �
4. Uniform boundedness

This section is devoted to the proof of Theorem 2.2. For the global solution of (2.3), u ∈
Xloc(0, ∞), when the initial perturbation u0 ∈ X0(−r, 0) is small enough, we are going to prove 
u ∈ X(0, ∞) by deriving the uniform boundedness (2.13).

As we have stated before, since the weighted-energy estimates in [13,16] to (2.3) cannot yield 
the boundedness of 

∫ t

0 ‖uξ (s)‖2
L2

w
ds, due to a full use of the positive term u2

ξ is needed to control 
the term uuξ by applying Cauchy–Schwarz inequality, we have to look for a different approach. 
Here we adopt the so-called anti-weighted method [22,15,11]. That is, we take the following 
transformation (or say, anti-weight)

u(t, ξ) = [w(ξ)]− 1
2 ũ(t, ξ), i.e., ũ(t, ξ) = √

w(ξ)u(t, ξ) = e−λ∗ξ u(t, ξ), (4.1)

we get the following equations for the new unknown ũ(t, ξ)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ũ

∂t
− D

∂2ũ

∂ξ2
+ k1

∂ũ

∂ξ
+ k2ũ − b′(φ(ξ − c∗r))e−λ∗c∗r ũ(t − r, ξ − c∗r)

= Q̃(ũ(t − r, ξ − c∗r)), (t, ξ) ∈ R+ ×R,

ũ(s, ξ) = √
w(ξ)u(s, ξ) =: ũ0(s, ξ), s ∈ [−r,0], ξ ∈R,

(4.2)

where

k1 := c∗ − 2Dλ∗, k2 := c∗λ∗ + d − Dλ2∗ (4.3)

satisfying (by (1.8))

k2 = c∗λ∗ + d − Dλ2∗ = b′(0)e−λ∗c∗r ,

and

Q̃(ũ) = e−λ∗ξQ(u) (4.4)

satisfying (by Taylor’s expansion formula)
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|Q̃(ũ)| ≤ Ce−λ∗ξ |u|2 = C√
w(ξ)

|ũ|2. (4.5)

Now we are going to establish the uniform boundedness of the solution u ∈ X(0, ∞) by 
several lemmas.

Lemma 4.1. It holds that

‖ũ(t)‖2
L2 +

t∫
0

∫
R

A(ξ)|ũ(s, ξ)|2dξds + 2D

t∫
0

‖ũξ (s)‖2
L2ds

≤ ‖ũ0(0)‖2
L2 + b′(0)e−λ∗c∗r

0∫
−r

∫
R

|ũ0(s, ξ)|2dξds

+ C

t∫
0

∫
R

[w(ξ)]− 1
2 |ũ(s, ξ)||ũ(s − r, ξ − c∗r)|2dξds, (4.6)

where

A(ξ) := e−λ∗c∗r
(

2b′(0) − |b′(φ(ξ − c∗r))| − |b′(φ(ξ))|
)
. (4.7)

Proof. Multiplying Eq. (4.2) by ũ and integrating it with respect to ξ and t over R × [0, t], we 
have

‖ũ(t)‖2
L2 + 2D

t∫
0

‖ũξ (s)‖2
L2 + 2k2

t∫
0

∫
R

|ũ(s, ξ)|2dξds

− 2e−λ∗c∗r
t∫

0

∫
R

b′(φ(ξ − c∗r))ũ(s, ξ)ũ(s − r, ξ − c∗r)dξds

= ‖ũ0(0)‖2
L2 + 2

t∫
0

∫
R

ũ(s, ξ)Q̃(ũ(t − r, ξ − c∗r))dξds. (4.8)

By using Cauchy–Schwarz inequality, we can estimate

∣∣∣2e−λ∗c∗r
t∫

0

∫
R

b′(φ(ξ − c∗r))ũ(s, ξ)ũ(s − r, ξ − c∗r)dξds

∣∣∣

≤ e−λ∗c∗r
t∫ ∫

|b′(φ(ξ − c∗r))||ũ(s, ξ)|2dξds
0 R
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+ e−λ∗c∗r
t∫

0

∫
R

|b′(φ(ξ − c∗r))||ũ(s − r, ξ − c∗r)|2dξds

(change of variables: ξ − c∗r → ξ, s − r → s)

= e−λ∗c∗r
t∫

0

∫
R

|b′(φ(ξ − c∗r))||ũ(s, ξ)|2dξds

+ e−λ∗c∗r
t−r∫

−r

∫
R

|b′(φ(ξ))||ũ(s, ξ)|2dξds

≤ e−λ∗c∗r
t∫

0

∫
R

(
|b′(φ(ξ − c∗r))| + |b′(φ(ξ))|

)
|ũ(s, ξ)|2dξds

+ b′(0)e−λ∗c∗r
0∫

−r

∫
R

|ũ0(s, ξ)|2dξds, (4.9)

where we used the condition (H3) for |b′(φ)| ≤ b′(0) in the last step. On the other hand, not-
ing (4.5), we can estimate the nonlinear term as follows

∣∣∣
t∫

0

∫
R

ũ(s, ξ)Q̃(ũ(t − r, ξ − c∗r))dξds

∣∣∣

≤ C

t∫
0

∫
R

1√
w(ξ)

|ũ(s, ξ)||ũ(s − r, ξ − c∗r)|2dξds. (4.10)

Substituting (4.9) and (4.10) to (4.8), we have

‖ũ(t)‖2
L2 + 2D

t∫
0

‖ũξ (s)‖2
L2 +

t∫
0

∫
R

A(ξ)|ũ(s, ξ)|2dξds

≤ ‖ũ0(0)‖2
L2 + b′(0)e−λ∗c∗r

0∫
−r

∫
R

|ũ0(s, ξ)|2dξds

+ C

t∫
0

∫
R

1√
w(ξ)

|ũ(s, ξ)||ũ(s − r, ξ − c∗r)|2dξds, (4.11)

where
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A(ξ) := 2k2 − e−λ∗c∗r
(
|b′(φ(ξ − c∗r))| + |b′(φ(ξ))|

)
= 2[c∗λ∗ − Dλ2∗ + d] − e−λ∗c∗r

(
|b′(φ(ξ − c∗r))| + |b′(φ(ξ))|

)
= e−λ∗c∗r

(
2b′(0) − |b′(φ(ξ − c∗r))| − |b′(φ(ξ))|

)
.

Here, we used (4.3) and (1.8), namely, k2 = c∗λ∗ − Dλ2∗ + d = b′(0)e−λ∗c∗r . �
Lemma 4.2. It holds that

A(ξ) ≥ C2φ(ξ) ≥ 0 (4.12)

for some positive constant C2.

Proof. From the condition (H2), we note that b′(φ) > 0 for 0 ≤ φ < v∗, b′(φ) < 0 for v∗ <

φ < ∞, and b′(φ) = 0 for φ = v∗. We note also from the second equation of (1.9) that φ(ξ) =
C3|ξ |e−λ∗|ξ | → 0 and φ(ξ − c∗r) = C3|ξ − c∗r|e−λ∗|ξ−c∗r| → 0 as ξ → −∞ for some positive 
constant C3 > 0, which gives

lim
ξ→−∞

φ(ξ − c∗r)
φ(ξ)

= e−λ∗c∗r .

On the other hand, the condition |b′(v)| ≤ b′(0) for v ≥ 0 (see (H3)) and b′(v) > 0 in [0, v∗]
(see (H2)) implies

b′′(v) < 0 for v near 0.

Thus, by Taylor’s expansion formula, there exist some positive numbers φ̃1 ∈ (0, φ(ξ)) and φ̃2 ∈
(0, φ(ξ − c∗r)), such that

lim
ξ→−∞

A(ξ)

φ(ξ)
= lim

ξ→−∞ e−λ∗c∗r [b′(0) − b′(φ(ξ)] + [b′(0) − b′(φ(ξ − c∗r)]
φ(ξ)

= lim
ξ→−∞ e−λ∗c∗r −b′′(φ̃1)φ(ξ) − b′′(φ̃2)φ(ξ − c∗r)

φ(ξ)

= e−λ∗c∗r [|b′′(0)| + |b′′(0)|e−λ∗c∗r ]
=: C4 > 0.

Namely, there exists a negative number ξ∗ < 0 with |ξ∗| 
 1 such that

A(ξ)

φ(ξ)
≥ C5 > 0 for ξ ∈ (−∞, ξ∗], (4.13)

where C5 is a positive constant.
On the other hand, when ξ ∈ [ξ∗, ∞), the monotone/non-monotone critical waves φ(ξ) and 

φ(ξ − c∗r) are bounded, i.e.,
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0 < m ≤ φ(ξ) ≤ M, and 0 < m ≤ φ(ξ − c∗r) ≤ M

for some positive constants m and M . Actually, here m = φ(ξ∗ − c∗r) > 0. In fact, from the 
geometric analysis of the monotone/non-monotone traveling waves [7,32,33], see also our nu-
merical simulations presented in Figs. 1(b), 3(b), 5(b), and 7(b) in the last section, we know 
that, the possible oscillations of the non-monotone traveling waves φ(ξ) occur near +∞, and the 
waves are still monotone when ξ near −∞. Thus, from the condition (H3), i.e., b′(0) > |b′(v)|
for v ∈ [0, ∞), we have

A(ξ)

φ(ξ)
= e−λ∗c∗r 2b′(0) − |b′(φ(ξ)| − |b′(φ(ξ − c∗r)|

φ(ξ)

≥ 2e−λ∗c∗r b′(0) − maxv∈[m,M] |b′(v)|
M

=: C6 > 0. (4.14)

Combining (4.13) and (4.14), we have proved (4.12) for some positive constant C2. �
Based on Lemmas 4.1 and 4.2, now we can establish the first key energy estimate.

Lemma 4.3. There exists δ1 > 0, when M∞ ≤ δ1, then

‖ũ(t)‖2
L2 +

t∫
0

‖ũξ (s)‖2
L2ds +

t∫
0

∫
R

φ(ξ)w(ξ)|u(s, ξ)|2dξds

≤ C7

(
‖ũ0(0)‖2

L2 +
0∫

−r

‖ũ0(s)‖2
L2ds

)
≤ C7M

2
0 , t ∈ [0,∞) (4.15)

where C7 is a positive constant.

Proof. Since ũ(t, ξ) = √
w(ξ)u(t, ξ), by Lemma 4.2, then the second term of the left-hand-side 

of (4.6) can be written as

t∫
0

∫
R

A(ξ)|ũ(s, ξ)|2dξds ≥ C2

t∫
0

∫
R

φ(ξ)w(ξ)|u(s, ξ)|2dξds. (4.16)

This can be used to control the nonlinear term in (4.6).
Now we are going to estimate the nonlinear term in (4.6). It can be reformed as

t∫
0

∫
R

1√
w(ξ)

|ũ(s, ξ)||ũ(s − r, ξ − c∗r)|2dξds

=
t∫ ∫

w(ξ − c∗r)|u(s, ξ)||u(s − r, ξ − c∗r)|2dξds
0 R



1524 I-L. Chern et al. / J. Differential Equations 259 (2015) 1503–1541
=
t∫

0

∫
R

φ(ξ − c∗r)w(ξ − c∗r)
w(ξ)

w(ξ − c∗r)
|u(s, ξ)|

φ(ξ − c∗r)
|u(s − r, ξ − c∗r)|2dξds. (4.17)

So we need further to estimate |u(s,ξ)|
φ(ξ−c∗r) .

Notice from (1.9) that the critical wave φ(x + c∗t) is positive and bounded, and
lim

ξ→+∞φ(ξ) = v+ and φ(ξ) = O(1)|ξ |eλ∗ξ → 0 as ξ → −∞, so, there exists a number ξ1

near −∞, i.e., ξ1 < 0 and |ξ1| 
 1, such that

φ(ξ) = O(1)|ξ |eλ∗ξ for ξ ∈ (−∞, ξ1), and φ(ξ) = O(1) for ξ ∈ [ξ1,∞).

Thus, by the definition of w(ξ) = e−2λ∗ξ , we can verify that

1

φ(ξ − c∗r)
≤

{
C

√
w(ξ), for ξ ∈ (−∞, ξ1)

C, for ξ ∈ [ξ1,∞),

for some positive constant C. This with the definition of solution space X(−r, ∞) and the defi-
nition of M∞ (see (2.13)) as well as Sobolev inequality guarantees

sup
ξ∈R

|u(t, ξ)|
φ(ξ − c∗r)

≤ sup
ξ∈(−∞,ξ1)

C
√

w|u(t, ξ)| + sup
ξ∈[ξ1,∞)

C|u(t, ξ)|

≤ C sup
ξ∈R

√
w|u(t, ξ)| + C sup

ξ∈R
|u(t, ξ)|

≤ C‖√wu(t)‖H 1 + C‖u(t)‖C

≤ CM∞. (4.18)

Thus, applying the above estimates (4.18) and the fact w(ξ)
w(ξ−c∗r) = e−2λ∗c∗r , from (4.17) we 

can estimate the nonlinear term in (4.6) as follows

t∫
0

∫
R

1√
w(ξ)

|ũ(s, ξ)||ũ(s − r, ξ − c∗r)|2dξds

=
t∫

0

∫
R

φ(ξ − c∗r)w(ξ − c∗r)
w(ξ)

w(ξ − c∗r)
|u(s, ξ)|

φ(ξ − c∗r)
|u(s − r, ξ − c∗r)|2dξds

≤ CM∞)

t∫
0

∫
R

φ(ξ − c∗r)w(ξ − c∗r)|u(s − r, ξ − c∗r)|2dξds

(change of variables : ξ − c∗r → ξ, s − r → s)

= CM∞
t−r∫ ∫

φ(ξ)w(ξ)|u(s, ξ)|2dξds
−r R
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≤ CM∞
t∫

0

∫
R

φ(ξ)w(ξ)|u(s, ξ)|2dξds + CM∞
0∫

−r

∫
R

φ(ξ)w(ξ)|u0(s, ξ)|2dξds

≤ CM∞
t∫

0

∫
R

φ(ξ)w(ξ)|u(s, ξ)|2dξds + C

0∫
−r

‖ũ0(s)‖2
L2ds. (4.19)

Finally, substituting (4.16) and (4.19) to (4.6), we prove

‖ũ(t)‖2
L2 +

t∫
0

‖ũξ (s)‖2
L2ds + [C2 − C8M∞]

t∫
0

∫
R

φ(ξ)w(ξ)|u(s, ξ)|2dξds

≤ C9

(
‖ũ0(0)‖2

L2 +
0∫

−r

‖ũ0(s)‖2
L2ds

)
,

for some positive constants C8 and C9, which immediately implies (4.15) by taking M∞ to be 
small, for example, let

0 < M∞ ≤ δ1 := C2

2C8
, (4.20)

then the corresponding constant C7 in (4.15) is

C7 := C9

min{1, C2
2 } .

The proof is complete. �
Similarly, the estimate for ũξ can be established as follows.

Lemma 4.4. When M∞ ≤ δ1, then

‖ũξ (t)‖2
L2 +

t∫
0

‖ũξξ (s)‖2
L2ds ≤ C10(M∞ + 1)M2

0 , t ∈ [0,∞) (4.21)

and

t∫
0

∣∣∣ d

ds
‖ũξ (s)‖2

L2

∣∣∣ds ≤ C11(M∞ + 1)M2
0 , t ∈ [0,∞) (4.22)

where C10 and C11 are some positive constants.
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Proof. Differentiating (4.2) with respect to ξ and multiplying the resultant equation by ũξ and 
integrating it with respect to ξ over R, we have

d

dt
‖ũξ (t)‖2

L2 + 2D‖ũξξ (t)‖2
L2 + 2k2‖ũξ (t)‖2

L2

= 2e−λ∗c∗r
∫
R

b′(φ(ξ − c∗r))ũξ (t, ξ)ũξ (t − r, ξ − c∗r)dξ

+ 2e−λ∗c∗r
∫
R

b′′(φ(ξ − c∗r))φ′(ξ − c∗r)ũξ (t, ξ)ũ(t − r, ξ − c∗r)dξ

+ 2
∫
R

ũξ (t, ξ)∂ξ Q̃(ũ(t − r, ξ − c∗r))dξ

=: I1(t) + I2(t) + I3(t). (4.23)

Integrating it over [0, t], we get

‖ũξ (t)‖2
L2 + 2D

t∫
0

‖ũξξ (s)‖2
L2ds + 2k2

t∫
0

‖ũξ (s)‖2
L2ds

= ‖ũ0,ξ (0)‖2
L2 +

t∫
0

[I1(s) + I2(s) + I3(s)]ds. (4.24)

By using the estimate (4.15), Cauchy–Schwarz inequality, the change of variables in (4.9), and 
the facts: |φ′(ξ)| ≤ Cφ(ξ), and |ũ(t, ξ)| = e−λ∗ξ |u(t, ξ)| = √

w(ξ)|u(t, ξ)| ≤ CM∞ for (ξ, t) ∈
R ×R+, we can similarly estimate the nonlinear terms as

t∫
0

|I1(s)|ds

≤ C

t∫
0

∫
R

[|ũξ (s, ξ)|2 + |ũξ (s − r, ξ − c∗r)|2]dξds

≤ C

t∫
0

‖ũξ (s)‖2
L2ds + C

0∫
−r

‖ũ0,ξ (s)‖2
L2ds

≤ C
(
‖ũ0(0)‖2

L2 +
0∫

−r

‖ũ0,ξ (s)‖2
L2ds

)

≤ CM2, (4.25)
0
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and

t∫
0

|I2(s)|ds

≤ C

t∫
0

∫
R

[|ũξ (s, ξ)|2 + |φ′(ξ − c∗r)|2|ũ(s − r, ξ − c∗r)|2]dξds

= C

t∫
0

‖ũξ (s)‖2
L2ds + C

t∫
0

∫
R

|φ′(ξ − c∗r)|2w(ξ − c∗r)|u(s − r, ξ − c∗r)|2dξds

≤ C

t∫
0

‖ũξ (s)‖2
L2ds + C

t∫
0

∫
R

φ(ξ − c∗r)w(ξ − c∗r)|u(s − r, ξ − c∗r)|2dξds

= C

t∫
0

‖ũξ (s)‖2
L2ds + C

t−r∫
−r

∫
R

φ(ξ)w(ξ)|u(s, ξ)|2dξds

≤ C

t∫
0

‖ũξ (s)‖2
L2ds + C

t∫
0

∫
R

φ(ξ)w(ξ)|u(s, ξ)|2dξds + C

0∫
−r

‖ũ0,ξ (s)‖2
L2ds

≤ C
(
‖ũ0(0)‖2

L2 +
0∫

−r

‖ũ0,ξ (s)‖2
L2ds

)

≤ CM2
0 , (4.26)

and finally

t∫
0

|I3(s)|ds

≤ C

t∫
0

∫
R

|ũξ (s, ξ)||ũξ (s − r, ξ − c∗r)||ũ(s − r, ξ − c∗r)|dξds

≤ CM∞
t∫

0

∫
R

|ũξ (s, ξ)||ũξ (s − r, ξ − c∗r)|dξds

≤ CM∞
t∫ ∫

[|ũξ (s, ξ)|2 + |ũξ (s − r, ξ − c∗r)|2]dξds
0 R
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≤ CM∞
( t∫

0

‖ũξ (s)|2L2ds +
0∫

−r

‖ũ0,ξ (s)‖2
L2ds

)

≤ CM∞
(
‖ũ0(0)‖2

L2 +
0∫

−r

‖ũ0,ξ (s)‖2
L2ds

)

≤ CM∞M2
0 (4.27)

provided M∞ ≤ δ1.
Thus, substituting (4.25)–(4.27) to (4.24) and integrating the resultant equation with respect 

to t over [0, t], we get

‖ũξ (t)‖2
L2 +

t∫
0

‖ũξξ (s)‖2
L2ds

≤ C10(M∞ + 1)
(
‖ũ0(0)‖2

H 1 +
0∫

−r

‖ũ0(s)‖2
H 1ds

)

≤ C10(M∞ + 1)M2
0

for some constant C10 > 0, provided M∞ ≤ δ1. This proves (4.21).
Next, we prove (4.22). From (4.23), we have

∣∣∣ d

dt
‖ũξ (t)‖2

L2

∣∣∣ ≤ 2D‖ũξξ (t)‖2
L2 + 2k2‖ũξ (t)‖2

L2 + |I1(t)| + |I2(t)| + |I3(t)|.

Integrating it over [0, t] and using (4.15), (4.22) and (4.25)–(4.27), we have

t∫
0

∣∣∣ d

ds
‖ũξ (s)‖2

L2

∣∣∣ds

≤ C11(M∞ + 1)
(
‖ũ0(0)‖2

H 1 +
0∫

−r

‖ũ0(s)‖2
H 1ds

)

≤ C11(M∞ + 1)M2
0

for some constant C11 > 0, provided M∞ ≤ δ1. This proves (4.22). �
We now prove the boundedness for ‖u(t)‖C = ‖w− 1

2 ũ(t)‖C uniformly in t ∈ [0, ∞). Since 
u ∈ X(0, ∞), so u ∈ Cunif (0, ∞), namely, lim

ξ→+∞u(t, ξ) = u(t, ∞) =: z(t) exists uniformly for 

t ∈ [−r, ∞], and lim
ξ→+∞uξ (t, ξ) = 0 and lim

ξ→+∞uξξ (t, ξ) = 0 are uniformly for t ∈ [−r, ∞). Let 

us take the limits to (2.3) as ξ → +∞, then
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{
z′(t) + dz(t) − b′(v+)z(t − r) = Q(z(t − r)),

z(s) = z0(s), s ∈ [−r,0]. (4.28)

As shown in [13], we have the following exponential decay for z(t).

Lemma 4.5. (See [13].) When d ≥ |b′(v+)| with arbitrary time-delay r > 0, or d < |b′(v+)| but 
with a small time-delay 0 < r < r , where r is defined in (1.15), then

|u(t,∞)| = |z(t)| ≤ CM0e
−μt , t > 0, (4.29)

for some 0 < μ = μ(p, d, r, b′(v+)) < d , provided with |z0| � 1.

Now we can prove the boundedness of u in C(R).

Lemma 4.6. It holds that

‖u(t)‖C ≤ C12

√
M∞ + 1 M0, t ∈ [0,∞) (4.30)

provided M∞ ≤ δ1.

Proof. Notice that, lim
ξ→+∞u(t, ξ) = u(t, ∞) =: z(t) uniformly with respect to t ∈ [0, ∞), that 

is, for any given ε0 > 0 (we may choose it less than or equal to M0), there exists a large number 
x0 = x0(ε0) 
 1 (independent of t ∈ [0, ∞), because of the uniform convergence) such that, 
when ξ ≥ x0, then

|u(t, ξ) − z(t)| < ε0 uniformly in t ∈ [0,∞).

This implies, with the help of (4.29) for |u(t, ∞)| = |z(t)| ≤ CM0e
−μt ≤ CM0, that

sup
x∈[x0,∞)

|u(t, ξ)| < CM0 + ε0 < CM0, uniformly in t ∈ [0,∞). (4.31)

Applying the fact 
√

w(ξ) = e−λ∗ξ ≥ e−λ∗x0 for ξ ∈ (−∞, x0], Sobolev inequality H 1(R) ↪→
C(R), and the energy estimates (4.15) and (4.21), we have

sup
ξ∈(−∞,x0]

|u(t, ξ)| ≤ sup
ξ∈[−∞,x0]

∣∣∣
√

w(ξ)

e−λ∗x0
u(t, ξ)

∣∣∣
= eλ∗x0 sup

ξ∈[−∞,x0]
|√w(ξ)u(t, ξ)|

≤ C‖√wu(t)‖H 1 ≤ C
√

M∞ + 1 M0, t ∈ [0,∞). (4.32)

Thus, (4.31) and (4.32) imply (4.30) for some positive constant C12. �
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Proof of Theorem 2.2. Add (4.15), (4.21) and (4.30) together, we have

‖ũ(t)‖2
H 1 + ‖u(t)‖2

C +
t∫

0

‖(√φwu)(s)‖2
L2ds +

t∫
0

‖ũξ (s)‖2
H 1ds

≤ C(M∞ + 1)M2
0 , t ∈ [0,∞). (4.33)

Notice that ũ = √
wu, then (4.33) is reduced to

M2∞ := sup
t∈[0,∞)

{
‖√wu(t)‖2

H 1 + ‖u(t)‖2
C

}

+
∞∫

0

‖(√φwu)(s)‖2
L2ds +

∞∫
0

‖(√wu)ξ (s)‖2
H 1ds

≤ C13(M∞ + 1)M2
0 . (4.34)

In order to guarantee the a priori estimates M∞ ≤ δ1 (see (4.20)) and M∞ ≤ √
C13(M∞ + 1)M0

(see (4.34)), we take δ0 > 0 in Theorem 2.3 as

δ0 := δ1√
C13(δ1 + 1)

, (4.35)

when M0 ≤ δ0, then we can guarantee

M∞ ≤ √
C13(M∞ + 1)M0 ≤ √

C13(δ1 + 1)δ0 = δ1,

and

M2∞ ≤ C13(M∞ + 1)M2
0 ≤ C13(δ1 + 1)M2

0 =: C14M
2
0 .

This proves the uniform boundedness (2.13). �
5. Asymptotic stability

This section is to devoted to the proof of the asymptotic stability (2.14). From (2.13)
and (4.22), when M0 ≤ δ0, we have

‖u(t)‖2
C + ‖(√wu)(t)‖2

H 1 +
t∫

0

‖(√φwu)(s)‖2
L2ds

+
t∫

0

‖∂ξ (
√

wu)(s)‖2
H 1ds +

t∫
0

∣∣∣ d

ds
‖∂ξ (

√
wu)(s)‖2

L2

∣∣∣ds

≤ CM2, for t ∈ [0,∞). (5.1)
0
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Set

g(t) := ‖ũξ (t)‖2
L2 = ‖∂ξ (

√
wu)(t)‖2

L2 .

From (5.1), we know that

0 ≤ g(t) ≤ CM2
0 ,

∞∫
0

g(t)dt ≤ CM2
0 , and

∞∫
0

|g′(t)|dt ≤ CM2
0 .

This implies

lim
t→∞g(t) = 0, i.e., lim

t→∞‖ũξ (t)‖2
L2 = 0. (5.2)

By using Sobolev inequality H 1(R) ↪→ C(R)

‖ũ(t)‖C ≤ √
2‖ũ(t)‖ 1

2 ‖ũξ (t)‖ 1
2 ,

and the boundedness of ‖ũ(t)‖ = ‖(√wu)(t)‖ ≤ CM0 and the convergence of (5.2), we then 
prove

lim
t→∞ sup

ξ∈R
|√w(ξ)u(t, ξ)| = lim

t→∞‖ũ(t)‖C = 0. (5.3)

Now, we are going to prove the convergence

lim
t→∞ sup

ξ∈R
|u(t, ξ)| = 0.

To prove such a stability relation, let us start from the far field ξ 
 1. By the same fashion as 
shown in Lemma 4.6, the solution z(t) = u(t, ∞) to the delayed ODE (4.28) decays exponen-
tially

|u(t,∞)| = |z(t)| ≤ CM0e
−μt , for all t ∈ [0,∞), (5.4)

when d ≥ |b′(v+)| with arbitrary time-delay r > 0, or d < |b′(v+)| but with a small time-delay 
0 < r < r . Back to (2.1) and (2.2), we can write the solution in the integral form represented by 
the heat kernel G(t − s, ξ − η):

u(t, ξ) = e−dt

∫
R

G(η, t)u(0, ξ − η)dη

+
t∫
e−d(t−s)

∫
G(η, t − s)P (u(s − r, ξ − η − c∗r))dηds. (5.5)
0 R
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Multiplying (5.5) by eμt where 0 < μ < d is specified in (4.29), and noting |P(u)| ≤ C|u|, then 
we get

|eμtu(t, ξ)| ≤ e−(d−μ)t

∫
R

G(η, t)|u0(0, ξ − η)|dη

+ eμt

t∫
0

e−d(t−s)

∫
R

G(η, t − s)|P(u(s − r, ξ − η − c∗r))|dηds

≤ e−(d−μ)t

∫
R

G(η, t)|u0(0, ξ − η)|dη

+ Ceμt

t∫
0

e−d(t−s)

∫
R

G(η, t − s)|u(s − r, ξ − η − c∗r)|dηds. (5.6)

Since u ∈ X(0, ∞) is the global solution of (2.3), namely u ∈ Cunif (0, ∞), then u(t, ξ) →
u(t, ∞) = z(t) as ξ → ∞ uniformly in t ∈ [0, ∞). By applying the property of the heat ker-
nel and the exponential decay (5.4), then from (5.6) we obtain

lim
ξ→∞|eμtu(t, ξ)| ≤ e−(d−μ)t

∫
R

G(η, t) lim
ξ→∞|u0(0, ξ − η)|dη

+ Ceμt

t∫
0

e−d(t−s)

∫
R

G(η, t − s) lim
ξ→∞|u(s − r, ξ − η − c∗r)|dηds

≤ |u0,∞(0)|e−(d−μ)t

∫
R

G(η, t)dη

+ Ceμt

t∫
0

e−d(t−s)|z(s − r)|
∫
R

G(η, t − s)dηds

≤ |u0,∞(0)|e−(d−μ)t + Ceμt

t∫
0

e−d(t−s)e−μ(s−r)ds

= |u0,∞(0)|e−(d−μ)t + Ceμ1r

t∫
0

e−d(t−s)eμ(t−s)ds

= |u0,∞(0)|e−(d−μ)t + Ceμ1r

d − μ
[1 − e−(d−μ)t ]

≤ C, uniformly in all t > 0. (5.7)
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This quickly implies that, there exists a number x1 
 1 (independent of t ), such that when ξ ≥ x1, 
then

sup
ξ∈[x1,∞)

|u(t, ξ)| ≤ Ce−μt , t > 0. (5.8)

Notice that, 
√

w(ξ) = e−λ∗ξ ≥ e−λ∗x1 for ξ ∈ (−∞, x1], then (5.3) implies

lim
t→∞ sup

ξ∈(−∞,x1]
|u(t, ξ)| ≤ lim

t→∞ sup
ξ∈(−∞,x1]

∣∣∣
√

w(ξ)

e−λ∗x1
u(t, ξ)

∣∣∣
≤ eλ∗x1 lim

t→∞ sup
ξ∈R

|√w(ξ)u(t, ξ)|

= 0.

This with (5.8) together proves

lim
t→∞ sup

ξ∈R
|u(t, ξ)| = 0.

The proof is complete. �
6. A remark on the multi-modality birth rate function

We consider a more general case of (1.1):

⎧⎨
⎩

∂v(t, x)

∂t
− D

∂2v(t, x)

∂x2
+ d(v(t, x)) = b(v(t − r, x)), (t, x) ∈R+ ×R

v(s, x) = v0(s, x), s ∈ [−r,0], x ∈ R.

(6.1)

Here the death rate function d(v) and birth rate function b(v) satisfy

(H1) there are only two constant equilibria v± of (6.1), with v− = 0 being unstable and v+ being 
stable, that is, b(v±) − d(v±) = 0, d ′(0) − b′(0) < 0 and d ′(v+) − b′(v+) > 0;

(H2) the multi-modality condition: b ∈ C2[0, ∞) and b(v) ≥ 0 on [0, ∞) can be finitely multi-
modal;

(H3) d ∈ C2[0, ∞), d(v) ≥ 0, d ′(v) ≥ d ′(0) > 0 and |b′(v)| ≤ b′(0) for v ∈ [0, ∞).

Although the uni-modality condition (H2) for the birth rate is practical and summarized from the 
biological models of populations like Nicholson’s blowflies equation and Mackey–Glass equa-
tion, we can generalize it to include multi-modal functions. In fact in Section 3 when we prove 
the a priori energy estimates, we didn’t use the uni-modality condition, but the condition (H3) 
with d ′(v) ≥ d ′(0) > 0 and |b′(v)| ≤ b′(0) for v ∈ [0, ∞) is essential.

Without any difficulty, as shown in Sections 3–5 we can similarly prove the following stability 
of the critical monotone/non-monotone traveling waves.
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Theorem 6.1 (Stability in more general case). Let the birth rate function d(v) and b(v) be 
general and satisfy (H1)–(H3), and assume either d ′(v+) ≥ |b′(v+)| with any time-delay r > 0, 
or d ′(v+) < |b′(v+)| but with a small time-delay 0 < r < r , where r is defined by

r := π − arctan(
√|b′(v+)|2 − |d ′(v+)|2/d ′(v+))√|b′(v+)|2 − |d ′(v+)|2 .

For any given critical traveling wave φ(x + c∗t) to Eq. (1.1), whatever it is monotone or non-
monotone, suppose that the initial perturbation u0(s, x) := v0(s, x) − φ(x + c∗s) ∈ C([−r, 0];
C(R)), 

√
w(x)u0(s, x) ∈ C([−r, 0]; H 1(R)) ∩ L2([−r, 0]; H 1(R)), and lim

x→+∞[v0(s, x) −
φ(x + c∗s)] =: u0,∞(s) ∈ C[−r, 0] exists uniformly with respect to s ∈ [−r, 0]. Then, there 
exists a constant δ0 > 0 independent of x and t , when the initial perturbation is small

max
s∈[−r,0]

‖u0(s)‖2
C + ‖√wu0(s)‖2

H 1 +
0∫

−r

‖√wu0(s)‖2
H 1ds ≤ δ2

0,

the solution v(t, x) of (1.1) and (1.2) is unique and globally exists in time, and satisfies

v(t, x) − φ(x + c∗t) ∈ C([−r,∞);C(R)) ∩ Cunif [−r,∞),√
w(x)[v(t, x) − φ(x + c∗t)] ∈ C([−r,∞);H 1(R)),

∂x

(√
w(x)[v(t, x) − φ(x + c∗t)]

)
∈ L2([−r,∞);H 1(R)), (6.2)

and

lim
t→∞ sup

x∈R

|v(t, x) − φ(x + c∗t)| = 0, (6.3)

where Cunif [−r, T ] for 0 < T ≤ ∞ is defined in (2.7).

7. Numerical simulations

In this section, we are going to carry out some numerical simulations, which will also perfectly 
support our theoretical stability results for the critical traveling waves.

We consider Nicholson’s blowflies equation⎧⎨
⎩

∂v(t, x)

∂t
− D

∂2v(t, x)

∂x2
+ dv(t, x) = pv(t − r, x)e−av(t−r,x), (t, x) ∈ R+ ×R

v|t=s = v0(s, x), (s, x) ∈ [−r,0] ×R.

(7.1)

It possesses two constant equilibria v− = 0 and v+ = 1
a

ln p
d

. When p
d

> e, the birth rate function 
b(v) = pve−av is unimodal, and satisfies b′(0) > |b′(v)| for v ∈ (0, ∞). The condition d ≥
|b′(v+)| is equivalent to e <

p
d

≤ e2, and d > |b′(v+)| is equivalent to p
d

> e2.
For simplicity, throughout this section we fix D = d = a = 1, and leave p, r and the ini-

tial data v0(s, x) free. For the critical traveling waves φ(x + c∗t), the critical wave speed c∗ is 
uniquely determined by (1.8), that is,
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c∗λ∗ − Dλ2∗ + d = b′(0)e−λ∗c∗r , c∗ − 2Dλ∗ = −c∗rb′(0)e−λ∗c∗r ,

and the critical waves φ(x + c∗t) = φ(ξ) spatial-exponentially decays as

φ(ξ) = O(1)|ξ |e−λ∗|ξ | as ξ → −∞.

From our stability theorem, the initial data of Eq. (7.1) is expected to be

lim
x→−∞v0(s, x) = 0, lim

x→∞v0(s, x) = v+ uniformly in s ∈ [−r,0],

and particularly,

e−λ∗x |v0(s, x) − φ(x + c∗s)| → 0 as x → −∞, uniformly in s ∈ [−r,0].

So, let us select the initial data in the form of

v0(s, x) =
{ |x|e−λ∗|x|, as x ≤ 0, s ∈ [−r,0],

v+x

x+e−λ∗x , as x ≥ 0, s ∈ [−r,0]. (7.2)

Clearly, such a v0(s, x) is continuous in [−r, 0] × R. The expected critical wave speed is c∗ =
c∗(λ∗) determined by (1.8), and the targeted wave is φ(x + c∗t) such that

lim
x→−∞ sup

s∈[−r,0]
v0(s, x)

φ(x + c∗s)
= 1 (7.3)

and

lim
x→−∞ sup

s∈[−r,0]
eλ∗|x||v0(s, x) − φ(x + c∗s)| = 0.

This is similar to the case without time-delay for the classic Fisher–KPP equation [25,26,34].
Based on the structure of the traveling waves [7] and our theoretical stability results, we 

realize that when e <
p
d

≤ e2, if the time-delay is small such that 0 < r < r , where r defined 
in (1.13) is the critical number for occurring oscillations of the corresponding delayed ODE 
(1.14), then, we obviously expect that the solution v(t, x) of (7.1) large-time behaves like a 
monotone critical traveling wave φ(x + c∗t); and if the time-delay is large such that r ≥ r , then 
we expect that the solution v(t, x) of (7.1) large-time behaves like an oscillatory critical traveling 
wave φ(x + c∗t); while, when p

d
> e2, if the time-delay is small such that 0 < r < r , we still 

expect that the solution v(t, x) of (7.1) large-time behaves like a monotone critical traveling wave 
φ(x + c∗t); and if the time-delay is such that r ≤ r ≤ r , then we expect that the solution v(t, x)

of (7.1) large-time behaves like an oscillatory critical traveling wave φ(x +c∗t), where r is given 
in (2.15). Therefore, we take 4 cases to carry out our numerical simulations, see Table 1 for the 
details.

The computational scheme with a constrained mesh reported in this section is based on the 
following Crank–Nicholson scheme for the time derivative and a central scheme for the spatial 
derivative:
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Table 1
Different cases for selection of p, r and the initial data v0(s, x).

Case p r Zone of p
d

Zone of r λ∗ for v0 Behavior of v(t, x)

1 6 0.2 p
d

∈ (e, e2) r < r 1.871 · · · monotone critical wave 
with c∗ = 2.564 · · ·

2 6 10 p
d

∈ (e, e2) r > r 0.864 · · · oscillatory critical wave 
with c∗ = 0.287 · · ·

3 10 0.1 p
d

> e2 r < r 2.561 · · · monotone critical wave 
with c∗ = 3.688 · · ·

4 10 2 p
d

> e2 r < r < r 1.266 · · · oscillatory critical wave 
with c∗ = 1.041 · · ·

vn+1
i − vn

i

�t
− D

2(�x)2

[
(vn+1

i+1 − 2vn+1
i + vn+1

i−1 ) + (vn
i+1 − 2vn

i + vn
i−1)

]
+ d

2
(vn+1

i + vn
i )

= p

2
(vn−m

i + vn+1−m
i ) exp

[
−a

2
(vn−m

i + vn+1−m
i )

]
, (7.4)

where m = r/�t . Although (7.1) is nonlinear and the Crank–Nicholson scheme is implicit, the 
scheme (7.4) is explicit since the nonlinear term is delayed. The advantage of such a scheme is 
unconditionally stable and the solutions can be easily computed. Thus, there is no restriction on 
the step size in the scheme (7.4), and this numerical scheme (7.4) is second-order accurate in 
both spatial and temporal directions. The original initial value problem (7.1) is for x in the whole 
space (−∞, ∞), but numerically we have to impose a finite computational domain (La, Lb) for 
x with some selected large numbers La and Lb . Although the step sizes �x and �t can be large 
due to the unconditional stability of the scheme, we still choose them as small as possible so that 
the numerical results can much precisely and clearly illustrate our theoretical results.

Next, we report the numerical simulations in four test cases.

Case 1. e <
p
d

≤ e2 and r < r , the solution v(t, x) converges to a monotone critical travel-

ing wave φ(x + c∗t). We take p = 6 and r = 0.2. Clearly, when e <
p
d

< e2, then v+ = 1
a

ln p
d

>

v∗ = 1
a

. This implies that the birth rate function b(v) for v ∈ [0, v+] is non-monotone but concave 
downward only. The time-delay r = 0.2 is small, and satisfies r < r = 0.333027 · · · , where r is 
given by (1.13), which is the critical number of the time-delay for the delayed ODE (1.14) pos-
sessing oscillatory solutions. By calculating (1.8), we get the critical wave speed c∗ = 2.564 · · ·
and the corresponding eigenvalue λ∗ = 1.871 · · · . Since r < r , these critical waves φ(x + c∗t)
may not be oscillating. In fact, according to Gomez and Trofimchuk’s analysis [7], they are 
monotone. Now we set the initial data as in (7.2) with λ∗ = 1.871 · · · . According to our stability 
Theorem 2.1, we expect that the original solution v(t, x) of (7.1) time-asymptotically converges 
to a certain critical traveling wave φ(x +c∗t) with c∗ = 2.564 · · · . In fact, as numerically demon-
strated in Fig. 1, we can see that the solution behaves exactly like a monotone traveling wave. 
In order to get the traveling speed for the solution v(t, x), let us exam it from the contour graph 
(Fig. 2). The slope of the contour line is just the wave speed. Since the contour line passes through 
the points (0, 0) and (−300, 116.9709 · · ·), so the speed can be estimated as

c = |x2 − x1| = | − 300 − 0| = 2.564 · · · ,
|t2 − t1| |116.9709 · · · − 0|
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Fig. 1. Case 1: e <
p
d

= 6 < e2 with small time-delay r < r . (a) 3D-graphs of v(t, x). (b) 2D-graphs of v(t, x) at 
t = 0, 20, 40, · · · , 180, 200. The solution behaves like a stable monotone wavefront traveling from right to left.

Fig. 2. Case 1: e <
p
d

= 6 < e2 with small time-delay r > r . The contour line showed in above indicates that the solution 
v(t, x) travels with a speed of c = 2.564 · · · , which is just the critical wave speed c∗ = 2.564 · · · .

which is exactly equal to the predicated critical wave speed c∗. Thus, we can verify that the solu-
tion v(t, x) behaves like the (monotone) critical traveling wave φ(x + c∗t) with c∗ = 2.564 · · · .

Case 2. e <
p
d

≤ e2 and r > r , the solution v(t, x) converges to an oscillatory critical trav-
eling wave φ(x + c∗t). In this case, we take p = 6 and r = 10. From (1.13) and (1.8), we have 
r = 0.33302758 · · · , c∗ = 0.287 · · · and λ∗ = 0.864 · · · . Since r = 10 > r = 0.33302758 · · · , 
these critical traveling waves φ(x + c∗t) are oscillatory. Now we take the initial data in (7.2)
with λ∗ = 0.864 · · · . Fig. 3 shows that the solution v(t, x) behaves like an oscillatory traveling 
wave, and the contour line given in Fig. 4 implies that the solution v(t, x) travels with a speed

c = |x2 − x1|
|t2 − t1| = | − 90 − 0|

|313.348 · · · − 0| = 0.287 · · · ,

which is exactly equal to the predicated critical wave speed c∗. This numerically indicates that, 
after a large time, the solution v(t, x) behaves like an oscillating critical wave φ(x + c∗t) with 
c∗ = 0.287 · · · . Namely, the solution v(t, x) converges to the oscillatory critical traveling wave 
φ(x + c∗t).

Case 3. p
d

≥ e2 and r < r , the solution v(t, x) converges to a monotone critical traveling 
wave φ(x + c∗t). Now let us take p = 10 and r = 0.1. Similarly, (1.13) and (1.8) determine 
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Fig. 3. Case 2: e <
p
d

= 6 < e2 with big time-delay r = 10 > r . (a) 3D-graphs of v(t, x). (b) 2D-graphs of v(t, x) at 
t = 120, 240, 360, 480, 500, 620. The solution behaves like a stable oscillatory wavefront traveling from right to left.

Fig. 4. Case 2: e <
p
d

= 6 < e2 with big time-delay r = 10 > r . The contour line showed in above indicates that the 
solution v(t, x) travels with a speed of c = 0.287 · · · , which is just the critical wave speed c∗ = 0.287 · · · .

Fig. 5. Case 3: p
d

= 10 > e2 with small time-delay r = 0.1 < r . (a) 3D-graphs of v(t, x). (b) 2D-graphs of v(t, x) at 
t = 20, 40, 60, · · · , 200. The solution behaves like a stable oscillatory wavefront traveling from right to left.

r = 3.034694 · · · , c∗ = 3.688 · · · and λ∗ = 2.561 · · · . Since r < r , the critical traveling waves 
φ(x + c∗t) are monotone. When we take the initial data v0(s, x) in (7.2) with λ∗ = 2.561 · · · , as 
numerically demonstrated in Fig. 5, the solution v(t, x) behaves like a monotone traveling wave, 
and Fig. 6 further confirms that the solution v(t, x) travels with a speed
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Fig. 6. Case 3: p
d

= 10 > e2 with small time-delay r = 0.1 < r . The contour line showed in above indicates that the 
solution v(t, x) travels with a speed of c = 3.688 · · · , which is just the critical wave speed c∗ = 3.688 · · · .

Fig. 7. Case 4: p
d

= 10 > e2 with time-delay r < r = 2 < r . (a) 3D-graphs of v(t, x). (b) 2D-graphs of v(t, x) at 
t = 690, 780, 870, 960, 1050, · · · , 1410, 1500. The solution behaves like a stable oscillatory wavefront traveling 
from right to left.

c = |x2 − x1|
|t2 − t1| = | − 400 − 0|

|108.439 · · · − 0| = 3.688 · · · ,

which is exactly equal to the predicated critical wave speed c∗. This implies that the solution 
v(t, x) behaves like the corresponding monotone critical traveling wave φ(x + c∗t) with c∗ =
3.688 · · · .

Case 4. p
d

≥ e2 and r < r < r , the solution v(t, x) converges to an oscillatory critical 
traveling wave φ(x + c∗t). In the last case, we choose p = 10 and r = 2. A simple calcula-
tion from (1.13), (2.16) and (1.8) gives r = 0.2254 · · · , r = 3.034694 · · · , c∗ = 1.041 · · · and 
λ∗ = 1.266 · · · . In this case, r = 2 satisfies r = 0.2254 · · · < r < r = 3.034694 · · · , the critical 
waves are non-monotone. Now we take the initial data v0(s, x) in (7.2) with λ∗ = 1.266 · · · . The 
numerical results showed in Fig. 7 demonstrates that the solution v(t, x) behaves like a non-
monotone traveling wave with oscillations around v+, and the contour line presented in Fig. 8
confirms that the solution v(t, x) travels with a speed

c = |x2 − x1| = | − 500 − 0| = 1.041 · · · ,
|t2 − t1| |480.089 · · · − 0|
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Fig. 8. Case 4: p
d

= 10 > e2 with time-delay r < r = 2 < r . The contour line showed in above indicates that the solution 
v(t, x) travels with a speed of c = 1.041 · · · , which is just the critical wave speed c∗ = 1.041 · · · .

which is exactly equal to the predicated critical wave speed c∗. So, v(t, x) behaves like an oscil-
latory critical traveling wave φ(x + c∗t) with c∗ = 1.041 · · · .
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