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Abstract

This paper is concerned with the large-time behavior of solution of the Cauchy
problem for the Benjamin-Bona-Mahony-Burgers equation. We prove that the so-
lution unique globally exists and time-asymptotically tends to its corresponding
diffusion wave, when the initial perturbation is small enough. The corresponding
diffusion wave is constructed by the heat equation or the Burgers equation. In
particular, we obtain the convergence rates in L%spaces (2 < ¢ < o¢). The math-
ematical proof is based on the Fourier transform method and the energy method.
Furthermore, we take the numerical computations on such a problem. The numer-
ical simulations show that the convergence rates obtained theoretically seem to be
sharp.
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1 Introduction and Main Result

Considered here is the time-asymptotic behavior of solutions to the Cauchy problem of
the Benjamin-Bona-Mahony-Burgers (BBM-B) equations in the form

Uy — Uy — Qlgy + Tty + uPu, =0

(1.1

tli=0 = upl{r) = 0, as & — £
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318 SHIN-ICHI KINAMI ET AL.

where o € R, t > 0, p > 1 is integer, > 0 and 3 are any given constants. Without loss
of generality, we may let o = 1/2 here and after here, because we may make a suitable
scale to variables z — 2z and t — 2at such that Eq. (1.1) becomes
1 1 ) )
Uy ~ W“"t - §um + Fug + Py, = 0.

Since D. H. Pergrine [27], T. B. Benjamin, J. L. Bona and J. J. Mahony (2] pro-
posed the alternative regularized long-wave equations for the physical phenomenon of
bore propagation and water waves as follows

N = Ugzt T Uz T ULy = 0,

so-called the Benjamin-Bona-Mahony (BBM) equation, this subject has become a hot
spot and attracted many mathematicians and physicists. There are a number of works on
the time-asymptotic behavior of solutions, see {1-6,8,19-23,28] and the references therein.
The asymptotic state of the BBM-B solution u(z,t) is usually considered as zero in the
previous works. However, we find that its corresponding diffusion wave, a solution of
corresponding parabolic partial differential equation to (1.1), is a better asymptotic profile
than the 0 in such a sense that the convergence of u(z,t) toward the diffusion wave is
faster than that of u(z, ) toward the 0. This will be theoretically proved and numerically
experimented in the following four sections, which is our main goal in the present paper.
At firss, let us recall the so-called diffusion waves. Let p (> 1) be integer and let

)= s 1.2
= fBu + , .
fl) = u+ 2 (12)
we consider the following parabolic equation
Oy — 302 + [F{0) + F1(0)0 + S F"(0)8%: = 0
(1.3)
Bli=y = bo(z) 2 0, as 2 — +oc.
We call this solution as the diffusion wave to the BBM-B equation (1.1). Note that
A e £ " . 1, for p=1,
f(U) ‘/3 i f (0) _{ () , fOT I)Z 2i (14)
when p > 2, Eq. (1.3) is equivalent to
6 — 16, + 88, = 0,
(1.3)
Oli=o = Bo(x),
which is a linear heat equation, and has a unique solution in the form
1 = (r=gt=y)?
8(z.t) = [ = oy, 16
(z.1) T2t J o o (y)dy (1.6)
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This solution is called the linear diffusion wave for Eq. (1.1) with p > 2.
When p = 1, we may reduce (1.3) into

6, - %gxz + 36, + 68, =0,
(1.7)
Ble=o0 = fo(x).
By using the Hopf-Cole transformation
Oz, 1) = —(Inp),, ie, p(z,t)= ¢~ e (1.8)
to Eq. (1.7), then it can be reduced to
Wl -+ ,B<p1: - %/\#‘rn = 07
i (1.9)
Pli=0 = P«Vf'“" boludy . wolz).
It is well-known that the above linear heat equation has a unique solution
(10 = o= [ = (1.10)
T,t) = —— e 7 woly)dy. .
@ \/ﬁ e Yoly)ay
Thus, from (1.8) and (1.10), we obtain the solution for (1.7)
Ba,t) = —(ng), = —&
[T (—————&"‘”2‘,' 2) exp (—f;ux, 00(771471) Yo{y)dy (1.11)

J7, exp (-E:"’;T'”-ﬁ) exp (—f_"m Uu(n>vln) dy

This solution is called the nonlinear diffusion wave for Eq. (1.1) with p = 1.

For a parabolic conservation law, Chern and Liu (7}, Jeffrey and Zhao [11] studied
that, for a given initial data 6,(z) € L' N H?, the diffusion wave solutions of (1.3) decay
in the form

1Bl = O™4).

furthermore, if
/ 8o(z) dz = 0,
then ’
6} L2 = O™,

On the other hand, for the BBM-B equation (1.1), corresponding to the restriction on the
initial data -
/ u(r)dz#0 or =0,
-

the same decay rates
la(®)llzz = O™ or 0@
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were also showed by Amick-Bona-Schonbek (1], Bisognin- Menzala [3,4], Bona-Luo [5,6],
Dix (8], Mei [20,21], Namkin-Shishmarov [24] and Zhang [29], and so on.

In the present paper, we are interested in the convergence of solution u(z,t) of the
BBM-B equation (1.1) to the corresponding diffusion wave solution 8(r, t) of the parabolic
equation (1.3), when the initial perturbation is small. Explicitly speaking, in the case of
2. 0a(z)dz # 0 and [, ug(z)dzx # 0, according to the previous results mentioned above,
the diffusion waves #(z, ¢) and the unique solution u(z, t) of (1.1) have the same decay rates
16()z: = 0(¢t="%) and ||u(t)||;2 = O(t~'/4), which implies naturally that {|(u—8)(t)||. =
O(+~"/"), however, this decay rate is not satisfactory if the initial perturbation ug(x)—8(z)
satisfies

[Z[uo(x) — By(z)] dz = 0. (1.12)

In fact, we expect that the solution u(z,t) converges to the corresponding diffusion wave
#(x,t) faster than O(t~1/%) in L?-sense, namely, we will prove that

O@~B/M+7y forp=1
(= 0)()l2 = § O™ *log(2+1)), forp=2
o3y,  forp>3

where ¢ is‘any given positive constant, of course, we may let 0 < ¢ < 1. This means that
the diffusion wave 8(z,t) is a better asymptotic profile of u(z.t) than the 0.

Now let us compare our results with the previous interesting works in this field. In
the framework [7] by I-L. Chern and T.-P. Liu, they investigated that the solution of the
Cauchy problem to a n x n hyperbolic system of viscous conservation laws including the
single equation case as follows

w+ fu)y —ugy, =0 with f7(0) #0, u(x,0) = uglx),
tends to the nonlinear diffusion wave for the Burgers equation
B, + 1 (0)8, + f'(0)86, — 0, =0, 6(x,0) = by(2),

under the restriction [ [ug(z) — 8p(z))dz = 0. The L%-convergence rates of u(z,t) to
8(z,t) is O(t=3/Y+9) for any given small constant o > 0. This is quite same to our result
in the case p = 1. Recently, G. Karch in {12] and [13] studied the convergence to the
diffusion wave for the KdV-Burgers eqnation

Up + Uly — Ugg + Ugge = 0
and the BBM-Burgers equation
Ug + Uty ~ Uzgy — Uggr = 0

respectively, and showed the L?-convergence rate to be Q(#~'/*). But it is less than ours
for the case p = 1.
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When p > 1, it is clear that {uPu,| is much smaller than |uu,| if lu(z,t)| is small,
namely, |uPu,| decays much faster. On the other hand, u,,, is also a faster decay term.
Thercfore, to consider the long time asymptotic behavior of the solution to Eq. (1.1), the
effects by both of wPu, and u,, in Eq. (1.1) for p > 1 may be deleted, and the main
controlling part of the BBM-B equation (1.1) is expected to be the linear part

. 1
uy + Juy — SUae = 0.

This is why we can expect that the solutions u(z,t) of the BBM-B equations for p > 2
converge to the linear diffusion waves 6(z,t). We further prove that the decay rates
arce faster than that for p = 1. Indeed, as stated above, we obtain the L:-decay rates
O(t=3*log(2 + 1)) and O(+~%*) for p = 2 and p > 3, respectively. Regarding the con-
vergence of solutions to diffusion waves for other types of viscous hyperbolic conservation
laws, we refer to those works in [7,10,15-18,25,26].
Now let o
= / (o(2)] + |28o(2)]) di < +oc.
J—oc

we are going to state the main results as follows.

Theorem 1.1 Suppose that (1.12) and
vo(y) = [ [uo(y) ~ Bo(y)ldy € WH(R) (L.14)

hold. Then there exists a positive constant & such that when Yugllws: + & < 8o, then the
Cauchy problem (1.1) has a unique global solution u(z,t) satisfying

ulir, 1) — 8(x.t) € C(0,00: HHR))
and the followings:

(i) If p=1, for any o > 0, then the following estimates hold

ll(w=8) ()], = O(1)(1 + 1)~ 4+,
[z = 8)2 ()]l = O(1)(1 + )71+, (1.15)
(1 = 8)(#)]]0 = O(1)(1 + )75,

(ii) If p =2, the convergence rates are as follows

w =) ()l = O1) (1 +1)"Tlog(2+1),

e~ BBl = O+ 1), (115),

[t = ) (B)| oo = O()(1 + 1) 5 flop(2+ 1),
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(1i1) If p > 3, the convergence to the diffusion wave are much faster as follows

(w = 8)®)ll. = O)(1+1)7H.
(u = 8)2(t)ll,e = O()(1 + 1)7F, (1.15)3
ll(w= ) ee = O+ )"

Using L?, L*>-results in Theorem 1.1 and the interposing inequality
' -2 2
Iflle < IS, for 2 <g < oc,

we can obtain immediately L7-decay rates as follows.

Corollary 1.1 Under the assumptions in Theorem 1.1, it follows

0(1)(1+t)—(7/8)+(1/4q)+n’ f()T p=1
[w = 0)(1)i[za = § OQ)(1+#)~ /O (log(2 4 ¢))/2HVD for p=2  (1.16)

O + 1y~ =0, for p>3
for 2 < g < o0

For the mathematical proof of Theorem 1.1, as showed in 20,21}, we are going to
adopt the Fourier transform method and the energy method. These will be carried out
in Sections 2 and 3. Finally, in Section 4, we take the numerical computations on the
two Cauchy problems of BBM-Burgers equation and the corresponding parabolic equa-
tion (diffusion wave’s equation), respectively. The numerical simulations show that the
convergence rates obtained theoretically to the diffusion waves seem to be sharp.

Notations. We now make some notation for simplicity. C' always denotes some positive
constants without confusion. 8% f := 9*f/8x*. L presents the Lebesque integral space
with the norm || - {jz». Especially, L? is the square intcgral space with the norm || - |12,
and L™ is the essential bounded space with the norm || - |jL. H* and W** denote the
usual Scbolev space with the norms || - ||y and || - |lwes. respectively. Suppose that
f(x) € L' L*(R), we define the Fourier transforms of f(z) as follows:

Fifle)=f= /Rf(x)e‘i“rim.

Let T and B be a positive constant and a Banach space, respectively. C¥(0. T B) (k > 0)
denotes the space of B-valued &-times continuously differentiable functions on [0, T}, and
L*(0,T; B) denotes the space of B-valued L*-functions on [0, T}. The corresponding spaces
of B-valued function on [0, oc) are defined similarly.
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2 Reformulation to the Original Problem

From Egs. (1.1) and (1.3), we have

1 I

(= ) = tzat = 5(u = O)ua + [f(w) = F(0) = FOI8 = 51O, =0.  (21)

Since #(Foc,t) = 0, and we expect u(£oo,t) = 0, u,(£oc,t) = 0. then after integrating
(2.1) over (—o0,oc), we have formally

o (>

7 ) ) =6 ] dz =0, 22)

Thanks to the essential assumption (1.12), we integrate (2.2) over [0, t] with respect to ¢
to have

/::[u(r,t) — B(z, t)]dz = /_Z[un(x) - 8y(x))dz = 0. (2.3)

Therefore, it is natural to introduce

v{x,t) = /I [w(y. t) — 6y, Dldy,  ie.  ve(w. l) =ulr.t) —6(z.t), (2.4)

—oC

which satisfies
1 . 1.,
Vgt — VUzzzt — Oxxt - 31’111 + [f(9 + vz) - f(o) - f’(o)f) - 57[’ (0)92]1 = 0 (25)

Integrating it over (—oo, x| with respect to z, and noting u{£o0,t) = 0, 6(£00.t) = 0,
we obtain

Uy — Vgt — %er - H.‘rt + f(e + Ur) - f(o) - f/(o){') - %["(0)92 = 07

" (2.6)
Uli=o = /_ [ro(y) = Go(¥)idy = volx).
Noting f(u) = fu+ ’;‘:1', we have from (2.6) that, if p=1
Ut — Upgt — %vzr + 57}1 = Fl;
(2
vi—0 = vp(),
where
Fim by =[50+ ) = 207 = 0y — 22 b0 (2.8)
1 — VUrt 2 T Up 2 = Yt Zr & OJ1
and if p > 2.
U = Uygr = §Uzr + U = Fp
(2.7
Vi=o = vo(1),
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where
1 p+1
By == g (04 v P == oy ™™ pz2 (28),
i=0

s i
for some positive constants a; = Cpﬂ.

Now we are going to state the following theorem for the Cauchy problem (2.6) which
implies Theorem 1.1 directly.

Theorem 2.1 Under the same assumptions in Theorem 1.1. Then there exits a positive
constant §;, such that when |jvg|lwsa + & < 81, then the Cauchy problem (2.7), (p > 1)
has a unique global solution v(x,t) satisfying

v{z,t) € C(0, 00; HY(R)).

Furthermore, we have the following estimates.

1. When p =1, for any given 0 > 0, the solution v(z.t) of (2.7); satisfies

! 2j+1
S+ R + (1 + O fea(D)e: < Cllivollwss +2). (2100

=0

2. When p = 2, the solution v(x,t) of (2.7), satisfies

! 241
¢! + )7 log 2+ ) IFv(®)] 2 + (1 + Ofeee ()]l 22 < Cllivollwes + ). (2.10),

7=0

3. When p > 3, the solution v(z,t) of (2.7), (p > 3) satisfies

2

2
S+ 05001 < Clllullwss +2). (2.10);
§=0

By Theorem 2.1 and the well-known inequalities
et} < VR fes 112,

Ve ()10 < VB Uz w1115

we can obtain the decay rates for ||v(t)|| = and {|v(#)||L= as follows.
Corollary 2.1 Under the assumptions in Theorem 1.1, it follows
OW)A+8)=F", for p=1
Ho(Dllee =< O 1 +1)"Flog(2+1).  for p=2 (2.10)4

O +1)72  for p=3
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and )
O +)~G=,  for p=1

flve@®llze = O + )% log(2 +1),  for p=2 (2.10);

oL+, for pz3

Once Theorem 2.1 is proved, by Theorem 2.1 and Corollary 2.1. and noting (2.4), i.e
v (z,t) = u(z,t) ~ 6(x.t). we can prove Theorem 1.1 immediately. Therefore, to prove
Theorem 2.1 is our main purpose in the rest of this paper. We are going to prove it based
on the following local existence and the a priori estimates by the continuation argument.
Before stating these two results, we now define the solution spaces as follows, for any
T > 0 and given § > 0,

Xp(0.T) = {v € Cl0,0c: HA|M(T) <6} p2 1.

where

1

MUT) = sup { (L + 057 @0u(t) 12 + (141~ frema(t) 122}

0<t<T o

MAT) = sup  { T(1+0) " log 2 + OB (Bliz: + (1 + Dlfons ()]

Mp(T) = sup Z (1+1)° ||()’v Ngz. for p >3

0<t<T 0

Now we give the theorems of local existence and a priori estimates.

Proposition 2.2 (local existence) Suppose that vy € H? holds. then there erists a
positive constant To such thal the Cauchy problem (2.7), (p > 1) has a unique solution
v, 1) € X,p(0,To) satisfying My(Ty) < 2M,(0) for allp > 1.

Proposition 2.3 (a priori estimate) Let T be a positive constant, and v(z,t) € X,(0,
T) (p > 1) be u solution of the Cauchy problem (2.7),. Suppose that the assumptions in

Theorem 1.1 hold, then there exist positive constants 6y and C independent of T such that
if M,(t) < &o, then for t € [0,T] the following estimates hold:

1. Whenp=1, foranyo >0

S +* SNt + L+ ()] € Cllloollwss +2). (211,
j=0
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2. Whenp=2,
1
Z (148" log™ 2+ ) 1020(8) 22 + (1 + llvac (D) 22 < Clllvollwan +2). (2.11);

3. When p > 3,
2
Z 1+t h&]v( )HU SC(|§UO||W3,1 +E), (211)1
As showed in [21], using the continuation argument based on Propositions 2.2 and 2.3,
we can prove Theorem 2.1. We omit the details. So, to prove Propositions 2.2 and 2.3 is

our goal. Since Proposition 2.1 can be proved in the standard way, our main effort will
be made on the proof of Proposition 2.2 in the next section.

3 A Priori Estimates

For the cases p > 1, by use of the Fourier transform to (2.7), (p > 1), we obtain

i = (€)%, — (€0 + €30 = E, (3.1)
namely,

P +%§2+ib’£h_ F,

¢ T

1+¢2 7 1+
Thus we have
. Blt.s) f
o0&, 1) = Bo +/ 1+£2 ~="ds (3.2)
where o -
_ i +igg 7€
A9 = I Ble) = Redie) = 2 (53

Taking the inverse Fourier transform to (3.2), we have

1 50 - F 3
v(z.t) = E/.m ez Ay d£+—/ / we A= "Tf—;)dfds. (3.4)
Differentiating it with respect to x, we have

Ofve(a,t) = 4 f°° (i€)elée= 4Oty () de

27: JO j—oo(l‘g) l{z - AE)(t-s) EE? dﬁds

Now we give several preparation lemmas as follows.
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Lemma 3.1 ([7, 11]) Let 8(x,t) be the diffusion waves of (1.3). If

e= [ (6o(x)| + lao(a) )do < +oc. (3.6)
then . )
1026()]1z2 = O)e(1 + 1), (3.7)
16Dl = OWe(l+8)™F, 1<¢s (3.8)
1326,(6)liz: = O(Le(1 + )7 ~% (3.9)

hold for allt > 0.

Lemma 3.2 ([28]) Leta > 0 and b > 0 be constants. If max(a,b) > 1, then
/:(1 +t—8)74 1+ 8)bds < O(1 + )~ minled), (3.10)
If max(a,b) =1, then
/0 (141 —5)79(1 + 5)~bds < C(1 + 1) ™in(eb) Jog(2 — ). (3.11)
If max{a, b) < 1, then
/;(1 +t—8) 1 +s)tds < CL+1) 0 (3.12)
The applications of this lemma can be found in many works, e.g. in [19-22].

Lemma 3.3 ([20,21]) It holds

L

oo lii]e—CB(ﬁ)t s
[ emeg s co o (313)
Lemma 3.4 ([20,21]) f vo € W*(R), then
Nziﬂ/;Z(,@;cizﬁe—ms)t@o(@ Lo < Clivollwrss (1 o (3.14)

for 1 =10,1,2.
Lemma 3.5 Suppose that vz, t) € X;(0,T), then

Y
/ H 27_/ i€) et = AO0-1) 11:?&2)&'1”%

Cle + (e + 6M(T))H(1 + 1)~ 5+ (3.16);
for j=0,1, and

ds
L)

Caei—n F1E5)
z Z{z AE)(t-s) L1
/ 1+6° %

< Cle+ (£ + MU +1)77 (3.16),

Jz
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Proof.  Let v(z,t) € X,(0,T). Since

B £ 160+ gl + a6 (31)

|Fiz| < [0zatl + [voe|lvz] + |vazb] + [vabl. (3.18)

using Lemma 3.1, the properties of Fourier transform and the definition of M (T), we
obtain

supeer |F1(&,5)| < [, |Fi(z, 5)ldz
< 20z + ue)? + [vaf)da
< OO0z} + flua(8)[T2 + vz (s) 2 l10(s) || c2]
, (3.19)
< Cle(l+ )% + My(T)2(1 + 5)~ G2
+EM1(T)(1 + 5)‘(1—0)]

< Cle + (g + M(TH?(L + 5)~01~7)
provided 0 < ¢ < 1/2, and

supger [E[1F1(E, 8| <[5 | Fla(e, 5)|dz
< 25 [1Bazt] + {veal|vel + [veab] + |v2bs]]d
< 0aze()lier + lfvze(8)llLellvallz2 + l[vez()ll2[16(s)l 12
Flve()lle2 )18z (5)]]22
< Ce(l+8)"2 + My(D)A(1 + )™= 4 e M{(T)(1 + 5)~(5-)

< Cle + (e + MUT)?)(1 + 5)"—

(3.20)
for0 <o <1/2.

Applying the Parseval’s equality and using (3.19), (3.20), Lemma 3.3 and Lemma 3.2,
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we then have

5

1 1 —AE)t-s) £
3 o M g F(6 5)dg

L2d5

=

eTAOZ) B (&, 5))'L2ds

1+€2

oo e=2B(§)(t—s)

= I3 (% S Bi(e, 5)2dg) ds

S B supeer P (6, )1 (V% Srayrde) " ds (3.21)
<Cle+(e+ AA(T))Z] fol(l + s)-—(;..a)(l 4t a)-tds

< Cle + (e + My(T))?)(1 + t)-0-)-5

=Cle+ (¢ + M;(T)4(1 + t)“(%—")‘

and

s lepemAGNE-s) 1
I |1 S e i B (e 0)de

L2d5

= e A (e 8)| L ds

= J3 (1%, ST R e, ) Pde) s

= 2,~2B(E)(t—s) L 3.92
< Ji supgen |Fy (€. 9)] (S22 BSrmm—de) ds (3:22)

—0o0 (]+§2)2

< Cle+ (e 4+ My(T)F fi(1 + 8)=0(1 4 1 — 5)~Hds
< Cle+ (e + M (T))Y (1 + t)l—(]—g)_%

= Cle + (e + My(T)?](1 +1)~4-7,
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and
” fco lf z 15:&"”5 )~ G)Fl (& s df“ ds

= ]| GO Rie, o) .0
= d%§¥1W£ylﬁf

<h supeep({1 4+ leD| e, s)()(f ULW{—'“L(IE)%(1<S

oo (14 I+ ) (3.23)

< Cle+ (e + M(T))Y)

<RI+ 970+ (149 )2 4t - ) s
< Cle+ (s + My(T)? L1+ )=0=9)(1 + t — 5)~Fds
< Cle + (e + My(T))P)(1 + )70

Thus, we proved (3.16); for j = 0,1, 2. ]

Lemma 3.6 Suppose that v(x,t) € Xo(0,T), then

—AE)t-s)
A H 27 / LET‘T@_FQ(& s)dg| ds

< Cle + (2 + My(T)P](1 + )~ log(2 + 1) (3.24);

for 7=0,1, and
s I
[l [ eres g Rt

<Cle+ e+ M(THNQ + )70 (3.24),

Proof. Let v(z,t) € X5(0,T). Since

[Pl < {loe| + 316 + v, )?

< [6e] + (001 + 318710 ] + 306110l + 0s?) (8:25)

[Pzl < (O] + |0%6,] + 2168, + 18:02] + |80 | 4 2[00 0] + 1200, (3.26)
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applying Lemma 3.1, we get
supger | F2(&,8)| < [%5 | Fala, s)ldz
< C 210z + 161 + 161z + 16l }va|? + vz *]dz
< Cllfaellor + N7 161 zoe + 100 Lo lOl 22 fjvellz2
Oz llveligs + Mvellzoe llvz(1Z.]
<Cle(l+ )73 +e3(1+ )7 + 2Mo(T)(1+ )7 log(2 + s)
+eMy(T)2(1 + 5)~ T log*(2 + 5) + Mo(T)*(1 + 5)7 % (log(2 + 5))7]
< Cle+ (e + Mo(T))*)(1 +5)7L.

(3.27)
Similarly, we can prove

Supee [€F2(E,8)] < %5 1Py, (2. 5)|dz
< C 2 10z0e| + 16262 | + 168,0,] + 16,02
1020z | + [Bvgvas| + 030, |
< Clll0azilins + 1161172162l oo + 1101l os 182 202 2
{10z ]| oo vz llEe + 10120 101] 2 luaeliz2
+10 e llvalize Nvrall L2 + {lval Lo vl 2| vazl 22
. (3.28)
<ClE(l+8) 2 +e3(1+5)2
+e2Mo(T)(1 + 5)# log(2 + s)
+eMo(T)(1 + 8) 3 log2(2 + ) + £2Mo(TH1 + )75

+eMy(TY2{1 + 5) % log(2 + )

Nl

+A]2(T)3(1 + S)Agil‘(]og(g + t)) J
< Cle + (e + Ma(T)P](1 + )2

Therefore, making use of the Parseval’s equality, and Lemmas 3.1, Lemma 3.2, we can
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prove

k

3 J%o AT Fule, s)de],ds

e=AE)t-8) 7

TYez F2(£ S)

=l

2

= 15 (I Sz  Ba(E, o)Pdg

(%% S Bal€, 5)] ) -
< 15 supcen Fle, 125 i) s

< Cle+ (e + My(T)P) fi(1 +5)" Y (1 + £ ~ 8)~%ds

< Cle + (e + My(T))*)(1 +t) "7 log(2 + ).

In a similar way, we can prove the higher order case
ty 1 poo i€z € —A(O)(t-s)
/0 Pr /m‘fe 1+ ¢ Fal€, )
< Cle+ (e + My(T))P)(1 + t) "% og(2 + 1) (3.30)

[ [ S e Fae )] s
gC[s+(s+Jv12 N +16)h (3.31)

Therefore, we have completed the proof of Lemma 3.6. O

and

Furthermore, we can prove that
sup [F3(6. )] < Bl < Cle + (e + My(T)PP)(1 + 1) 78, (3.32)
£ER

and
up IEF(E, )] < |Falin < Cle + (e + My(T))PJ(1 +1)~*F, (3.33)

and note p/2 > 1, (p+1)/2 > 1 due to p > 3, then, by using the Parseval’s equality, and
Lemmas 3.2 and 3.3, we can similarly prove the following lemma. We omit here the proof
details.

Lemma 3.7 Let u(z,t) € X,(0,T) (p > 3), then

oo . A(E)(1—s) . fEXT
A I [ e a6 e ds < Cle+ (¢ + DI+ (334)

forj=0,1,2.
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Proof of Proposition 2.3 (A Priori Esitmetes). Let v(z,t) € X,(0,T) be the unique
solution of Eq. (3.4), p > 1. From (3.4) and (3.5), we obtain

10Lu(t)llL2 <

3 4% (if)]eifxe'”‘“)tvo(5)‘15”L-a

1
T/ —00

(3.35)

rt
+fo

L o5 (€ el T F (€, w)dg| s

for j =0,1,2.
When p = 1, thanks to Lemma 3.4 and Lemma 3.5, we have

1+2

820|172 < Cllugllwsa (1 + )75 + Cle + (¢ + My(T))F)(1 + 1)~ U542 |
(3.36);

IN

Clllvollwss + € + (¢ + MUT))2(1 + t)~ =)
for j = 0,1, and

[vez ()i S Cllvollwsa (14 6)7F + Cle + (e + M(T)?)(1 + )70
(3.36);

IA

C[HUO”H”-‘ + &+ (E + M, (T))z](l + t)_“_a).

We multiply (3.36); by (1 + t)ifl“" for j = 0,1, and (3.36)2 by (1 + t), respectively, we
then add them to have

sUPgeser { Lol +8) F 000 () 2 + (1 + 1) fluza(t)]f12 ]

M(t) =
S C[”'U()“u/:s‘l + £+ (E + Ml(T))Q]

namely,
M(T)[1 - 2Ce = CM(T)] < Cllwpllwas + & + 7).

Now we choose 8, in Proposition 2.3 as

1
P e——
62—40

When ¢ < min{1,d,}, M (T) < d, , we obtain
M, (t) < 8C[|jvoliwss +¢] forall 0<t<T.
That is,
! 142 .
S+ vl + (1 + )7 o (8]l 22 < 8C|voflwss + €]
=0

for ¢ < min{l,8} , M,(T) < 6, , and t € [0,T]. Thus we have proved the a priori
estimates for Case p =1 .
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When p =2, Lemma 3.4 and Lemma 3.6 give us
HAZv(t)l: < Cllvollwa (1 + i s Cle + (e + Ma(T))*1(1 + )~ log(2 + 1)

< Clljwollwer + £ + (6 + Ma(T))?)(1 + )55 log(2 + 1),
(3.37);
for 7 = 0,1, and
lves(B)llze < Cllvollwsa (1 +1)~% + Cle + (¢ + Ma(T))*)(1 + )7
(3.37)2
< Clllvollwar + € + (g + Ma(T))3}(1 +¢) L.

Multiplying (3.37); by (1+t)i421 log™(2+t) for j = 0,1 and (3.37), by (1+t), respectively,
and adding them, we obtain

My(T) < Cfllwollws: + € + (€ + Ma(T))),
which implies that
My(T)[1 = 3Ce? ~ 3CeMy(T) — CMo(T)?) < Cfllvollwan + ¢ + 4.

Thus, there exists d; satisfying

by <
2_\/@5

when ¢ < min{1,d,} and M>(T) < 6, . then
J\/Ig(t) S BC[HU()HVVSJ +&+ 53] S 16C“|’U()”Ws.l + 51 for all 0 S t < T.

That is,

1+ t)i% log™H(2 + DIFu(t)ll L2 + (1 + )|lvaa(t)llze < Cllivoliwss +€], t €[0,T].

-

j=0

Thus, the proof for case p = 2 is complete.
Finally, when p > 3, in the same way, making use of Lemma 3.4 and Lemma 3.7, we
can prove the a priori estimates {2.1). Here we omit its details. O

4 Numerical Computations

In this section, we introduce our numerical results, which should be another positive
answers to our theoretical results-Theorem 1.1. Our numerical method carried out here
is the explicit finite difference method. For the consideration of the Cauchy problem,
we adopt a suitable IBVP for a sufficiently large domain @ C R with zero Neumann
boundary instead of the original IVP.
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We denote 8(z,t) and u(z,t) the solutions of the Burgers solution (1.3) (diffusion
wave's equation) and the BBM-Burgers equation (1.1), respectively, and choose the initial
data 6o(z) and ue(z) as

Bo(z) = uo{z) = 1+1x4'
Thus.
% o o 1
/_w Oo(z)dx = f_mun(z)dr = /_oc mdl’ >0
but

/°° [Bo(z) = uolz)}dz = 0.

-0
Now we are going to divide to three cases to carry out our numerical computations.
Firstly, we treat Case 3: p = 3.

Let 0
.t x,t
Fi(t) := max M and Fy(t) = max —.L—l(——l‘—‘—
eR(1+1)72 zeR (1 +1t)7%
according to the previous theory, we believe that the ratios Fi(¢) and F(t) should be
constants as time ¢ goes to infinity. Indeed, our numerical result shows us that it is really
true when time ¢ is large enough, see Figure 1 below.

0.88 —
0.875
0.87 | B

0.885 - F2i) 1

0.88

0.855 Fi 4
0.85

0.845 i

r3
2000 3000 4000 5000 6000 7000 8000 8000 10600

a.8
Figure 1: Case 3. p = 3: Decay rates of u{zr.t) and 6(x.t)

By use of the above data, we check further the behavior of the difference between two
solutions 8(z,t) and u(z,t). Let

. flu ~ a“Lm(R)
T4+

our numerical calculation Figure 2 presents that F(t) seems also to be a constant line
when t is large enough. This means that, the convergence rate for the solution u(x,t) to
the corresponding diffusion wave #(x,1) is (1 + ¢)7", namely, [lu ~ HHLw(R) =C(1+t)!
for some positive constant C ast > 1.
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5 -
‘T
al
|

2} 1
1r F(ty

|

-1 1
2000 3000 4000 5000 6000 7000 8000 8000 10000

Figure 2: Case 3. p = 3: Convergence rate of u(z,t) to 8(z,t)

Secondly, we treat Case 2: p = 2. We are going to show the numerical simulations for

the ratios oot f
Gi(t) := max ’L(i—)IT and G,(t) := max _-—____)M(I’ . '1
2R (1+1)72 R (1+1)2

as follows.

0.8 — —

0.875
0.87
0.865 | Gam

086
0.885 | s
o085 |

0.845 -

0.84 "
2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 3: Case 2. p = 2: Decay rates of u(z,t) and #(z, 1)

Put
flu ~ elle(R)
(1+t)"%flog(2 +1)
the numerical result further shows that G(t) seems to be also a constant line as t is large,
see Figure 4 below, which illustrates that [ju — 9”L°°(R) decays fast just as the function
(1+1)%/log(2 + t) does.
Finally, we treat Case 1: p = 1. As before done, we let

fu(z, 1) ‘

e 2O = gy P
Hl(t) max and H?(t) T I:éaé (1+1)_;

T zeR(141)3
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F G(t) B

]

0 .
2000 3000 4000 5000 6000 7000 8000 9000 10000

0.86

0.855
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0.845

0.84

0.835

0.83

Figure 4: Case 2. p = 2: Convergence rate of u(z,t) to 8(z,1)

i
( H2(t)
]
[
H1(1) |

—

2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 5: Case 1. p = 1: Decay rates of u(z,t) and 8(z,1)
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Our numerical calculation makes the following figure.
Furthermore, let

o HU - ean(R)
(1+ 1) #+0
we compute it numerically for ¢ = 0.05, 0.1 and 0.13, see Figure 6.

)

0.3

0.25 -

0.2 + Hit)'s

0.05 J

Q 1
2000 3000 4000 5000 6000 7000 8000 8000 10000

Figure 6: Case 1. p = 1: Convergence rate of u(x.t) to 8(z.t)

All of these show that H(t) for each ¢ = 0.05, 0.1 and 0.15 are almost the constant
lines for the large t. These represent also that ]]u—e]]Lx(R) decays fast just as the function

(14 1)+ does.

Therefore, we conclude that, due to these numerical simulations, it seems our conver-
gence rates in Theorem 1.1 are sharp.
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