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Abstract 

This paper is concerned with the large-time behavior of solution of the Cauchy 
problenl for the Benjamin-Bona-Mahony-Burgers equation. We prow that the so- 
lution unique globally exists and timc-asymptotically tends to its corresponding 
diffusion wave, when the initial perturbat,ion is small rnongh. The corrrsponding 
diffusion wave is coustrucled by the heat equation or the Bnrgers equation. In 
particular, we obtain the convergence rates in L'J-spaces ( 2  5 q 5 x). The math- 
ematical proof is based on thc Fouricr transform mcthod and the energy mel ho11. 
Furthermore. we take the llumerical computations on such a problem. The numer- 
ical si~rlulations show that the convergence rates ohtained thcoreticallp seem to bc 
sharp. 

AMS: 35453,35B40,76B15 

KEY WORDS: BBM-Burgers equations, diffusion waves, stability 

(Received for Publication December 1999) 

1 Introduction and Main Result 

Considered here is thr t,ime-as,vmp~olic behavior of sulutiul~s to the Caurhy problcm of 
the Benjamin-Bona-Mahonp-Burgers (BBM-B) equations in t,hr form 
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wherc x E R, t > 0, p 2 1 is integer. cr > 0 and are any given constants. Without loss 
of generality, we may let 0 = 112 here and after here, because we may make a suitable 
scale t,o variables z -+ 2mz and t + 2nd such that Eq. (1.1) becomes 

Since D. H. Psrgrine [27], T. B. Benjamin, 3. L. Dona and -1. $1. Mahony [2] pro- 
posed the alternative regularized long-wave equations for the physical phenomenon of 
bore propagation and water waves as follows 

so-called the Benjamin-Bona-hlahony (BBM) equation, t,his subject has become a hot 
spot and attracted many mathematicians and physicists. There are a number of works on 
the time-asymptotic behavior of solutions, see 11-6.8,19-23,281 and the references thereill. 
The asymptotic state of the BBM-B sohition a ( z ,  t )  is iisnally cwnsidered as zero in the 
previous works. However, wr find that its corresponding diffusion nave, a solution of 
corresponding parabolic part,ial differential equation to (1.1), is a bett,er asymptotic profile 
than the 0 in such a sense that the convergence of v(z ,  t )  toward the diffusion wave is 
faster than that of u(x, t )  toward the 0. This will be theoreticallv proved and numerically 
experimented in the following four sections, which is our rriilin goal ill t h  prcscnt paper. 

At first, Let us recall t,he so-called diffusion uraves. Let p (2 1) 11e integer axid let 

we consider the following parabolic equation 

0, - ;s,, + [.f(o) + .fl(o)e + y ( o ) e 2 ] ,  = o 
(1.3) 

Olt,, = &(x) -t 0, as 3: -t &x. 

We call this solution as the diffusion wave to the BBhl-B eqnatitn (1.1). I\'ot,e that 

when p 2 2, Eq. (1.3) is equivalent to 

which is a linear heat equation, and has a unique solution in the fhrm 
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This solution is called the linear diffusion wave for Eq. (1.1) with p 2 2. 
When p = 1, we may reduce (1.3) into 

[ h - jn, + as, + 00, = u. 

By using the Hopf-Cole transformation 

t o  Eq. (1.7), then ~t can be reduced to  

It, is well-known that the above linear heat equation has a unique solution 

Thus, from (1.8) and (1.10), we obtain the solution for (1.7) 

This solution is called the nonlinear diffusion wave for Eq. (1.1) with p = 1. 
For a parabolic conservation law, Chern and Liu [7;, .lcffrcv and Zliao [ll] studied 

that,, for n givcn initial da ta  Ou(x) E L' r? Hz, the diffusion waw solutions of (1.3) decay 
in the form 

ip(t)ll12 = ~ ( f - l ! ~ ) .  

furthermore, if 

On the other hand, for the BBM-B equation (1.1). correspondi~ig to the restriction on the 
initial da ta  

l a _ u , ( x ) d x # ~  or = D .  
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were also showed by Amick-Bona-Schonbek [ I ] ,  Bisognin- Menzala [3,4], Bona-Luo [5.6], 
Dix 181, Mei [20,21], Namkin-Shishmarov [24] and Zhang [29], and so on. 

In the present paper, we are interested in the convcrgcncc of' solution u ( x ,  t )  of the 
BBM-B equation (1.1) to  the corrcsponding diffi~sion wave solut,ion H(z, t )  of the parabolic 
equation (1.3),  when the initial perturbation is small. Explicit,lv speaking, in t,hc case of 

&(x)dx # 0 and J-ffim uo(z)dz  # 0, according t,o t,hc previous rc,s~llt~s mentioned above, 
the diffusion wavcs B(x, t )  and thc unique solution ~ ( z ,  t )  of (1.1) haw the same decay rat,es 
IlO(t)/lp = O(t-ll4) and /lu(t)lli.' = O(t- ' I4) ,  which implies riat~lrally t,hat 1 1  (u-8)( t ) l lL ,  = 
O(t - ' / ' ) ,  however, this decay rate is not satisfactor" if the initial perturbation uu(x)-Bo(z)  

In fact, we expect that the solution u ( x ,  t )  converges to the corresponding diffusion wave 
H(z, t )  faster than ~ ( t - ' I 4 )  in L2-sense, namely, we will prove that 

where u is any given positive constant, of course, we mav let O < u << 1. This means that 
the diffusion wave B(x, t )  is a better asymptotic profile of u(z .  t )  than the 0. 

Konr let us compare our results with the previous interesting works in this field. In 
t,he framework 171 by I-L. Chern and T.-P. Liu, they investigated that the solution of the 
Cauchy problem to a ,n x n hyperbolic system of viscous conservation laws including the 
single equation case as follows 

U, + f (u )=  - l l l L  = 0 with , f t1(0)  # 0. 11(.1.0) = ug(i). 

tends to the nonlinear diffusion wave for the Burgers equation 

undcr the restriction J-mx[uo(x) - Ho(x)]dx = 0. The L2-convc~rgcnc:c ratcs of u(x .  t )  to 
O(T, t )  is O(t-(314)+") for any given small constant u > 0. This is quit,c same t,o our result 
in the case p = 1. Rccentlv, G. Karch in [12] and [13] studicd thc convcrgcncc to thc 
diffusion wave for thc KdV-Burgus cquatiorl 

and the BB11-Burgers equation 

U, + uu, - U,, - U,,t = 0 

respectively, and showed the I,'-convcrgence rate to be O(t-'j" i ~ l l r  it i s  less than ours 
for the case p = 1. 
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When p > 1,  it is clear that luPu,l is much smaller than I w u , ~  if I ~ ( I L . ,  t)l is small, 
namely, (uPu,/ decays much faster. On the other hand, u,,, is also a faster decay term. 
Thcrcforc, to consider thc long timc asymptotic behavior of thc solution to Eq. (1 .1 ) :  thc 
effects b y  both of upu,, and u,,~ in Eq. (1.1)  for p > 1 may bc deleted, and the main 
controlling part of the BBM-B equation (1.1) is expected t,o be the linear part 

T h ~ s  is whv we can expect that the solutions u ( x , t )  of the BBSl-B equations for p 2 2 
converge to  the linear diffusion waves O(x,t). We further prove that t,he decay rates 
tire fast,er than t,hat for p = 1. Indeed. as stated abovc. wc obtain thc L2-decay rates 
O(t-"!4 log(2 + t ) )  nntl O(t-:'!*) for p = 2 and p 2 3, rtyxc.t.ivcly. R.egarding thc con- 
vergence of solrit,ior~s to diffusioli waves for other t,yj),r of visc:o~is 1iyperl)olic: c:or~scrvatior~ 
laws, we rrfer tlo t,hosc! works in [7,10.15-18,25,26]. 

Now lvt, m 
i := 1 ( I f l , ( ~ ) l  +lrO,(r)l) d r  c +r. 

5 

we are golng to state the m a n  results as follows. 

Theorem 1.1 Suppose that (1.12) and 

hold. Then th,ere crczst.s a p o ~ ~ t w f :  cons tmt  6" .such that lahen / 1 1 ) " / 1 ~ ~ , ~ , :  + E _< 6 0 ,  then th,c 
Cauch?~ problem (1.1) has n m i q u c  global solution ? L ( x ,  t )  n a t z s f p g  

, , I , ( . ,  . t )  - a ( . ~ . t )  E C(O, m: E I ~ ( R ) )  

and the followinys: 

(2) I j p  = 1 ,  for any a > 0. then thc followzng estzmatcs h,old 

i i ( 7 ~  - 8)(t) l (LZ = O(1)(1 + f ) - a t n .  

( z r )  I j p  = 2 .  thr conuergencc rcrtes are as follours 
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biz) If p >_ 3, the convergence to the diflusion wave are much faster as foElows 

I/(. - 0)(t)llL2 = O ( l ) ( l  + t )-2.  

Using LZ. Lp-results in Theorem 1.1 and the interposing iricquality 

I I ~ ' I I L ~  5 I I J I I ~ Y I I ~ I I ; Q ,  fol 2 5 (, 5 %, 

we ran obtain immediat,ely L'-decav rates as follows 

Corollary 1.1 Under the assumptions zn Theorem 1.1, z t  follows 

I 0(1)(1 + t)-(7/R)+(V.lrll+n , for  p = 1 

For the mathematical proof of Theorem 1.1, as showed in [20,21], we are going to  
adopt the Fourier transform method and the energy method. These will be carried out 
in Sections 2 and 3. Finally, in Section 4, we take the numerical cornput,ations on the 
t,wo Cauchy problems of BBM-Burgers equation and thc- correspondirlg parabolic equa- 
tion (diEusion wave's equation), respectively. The nu~nerical siniulations show t h a t  the  
convergence rates obtained theoretically to  the diffusiori waves seem to Ije sharp. 

Notattons. h'e now make some not,at,ion for simplicit,~. C nlwavs denotes somc positive 
const,ant,s without confilsion. d,k f := dk f / a x k .  LP p r ~ s e n t ~ s  the Lcbesquc intcgral space 
with th r  norm / /  . /ILp. Espc~inlly, LZ is the sqliarc intcgral space with thp norm I /  .  LA, 
and Lm is thc csscntial bounded space with the norm 1 1  . I j L m  H~ and i l r k , p  denote the 
usr~al  Sobolcv space with thc norms I /  . l l x k  and / /  . IILvr,,. respectively. Suppose that  
f (x) E L' r: L2(R), we define the Fourier transforms of' , f ( . r )  as follows: 

F[ f ] ( ( j  . ,f = 1 f (.)e-i%. 
R 

Let T and B bc a positive const,ant and a Banach space. rcspcctivclv C Y k ( O .  1': B) ( k  2 0) 
denotes the space of B-valued k-times continuously differentiable functions 0x1 [0, TI. and 
LL(O, T: B )  denotes the space of B-valued L2-functio~~s on [0, TI. The correspolding spaces 
of B-valued function on (0, m) are defiued similarly. 
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2 Reformulation to the Original Problem 

From Eqs. (1.1) and (1.3) ,  we have 

Slnce 6 ' ( + ~ .  t )  = 0, and we expect u ( i m ,  t )  = 0, u,(+x.  t )  = 0. then dtter mtegratrng 
(2 1) over ( - m ,  x), we have formally 

Thanks t o  the  essential assumption (1.12). we integrate (2.2) over [O. t] with respect to t 

Tlierefo~e. ~t is natural to introtlute 

I ( .  t )  = 1 [ (  t )  - 0 ,  ) ] I  . ( I . )  = u ( )  - ( t )  (2.4) 
00 

which satisfies 

Integrating ~t ovcr (-m, T ]  w ~ t h  rcspcct to x .  and noting u ( f  m, t )  = 0, H ( i m ,  t )  = 0, 
wr obtmn 

Not,irig f ( I L )  = PII + e, we have from (2.6) that. if 1) = 1 
P+ 1 
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for some positive constants u, = C;,,. 
Now we are going t o  state the following theorem for the Cauchy problem (2.6) which 

implies Theorem 1.1 directly. 

Theorem 2.1 Under the some nsswnptzons in  Theorem 1.1. Then there exzts a positive 
con.stcirit 6,. such that when / u o l l c r r ~ . ~  + i < 61, then thf Cauch:y p r o h h  (2.i), ( p  2 1) 
has a ~jnzyue ylobal solution o(z, t )  satisf?jing 

Furthemore,  we have the followmy estamutes. 

1. When  p = 1, for any given o > 0 ,  the solutton t i ( z .  t )  of (2.7), sutis.fies 

2. When p = 2, the sol,utzor~ u(z. t )  of (2.7)2 satzsfies 

,?. When p 2 3, the solutaon I:(x, t )  of ( 2 . 7 ) ,  (71 2 3) sotis,fie.s 

Corollary 2.1 linder the us,sumptzon,s ri i  Theorem 1.1. at f'ollo111.s 

( 1 ) l  + - -  for P = 1 
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and 

I O(l)(l  + t )  for p 2 3 

Once Theorem 2.1 is provcd. by Theorem 2.1 and Corollary 2.1. a d  notir~g (2.4) ,  i.e., 
u,(z. t )  = U ( Z ;  t )  - B(z, t ) .  wc can prove Theorem 1.1 irnrnediatel?. Therefore. to prove 
Thcorcm 2.1 is our main purpose in the rest of this paper. LVe are going to prove it based 
on the following local rxist,er~w ant1 the u pnora estimates by the continuation argument. 
Before stating these two  result,^, we now define the solution spaces as follows, for any 
T > O and pven 6 > 0. 

q o ,  T )  = {U E C(O,  CC: H ~ ) ( M , ( T  

where 

Xow we give the theorems of local existence and a prrori estimates 

Proposi t ion  2.2 (local existence) Suppose that vo E H 1  holds. then thme exists a 
posztrae constant To such lliul the Cuuchy problem (2.7) ,  ( p  2 1) has a unique solution 
v(:c,  t )  E X p ( O ,  T O )  satzsfyrng i%Ip(Ta) < 2A!,(0) for a11 p > 1. 

Proposi t ion  2.3 ( a  priori  es t imate)  Let T be u posrtzve constant, and ~ ( z .  t )  E S p ( O ,  
T )  ( p  2 1 )  be (I  .solutior~ of the Cauchy problem (2.7) , .  Suppose that the a5s1intptions i n  
Theorem 1.1 hold, then there ezrst posrtave constants 6, arid C' tndependent of T such that 
z f  M,(t) 5 6,. then f o r t  E [O. TI the followzng estzmates hold: 
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2. When p  = 2: 

3. When p 2 3, 

As showed in [21], using the ~ont~inuation argurnqit based on Propositions 2.2 and 2.3, 
wc can prove Theorem 2.1. We omit the details. So. to prove Propositions 2.2 and 2.3 is 
our goal. Since Propositio~l 2.1 can 11e proved in the standard way, our main effort will 
be made o r 1  the pl.oof of Proposition 2.2 in the next section. 

3 A Priori Estimates 

For the  cases p >_ 1, by use of the Fourier 1ra11sfoi-m to  (2.7), ( p  2 I ) ,  wr obt,ain 

~iarnelv. 

Thus we have 

Taking the inverse Fourier trausform to (3.2), WP have 

Differentiating it with respect to  :c, we have 

Now we give sevcral prcp:lmriori lrmmas as follow5 
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Lemma 3.1 ([7, 111) Let O(x, t )  be the dzflusion waves of (1.3). If 

Lemma 3.2 ([28]) Let a > 0 and b > 0 be constants. If rnax(n, b) > 1, then 

If max(n, b) = 1, then 

If max(a. b) < 1, then 

The applications of this l e m m a  can be found in many works. e.g. in [19-221 

Lemma 3.3 ([20,21]) It holds 

Lemma 3.4 ([20,21]) If 11" E W 3 ~ ' ( R ) .  then 

Lemma 3.5 Suppose that v ( . r ,  t )  E XI ( 0 ,  T ) .  then 

5 C[F + ( E  + bAl,(T))'](1 + t)-Ti" 

for j = 0 . 1 ,  and 
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Proof. Let v(x,  t) E X1 (0. T). Since 

using Lemma 3.1, the properties of Fourier transform and thc definition of M 1 ( T ) ,  we 
obtain 

provided 0 < u 5 112, and 

5 C [ E  + ( E  + M1(T))']( l  + s)-($-") 
(3.20) 

for 0 < u 5 112. 

Applying the Parseval's qnal i ty  and using (3.19). (3.20), Lernma 3.3 and Lemma 3 2. 
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we then have 

and 
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Lemma 3.6 Suppose that v ( z ,  t )  E X2(0, T ) ,  then 

5 C[e + (F + h42(T))3](1 + t)-* log(2 + t )  

for j = 0,1,  and 

Proof. Let 21(x. t )  E ,Y2(0, T ) .  Slncc 
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Similarly. we can prow 

S ~ P C C R  1~32'2(~, s) l  I .I% lF;,(x. s)ldx 

I c . ~ ~ ~ [ I ~ ~ ~ ~ I  + 1o2o21 + ieesvzl + pTll:~ 

+/H2v,,/ + /OV,U,,J + /~~7:,,l]dz 

2 C[IlQ+ztlI~l + ll~ll't4Q=ll~- + l l @ l l ~ - l l ~ = l l ~ ~ I l ~ ~ I l ~ ~  

+ I i Q T l l ~ - l l ~ z l l ? , ~  + l l Q I I ~ ~ l l ~ l l ~ ~ 1 1 ~ ~ ~ ~ 1 1 ~ ~  

+ l l ~ l l ~ - l l ~ ~ z l l ~ ' l i v ~ z l l ~ '  + / / ~ , / I L ~ ~ I ~ , I / L ' I / ~ , , / L "  

5 C [ E ( ~  + s ) - ~  + E3(1 + 6 ) - 3  

+ILl2(T)"I + s)-$(log(2 + t));] 

< C[E+  ( ~ + i Z l ~ ( T ) ) ~ ( l  -s)-~"/ ' .  

Therefore, making use of the Parseval's equalitv. and Lemmas 3.1, Lemma 3.2. we can 
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prove 

5 C[E + ( E  + ~ t f ~ ( T ) ) ~ ] ( l  + t)-ilog(2 + t) 

In a similar way, we can prove the higher order case 

and 

5 C[E + ( E  + h l~(T) ) ' ] ( l  + t)- '  

Therefore, we have completed the proof of Lemma 3.6. 

Furthermore, WP can prove that 

and 
SUP 1<6((. t)l 5 IJFirIIL~ 5 C[E + ( E  + ~ b f : , ( T ) ) ~ ] ( l  + t)-y. (3.33) 
FER 

and note p/2 > 1, ( p +  1)/2 > 1 due t o p  2 3, then, by using thc Parseval's equality, and 
Lemmas 3.2 and 3.3, we can similarly prove the following lemma. We omit here the proof 
details. 

Lemma 3.7 Let v ( z ,  t)  6 & ( O ,  T) ( p  2 3 ) ,  then 
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Proof of Proposition 2.3 ( A  Priori Esitrnetes). Let r ? ( z . t )  E S,(O.  T )  be the unique 
solution of Eq. ( 3 . 4 ) ,  p 2 1. From (3 .4 )  and ( 3 . 5 ) ,  we obtain 

for 3 = 0,1 ,2 .  
When p = 1, thanks to Lemma 3.4 and Lemma 3.5.  we have 

for j = 0,1 ,  and 

LVr multiply ( 3 . 3 6 ) )  by (1 + t ) y - "  for j = 0.1, and (3.36)2 by ( 1  + t ) ,  respectively. we 
then add them to have 

Now we choose 67 in Proposition 2.3 as 

When E < niin{l, d2}. M 1 ( T )  < S2 . wc obtain 

That is, 

for E < min{l, 621 M I ( T )  < d2 , and t E [0, TI. Thus we have proved the a priori 
estimates for Case p = 1 . 
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When p = 2 , Lemma 3.4 and Lemma 3.6 give us 

for j = 0.1:  and 

Multiplying (3.37), by ( l + t ) w  log-'(2+t) for 3 = 0.1  and (3 37)2 by ( l + t )  respectivcly 
and adding them, we obtam 

A42(T) I C[llvollws 1 + E + (E + . \Iz(T))~], 

which implies that  

d/i,(T)[l - ~ C E ~  - ~ C E I W ~ ( T )  - CMZ(T)'] 5 C[ll,ooll1v3.~ + a  + E ~ ] .  

Thus, there exists 62 satisfving 
1 

& <  -, m 
when E 5 min{l.b2} and hlz(T) < 62 . then 

Thus. the proof for case p = 2 is complete. 
Finally, when p 2 3 , in tho same way, making use of Lemma 3.4 and Lemma 3.7, we 

can prove t,he a priori estimates (2.1). Here we omit its details. 0 

4 Numerical Computations 

In this section, wr introduce our numerical results, which should be another positive 
answers to  our theoretical results-Theorem 1.1. Our numerical method carried out here 
is the  explicit finite difference method. For the consideration of the Cauchy problem, 
we adopt a suitable IBVP fbr a sufficiently large domain R C R with zero Neumann 
boundary instead of the original IVP. 
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We denote O(x, t) and u(x. t) the solutions of the Burgers solution (1.3) (diffusion 
wave's equation) and the BBM-Burgers equation (1.1)? respectively, and choose the initial 
data &(x) and uo(x) as 

Thus. 

but 

Now we are going to divide to three cases to carry out our numerical computations. 
Firstly, we treat Case 3: p = 3. 

Let 
/u(s. t)l 

'e(x't)' and Fz(t)  := nlax - Fl(t) := max --- 
r c R  (1 + t)-i ~ E R  (1 + t)-i ' 

according to the previous theory, we believe that the ratios Fl(t) and fi(t) should be 
constants as time t goes to  infinity. Indeed, our numerical result shows us that i t  is really 
brue when time t is large enough, see Figure 1 below. 

Figure 1: Case 3. p = 3: Decay rates of u(x. t) and O(Z. t) 

Bv use of the above data, wr check further the behanor of the differenc~ between two 
solutions B(x, t) and U(Z. t) Let 

our numerical calculation Figure 2 presents that F ( t )  seems also t.o 1 ) ~  a constant line 
when t is large enough. This means that ,  t,he convergence rate for thc solution u(x,t) to 
the corresponding diffusion wave @(I, t )  is (1 + t ) - ' .  namely. Ilu - HJIL,(R, = C(1 + t)-' 
for some positive constant C as t 2 1. 
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Figure 2: Case 3. p = 3: Convergence rate of u ( x .  t )  tlo B(z, t j  

Secondly, we treat Case 2: p = 2. We are going to show the numerical simulations for 
the ratios 

GI ( t )  := max --- I ~ x ,  t)l and G2(t)  := max - 
X E R  ( 1  + tj-t ~ E R  ( 1  + t ) - i  

as follows. 

Figure 3: Casc 2. p = 2: Decay rates of u(s, t )  and 8(2. t )  

the numerical result further shows that G(t)  seems to be also a constant line as t is large, 
see Figure 4 below, which illustrates that ll'u - eilLm(R) decays fast just as the function 

(1 + t ) - g J m  does. 
Finally, we treat Case 1: p = 1. As before done, we let 

ltr(a:. t jJ  l o x  and H2( t )  := max - HI ( t )  := max --- 
XER (1 + t j - i  T E R  (1 + f ) - f '  
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Figure 4: Case 2. p = 2: Convergence rate of u ( z ,  t )  to  H(x, t )  

Figure 5 :  Case 1. p = 1: Decay rates of u(x, t) and H(x, t) 
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Our numerical calculation makes the following figure. 
Furthermore, let 

we compute it numerically for u = 0.05, 0.1 and 0.15. see Figure B 

Figure 6: Case 1. p = 1: Convergence rate of ~ ( 7 . .  t )  to B(r. t )  

All of these show that H ( t )  for each a = 0.05, 0.1 and 0.15 are almost the constant 
lines for the large t .  These rcpresent also t,hat 1 / ~ - @ l l , ~ ( ~ ,  decays fast just as the function 

(1 + t)-k+" does. 
Therefore, we conclude t.hat,. due to these numerical simulat,ions. it seems our conver- 

gence rates in Theorem 1.1 are sharp. 
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