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REMARK ON STABILITY OF TRAVELING WAVES FOR

NONLOCAL FISHER-KPP EQUATIONS

MING MEI AND YONG WANG

Abstract. This paper is concerned with a class of nonlocal Fisher-KPP type reaction-diffusion
equations in n-dimensional space with time-delay. It is proved that, all noncritical planar wave-

fronts are exponentially stable in the form of t−
n
2 e−ντ t for some constant ντ = ν(τ) > 0, where

τ ≥ 0 is the time-delay, while the critical planar wavefronts are algebraically stable in the form of

t
−

n
2 . These convergent rates are optimal in the sense with L1-initial perturbation. The adopted

approach is the weighted energy method combining Fourier transform. It is also realized that,
the effect of time-delay essentially causes the decay rate of the solution slowly down. These re-
sults significantly generalize and develop the existing study [37] for 1-D time-delayed Fisher-KPP
type reaction-diffusion equations. When the time-delay τ vanishes, we automatically obtain the
exponential stability for the noncritical planar traveling waves and the algebraic stability for the
critical planar traveling waves to the regular Fisher-KPP equations.

Key words. Nonlocal reaction-diffusion equations, time delays, traveling waves, global stability,
the Fisher-KPP equation, L1-weighted energy, Green functions.

1. Introduction and Main Results

Following the recent study [37] on the stability of traveling waves to 1-D nonlocal
time-delayed reaction-diffusion equations, in this paper, we study a class of n-D
nonlocal Fisher-KPP reaction-diffusion equations ([4, 11, 25, 37])

(1)







∂u

∂t
−D∆u+ d(u) =

∫

Rn

fα(y)b(u(t− τ, x− y))dy,

u|t=s = u0(s, x), x ∈ Rn, s ∈ [−τ, 0]

for x = (x1, · · · , xn) ∈ Rn and t ≥ 0. Here, ∆u =
n
∑

i=1

∂2u

∂x2
i

, D > 0 is the diffusion

coefficient, τ ≥ 0 is the time-delay, fα(y), with α > 0, is the heat kernel in the form
of

(2) fα(y) =
1

(4πα)
n
2
e

−|y|2

4α with

∫

Rn

fα(y)dy = 1,

d(u) and b(u) both are nonlinear functions satisfying

(H1) There exist u− = 0 and u+ > 0 such that d(0) = b(0) = 0, d(u+) = b(u+),
and d(u), b(u) ∈ C2[0, u+];

(H2) b′(0) > d′(0) ≥ 0 and 0 ≤ b′(u+) < d′(u+);
(H3) For 0 ≤ u ≤ u+, d

′(u) ≥ 0, b′(u) ≥ 0, d′′(u) ≥ 0, b′′(u) ≤ 0.

The model of (1) describes the wave propagations in fluid dynamics, and in
physical, chemical and biological dynamics, initially given by R.A. Fisher [10], and
A. Kolmogoroff, I. Petrovsky and N. Piscounoff [22]. The study on such a wave
propagation phenomenon can be also found in [1, 31] for the fluid dynamical exper-
iments on Taylor-Couette flow, in [7] for Rayleigh-Benard flow, in [44, 52] for the
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chemical wave experiments, and in [3] for population dynamics, combustion, and
biological invasions.

In the equation (1), if we take τ = 0 and α → 0+, and use the property of heat
kernel fα(y):

(3) b(u(t, x)) = lim
α→0+

∫

Rn

fα(y)b(u(t, x− y))dy,

we derive the following regular Fisher-KPP reaction-diffusion equation [3, 10, 9, 15,
53, 55]

(4)







∂u

∂t
−D∆u = h(u),

u|t=0 = u0(x), x ∈ Rn,

with h(u) = b(u)−d(u). Particularly, taking d(u) = u2 and b(u) = u, then we reduce
(4) to the following classical Fisher-KPP equation [3, 8, 10, 12, 21, 22, 41, 43]

(5)
∂u

∂t
−D∆u = u(1− u), t > 0, x ∈ Rn.

Clearly, from (H1), both u− = 0 and u+ > 0 are constant equilibria of the
equation (1); and from (H2), u− = 0 is unstable and u+ is stable for the spatially
homogeneous equation associated with (1); and from (H3), both b(u) and d(u)
are increasing, and b(u) is concave downward and d(u) is concave upward. These
characters let the equations (1) and (4) capture the most basic features of the
classical Fisher-KPP equation (5), so we call the equations (1) and (4) as the
nonlocal/local Fisher-KPP type reaction-diffusion equations. Except the standard
example with b(u) = u and d(u) = u2 for the classical Fisher-KPP equation (5),
equation (1) includes the other two important examples. One is the Nicholson’s
blowflies equation [27, 28, 30, 35, 36, 37, 38, 39, 47, 48]

∂u

∂t
−D∆u+ δu(t, x) = εp

∫

Rn

fα(y)u(t− τ, x− y)eau(t−τ,x−y)dy,

with

b(u) = εpue−au and d(u) = δu, ε > 0, p > 0, a > 0, δ > 0.

Obviously, these specified functions b(u) and d(u) satisfy (H1)-(H3) with u− = 0
and u+ = 1

a ln εp
δ for 1 < εp

δ ≤ e. The other typical example is the age-structured
population model [2, 13, 14, 26, 37, 40]

∂u

∂t
−D∆u + δu2(t, x) = pe−γτ

∫

Rn

fα(y)u(t− τ, x− y)dy,

with

d(u) = δu2 and b(u) = pe−γτu, δ > 0, p > 0, γ > 0,

which also satisfy (H1)-(H3) automatically with u− = 0 and u+ = p
δ e

−γτ .
A planar traveling wavefront to the equation (1) is a special solution in the form

of u(t, x) = φ(x · e + ct) with φ(±∞) = u±, where c is the wave speed, e is a
unit vector of the basis of Rn. Without loss of generality, we can always assume
e = e1 = (1, 0, · · · , 0) by rotating the coordinates. Thus, we have the planar
traveling wavefront in the form φ(x ·e1+ ct) = φ(x1+ ct), which satisfies, for τ ≥ 0,

(6)







cφ′ −Dφ′′ + d(φ) =

∫

Rn

fα(y)b(φ(ξ1 − y1 − cτ))dy,

φ(±∞) = u±,
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where ′ = d
dξ1

and ξ1 = x1 + ct. Let

(7) fαi(yi) :=
1

(4πα)1/2
e−

y2
i

4α .

Then

(8) fα(y) :=

n
∏

i=1

fαi(yi), and

∫

R

fαi(yi)dyi = 1, i = 1, 2, · · · , n,

and (6) is reduced to, for τ ≥ 0,

(9)







cφ′ −Dφ′′ + d(φ) =

∫

R

fα1(y1)b(φ(ξ1 − y1 − cτ))dy1,

φ(±∞) = u±.

The main purpose of this paper is to study the global asymptotic stability of planar
traveling wavefronts of (1), including the case of the critical wave φ(x1+ c∗t). Here
the number c∗ is called the critical speed (or the minimum speed) in the sense that
a traveling wave φ(x1+ ct) exists if c ≥ c∗, while no traveling wave φ(x1+ ct) exists
if c < c∗.

The study on the stability of traveling waves for reaction-diffusion equations
has been a popular research area. There are many significant contributions on
this topic, see, e.g., [5, 6, 9, 12, 17, 19, 21, 24, 32, 41, 43, 50], the monograph
[53], the survey paper [55], and the references therein. In particular, the stability
of the critical traveling waves is most interesting in fluid dynamics and biological
invasions, but also very challenging. For the regular 1-D Fisher-KPP equation
(4), particularly, the classical Fisher-KPP equation (5), Sattinger [43] first proved
that all non-critical waves are exponentially stable by the spectral analysis method.
Later on, Uchiyama [51] showed the local stability for the traveling waves including
the critical waves by the maximum principle method, but no convergence rate
for the critical waves case was related. In [5], Bramson derived the sufficient and
necessary condition for the stability of noncritical and critical waves (no convergence
rates), which was also obtained by Lau [24] later in a different way. Moet [41] showed
that the critical waves are algebraically stable in the form of O(t−1/2) by the Green
function method. Kirchgässner [21] also obtained the stability for the critical waves
in the form O(t−1/4) by the spectral method, which was further improved to be
O(t−3/2) by Gallay [12] by using the renormalization group method, of course, the
corresponding weight function needed to be stronger. For the multi-dimensional
case, the stability of planar faster traveling waves with c > c∗ was obtained by
Mallordy and Roquejoffre in [33], see also [18] for the stability on the manifolds
but without convergence rates. Recently, Mei, Ou and Zhao [37] obtained the
exponential stability for the non-critical traveling waves and the algebraic stability
for the critical waves to the 1-D nonlocal time-delayed reaction-diffusion waves by
the L1 weighted energy method together with the Green function method, which
also includes the above mentioned stability results for Fisher-KPP equations by
taking the time-delay τ = 0. However, the proof for deriving the rate O(t−1/2) for
the case of critical waves in Lemma 3.7 in [37] is not rigorous (for details, we refer
to Remark 2.4 below).

There are three issues considered in this paper. The first is to fix the gap in
[37] for obtaining the algebraic convergence rate O(t−1/2) to the critical traveling
waves. As we know, in [37] they converted the working equation to the integral
form with the regular Green function (the heat kernel without time-delay), then
used the iteration procedure to derive the algebraic convergence rate in the case of
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critical waves: Ck(1+ t)−1/2 at the kth iteration. So, the constant coefficient Ck is
increasing and unbounded as k → ∞. In order to fix such a gap, here, we technically
derive the equivalent integral equation with the time-delayed Green function, and
show the optimal decay rates of the solutions without iteration. The second is to
generalize the 1-D stability of traveling waves to the n-D stability of planar traveling
waves, namely, the non-critical planar traveling waves are exponentially stable in
the form of t−n/2e−ντ t and the critical planar traveling waves are algebraic stable in
the form of t−n/2. The third is to show how the time-delay affects the convergence
rates to the non-critical traveling waves. We will give an explicit form of ντ = ν(τ)
to show the effect of the time-delay will essentially make the decay rates of the
solutions slowly down. In fact, ν0 is the biggest as τ → 0 and ν∞ = 0 is smallest as
τ → ∞. The reason is that, the time-delayed source term remains those old data
at time τ , which doesn’t decay as fast as the regular source term without the delay,
and causes the solution decay slower than the regular case. A similar phenomenon
is also observed in [23] on no blow-up occurring for the time-delayed equations.In
fact, it is well-known that, for the Cauchy problem of the parabolic equation

ut −∆u = up, (x, t) ∈ Rn ×R+, with u|t=0 = u0(x),

the solution will always blow up at a finite time when 1 < p < p∗ = 1 + 2
n (the

Fujita exponent). However, for the delayed equation

ut−∆u = up(x, t−τ), (x, t) ∈ Rn×R+, τ > 0, with u|t=0 = u0(x, s), s ∈ [−τ, 0],

by the maximum principle

sup
t∈[kτ,(k+1)τ ]

‖u(·, t)‖L∞(Rn) ≤ ‖u(·, kτ)‖L∞(Rn) + τ sup
t∈[kτ,(k+1)τ ]

‖u(·, t− τ)‖L∞(Rn),

as showed in [23], the corresponding solution globally exists and never blows up for
all p > 0.

Throughout this paper, C > 0 denotes a generic constant, while Ci > 0 and
ci > 0 (i = 0, 1, 2, · · · ) represent specific constants. j = (j1, j2, · · · , jn) denotes a
multi-index with non-negative integers ji ≥ 0 (i = 1, · · · , n), and |j| = j1 + j2 +
· · ·+ jn. The derivatives for multi-dimensional function are denoted as ∂j

xf(x) :=
∂j1
x1

· · ·∂jn
xn
f(x). For an n-D function f(x), its Fourier transform is defined as

F [f ](η) = f̂(η) :=

∫

Rn

e−ix·ηf(x)dx, i :=
√
−1,

and the inverse Fourier transform is given by

F−1[f̂ ](x) :=
1

(2π)n

∫

Rn

eix·ηf̂(η)dη.

Let I be an interval, typically I = Rn. Lp(I) (p ≥ 1) is the Lebesque space of the
integrable functions defined on I, W k,p(I) (k ≥ 0, p ≥ 1) is the Sobolev space of
the Lp-functions f(x) defined on the interval I whose derivatives ∂j

xf with |j| = k

also belong to Lp(I), and in particular, we denote W k,2(I) as Hk(I). Further,
Lp
w(I) denotes the weighted Lp-space for a weight function w(x) > 0 with the norm

defined as

‖f‖Lp
w
=

(

∫

I

w(x) |f(x)|p dx
)1/p

,

W k,p
w (I) is the weighted Sobolev space with the norm given by

‖f‖Wk,p
w

=
(

k
∑

|j|=0

∫

I

w(x)
∣

∣∂j
xf(x)

∣

∣

p
dx

)1/p

,
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and Hk
w(I) is defined with the norm

‖f‖Hk
w
=

(

k
∑

|j|=0

∫

I

w(x)
∣

∣∂j
xf(x)

∣

∣

2
dx

)1/2

.

Let T > 0 be a number and B be a Banach space. We denote by C0([0, T ],B)
the space of the B-valued continuous functions on [0, T ], L2([0, T ],B) as the space
of the B-valued L2-functions on [0, T ]. The corresponding spaces of the B-valued
functions on [0,∞) are defined similarly.

Regarding the existence of monotone traveling wavefronts of (1), as showed in
[37], it can be proved by the method of upper-lower solutions in a similar way as
in [28, 45, 47, 48, 49], and the critical wave (the wave with the minimum speed)
can be further confirmed by the semiflow argument developed in [29], see also [15]
by Hamel and Nadirashvili for the existence of planar traveling waves and entire
solutions to Fisher-KPP equations.

Proposition 1.1 (Existence of planar traveling waves [15, 37]). Under the condi-
tions (H1)-(H3), for the time-delay τ ≥ 0, there exist a minimum wave speed (also
called the critical wave speed) c∗ > 0 and a corresponding number λ∗ = λ(c∗) > 0
satisfying

(10) Fc∗(λ∗) = Gc∗(λ∗), F ′
c∗(λ∗) = G′

c∗(λ∗),

where

(11) Fc(λ) = b′(0)eαλ
2−λcτ , Gc(λ) = cλ−Dλ2 + d′(0),

and (c∗, λ∗) is the tangent point of Fc(λ) and Gc(λ), namely,

b′(0)eαλ
2
∗−λ∗c∗τ = c∗λ∗ −Dλ2

∗ + d′(0),(12)

b′(0)(2αλ∗ − c∗τ)e
αλ2

∗−λ∗c∗τ = c∗ − 2Dλ∗,(13)

such that for any c ≥ c∗, there exits a monotone traveling wavefront φ(x1 + ct) of
(6) connecting u± exists, and for any c < c∗, no traveling wave φ(x1 + ct) exists.

In the case of c > c∗, there exist two numbers depending on c: λ1 = λ1(c) > 0
and λ2 = λ2(c) > 0 as the solutions to the equation Fc(λi) = Gc(λi), i.e.,

(14) b′(0)eαλ
2
i−λicτ = cλi −Dλ2

i + d′(0), i = 1, 2,

such that

(15) Fc(λ) < Gc(λ) for λ1 < λ < λ2,

and particularly,

(16) Fc(λ∗) < Gc(λ∗) with λ1 < λ∗ < λ2.

In the case of c = c∗, it holds

(17) Fc∗(λ∗) = Gc∗(λ∗) with λ1 = λ∗ = λ2.

When ξ1 = x1 + ct → −∞, for all c ≥ c∗, the traveling wavefronts φ(x1 + ct)
converge to u− = 0 exponentially as follows

(18) |φ(ξ1)− u−| = O(1)e−λ1|ξ1|,

where λ1 = λ1(c) > 0 is given in (14), particularly, λ1 = λ∗ for c = c∗.
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Before stating our main theorems, we define a weight function as

(19) w(x) =

{

e−λ∗(x1−x∗), for x1 ≤ x∗,

1, for x1 > x∗,

where x∗ > 0 is a sufficiently large number such that, for x1 ≥ x∗ ≫ 1,

(20) d′(φ(x1)) ≥
∫

Rn

fα(y)b
′(φ(x1 − y1 − cτ))dy.

Theorem 1.2 (Stability of planar traveling waves). Let d(u) and b(u) satisfy (H1)-
(H3). For a given traveling wave φ(x1 + ct) of the equation (1) with c ≥ c∗ and
φ(±∞) = u±, if the initial data satisfy

(21) 0 = u− ≤ u0(s, x) ≤ u+, for (s, x) ∈ [−τ, 0]×Rn,

and the initial perturbation u0(s, x)−φ(x1+cs) is in C1([−τ, 0],W 2,1
w (Rn)∩L2(Rn)),

then the solution of (1) uniquely exists and satisfies:

(i) When c > c∗, the solution u(t, x) converges to the noncritical planar trav-
eling wave φ(x + ct) exponentially

(22) sup
x∈Rn

|u(t, x)− φ(x1 + ct)| ≤ Ct−
n
2 e−ντ t, t > 0

for some constant

0 < ντ < max{ε1(τ)(c1 − c3(τ)), d
′(u+)− b′(u+)},

where c1 := cλ∗ −Dλ2
∗ + d′(0), c3(τ) := b′(0)eαλ

2
∗−cλ∗τ , and ε1(τ) ∈ (0, 1)

is uniquely determined and is decreasing with respect to the time-delay τ ,
such that ε1(τ) → 0 as τ → ∞, and ε1(τ) → 1 as τ → 0.

(ii) When c = c∗, the solution u(t, x) converges to the critical planar traveling
wave φ(x1 + c∗t) algebraically

(23) sup
x∈Rn

|u(t, x)− φ(x1 + c∗t)| ≤ Ct−
n
2 , t > 0.

Remark 1.3.

a) The convergence rates showed in Theorem 1.2 are optimal, when the initial
perturbation around the wave is in the weighted L1

w(R) space.
b) It is noted that, the previous stability results obtained in [38, 36, 37] for 1-D

nonlocal time-delayed reaction-diffusion equations, [39, 35] for Nicolson’s
blowflies equations, [26, 40] for population models with age structure, and
[43, 41, 21, 13] for 1-D classical Fisher-KPP equations, all are the special
cases of our stability Theorem 1.2. Particularly, our convergence rates are
more precise.

c) The conditions d′(u+)
2 > b′(0)b′(u+) required in [37] is removed in our

present paper.

When the time-delay τ = 0 and α → 0+, the time-delayed nonlocal equation (1)
reduces to the regular Fisher-KPP equation (4). Assume that the equation (4) is
mono-stable, namely, h(u) satisfies

(H′) There exist u− = 0 and u+ > 0 such that h(u) ∈ C2[0, u+], h(0) = h(u+) =
0, h′(0) > 0, h′(u+) < 0, and h′′(u) ≤ 0 for u ∈ [0, u+].

From Theorem 1.2, we immediately obtain the exponential stability for the non-
critical planar traveling waves and the algebraic stability for the critical planar
traveling waves to the regular Fisher-KPP equations (4).
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Corollary 1.4. Let h(u) satisfy (H ′). For a given traveling wave φ(x1 + ct) of the

equation (4) with c ≥ c∗ = 2
√

h′(0) and φ(±∞) = u±, if the initial data satisfy

(24) 0 = u− ≤ u0(x) ≤ u+, for x ∈ Rn,

and the initial perturbation u0(x)−φ(x1) is in W 2,1
w (Rn)∩L2(Rn), then the solution

of (4) uniquely exists and satisfies:

(i) When c > c∗, the solution u(t, x) converges to the noncritical planar trav-
eling wave φ(x + ct) exponentially

(25) sup
x∈Rn

|u(t, x)− φ(x1 + ct)| ≤ Ct−
n
2 e−ν0t, t > 0

for some constant

0 < ν0 < max{c− c∗, |h′(u+)|},
where

(ii) When c = c∗, the solution u(t, x) converges to the critical planar traveling
wave φ(x1 + c∗t) algebraically

(26) sup
x∈Rn

|u(t, x)− φ(x1 + c∗t)| ≤ Ct−
n
2 , t > 0.

The rest of this paper is organized as follows. In section 2, we will build up some
crucial energy decay estimates for the solutions to the linearized nonlocal reaction-
diffusion equations, which will be the key for the stability proof. Particularly, we
will show that the effect of the time-delay essentially makes the convergence in the
case with time-delay much faster than the case without time-delay. In section 3, we
will further prove the global asymptotic stability results with a time-exponential
decay for the noncritical traveling waves and a time-algebraic decay for the critical
traveling wave, respectively. The adopted approach for proof is based on the method
developed in [41, 37], but to derive the Green function with time-delay for equation
(1) as well as the optimal decay rates of the solutions is main contribution in this
paper.

2. Linearized Nonlocal Reaction-Diffusion Equations

In this section, we will derive the solution formula for the linear delayed ordinary
differential equations, and the formula for the linearized nonlocal reaction-diffusion
equations with or without time-delay, as well as their asymptotic behaviors, which
will play a key role in the stability proof in section 3.

Now let us introduce the solution formula for linear delayed ODEs as shown in
[20].

Lemma 2.1 ([20]). Let z(t) be the solution to the following linear time-delayed
ODE with time-delay τ > 0

(27)







d

dt
z(t) + k1z(t) = k2z(t− τ)

z(s) = z0(s), s ∈ [−τ, 0].

Then

(28) z(t) = e−k1(t+τ)ek̄2t
τ z0(−τ) +

∫ 0

−τ

e−k1(t−s)ek̄2(t−τ−s)
τ [z′0(s) + k1z0(s)]ds,

where

(29) k̄2 := k2e
k1τ ,
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and ek̄2t
τ is the so-called delayed exponential function in the form

(30) ek̄2t
τ =



























































0, −∞ < t < −τ,

1, −τ ≤ t < 0,

1 + k̄2t
1! , 0 ≤ t < τ,

1 + k̄2t
1! +

k̄2
2(t−τ)2

2! , τ ≤ t < 2τ,
...

...

1 + k̄2t
1! +

k̄2
2(t−τ)2

2! + · · ·+ k̄m
2 [t−(m−1)τ ]m

m! , (m− 1)τ ≤ t < mτ,
...

...

and ek̄2t
τ is the fundamental solution to

(31)







d

dt
z(t) = k̄2z(t− τ)

z(s) ≡ 1, s ∈ [−τ, 0].

Note that, different from the exponential function e(k1+k2)t = ek1tek2t, we always
have

e(k1+k2)t
τ 6= ek1t

τ ek2t
τ .

Furthermore, we can prove that such a fundamental solution (the delayed exponen-
tial function) captures the following asymptotic behavior.

Lemma 2.2. Let k1 ≥ 0 and k2 ≥ 0. Then the solution z(t) to (27) (or equivalently
(28)) satisfies

(32) |z(t)| ≤ C0e
−k1tek̄2t

τ ,

where

(33) C0 := e−k1τ |z0(−τ)| +
∫ 0

−τ

ek1s|z′0(s) + k1z0(s)|ds,

and the fundamental solution ek̄2t
τ with k̄2 > 0 to (31) satisfies

(34) ek̄2t
τ ≤ C(1 + t)−γek̄2t, t > 0

for arbitrary number γ > 0.
Furthermore, when k1 ≥ k2 ≥ 0, there exists a constant 0 < ε1 < 1 such that

(35) e−k1tek̄2t
τ ≤ Ce−ε1(k1−k2)t, t > 0

and the solution z(t) to (27) satisfies

(36) |z(t)| ≤ Ce−ε1(k1−k2)t, t > 0.

Proof. For (32), it is easy to see from (28) that

|z(t)| =
∣

∣

∣
e−k1(t+τ)ek̄2t

τ z0(−τ) +

∫ 0

−τ

e−k1(t−s)ek̄2(t−τ−s)
τ [z′0(s) + k1z0(s)]ds

∣

∣

∣

=
∣

∣

∣
e−k1τz0(−τ) +

∫ 0

−τ

ek1s
e
k̄2(t−τ−s)
τ

ek̄2t
τ

[z′0(s) + k1z0(s)]ds
∣

∣

∣
e−k1tek̄2t

τ

≤
{

e−k1τ |z0(−τ)|+
∫ 0

−τ

ek1s|z′0(s) + k1z0(s)|ds
}

e−k1tek̄2t
τ

= : C0e
−k1tek̄2t

τ ,(37)
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where we used the fact, by the definition of ek̄2t
τ given in (30),

0 ≤ e
k̄2(t−τ−s)
τ

ek̄2t
τ

≤ 1 for s ∈ [−τ, 0].

To prove (34), we need to construct an upper-solution to (31). From the as-
sumption we know k̄2 > 0. For an arbitrarily given number γ > 0, we have

lim
t→∞

[

1− γ

k̄2
(1 + t)−1 − e−k̄2τ

( 1 + t

1 + t− τ

)γ]

= 1− e−k̄2τ > 0.

So there exists a large number t0 = t0(γ, k̄2, τ) = m0τ > 0, where m0 ∈ N is a
positive and large enough integer, such that

(38) 1− γ

k̄2
(1 + t)−1 − e−k̄2τ

( 1 + t

1 + t− τ

)γ

> 0, for t ≥ t0 > 0.

We now verify that

(39) z̄(t) := C1(1 + t)−γek̄2t, for t ≥ t0, with C1 ≥ ek̄2t0
τ

is an upper-solution to (31) for t ∈ [t0,∞), namely,

(40)
d

dt
z̄(t) ≥ k̄2z̄(t− τ), z̄(s) ≥ ek̄2s

τ , s ∈ [t0 − τ, t0].

In fact, it holds that

d

dt
z̄(t)− k2z̄(t− τ)

= C1k̄2(1 + t)−γek̄2t − C1γ(1 + t)−γ−1ek̄2t − k̄2C1(1 + t− τ)−γek̄2(t−τ)

= C1k̄2(1 + t)−γek̄2t
[

1− γ

k̄2
(1 + t)−1 − e−k̄2τ

( 1 + t

1 + t− τ

)γ]

≥ 0, for t ≥ t0.(41)

So, by the comparison principle to the linear delayed ODE, the upper-solution z̄(t)

is always greater than the fundamental solution ek̄2t
τ to (31) in [t0,∞), namely,

(42) ek̄2t
τ ≤ C1(1 + t)−γek̄2t, t ≥ t0.

On the other hand, for the bounded interval [0, t0], we can always have

(43) ek̄2t
τ ≤ C1(1 + t)−γek̄2t, t ∈ [0, t0]

by selecting a large number C1 > 0. Thus, combing (42) and (43) gives (34).
To prove (35) and (36), we are going to carry it out in two cases. When k1 >

k2 ≥ 0, we can similarly construct a pair of upper and lower solutions to (27) to
prove (35) and (36). Let z̄(t) := Me(k1−k2)τe−ε1(k1−k2)t, whereM := max

s∈[−τ,0]
|z0(s)|.

It can be verified that z̄|t=s ≥ |z0(s)| and
d

dt
z̄(t)+k1z̄(t)−k2z̄(t−τ) = Me(k1−k2)τe−ε1(k1−k2)t[(1−ε1)k1+ε1k2−k2e

ε1(k1−k2)τ ] = 0,

where 0 < ε1 < 1 is uniquely determined by

(44) (1− ε1)k1 + ε1k2 − k2e
ε1(k1−k2)τ = 0.

So, we have proved that z̄(t) := Me(k1−k2)τe−ε1(k1−k2)t is an upper solution of (27)
such that

(45) z(t) ≤ Me(k1−k2)τe−ε1(k1−k2)t for t > 0.
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Let z̃(t) := −z(t), then it satisfies

d

dt
z̃(t) + k1z̃(t) = k2z̃(t− τ)

As showed before, we can verify

(46) z(t) ≥ −Me(k1−k2)τe−ε1(k1−k2)t for t > 0.

Thus, (45) and (46) together imply

(47) |z(t)| ≤ Ce−ε1(k1−k2)t for k1 > k2, t > 0.

In order to prove (35) in the case of k1 > k2, let us particularly select the initial
data z0(s) ≡ 1, and apply (36) and (28), namely, the corresponding solution is

z(t) = e−k1(t+τ)ek̄2t
τ + k1

∫ 0

−τ

e−k1(t−s)ek̄2(t−τ−s)
τ ds > 0,

we then have

e−k1(t+τ)ek̄2t
τ ≤ e−k1(t+τ)ek̄2t

τ +k1

∫ 0

−τ

e−k1(t−s)ek̄2(t−τ−s)
τ ds = z(t) ≤ Ce−ε1(k1−k2)t.

This implies

(48) e−k1tek̄2t
τ ≤ Ce−ε1(k1−k2)t for k1 > k2.

When k1 = k2, let M := max
s∈[−τ,0]

z0(s) and m := min
s∈[−τ,0]

z0(s). It is easy to

see that z̄(t) = M and z(t) = m are the upper-solution and lower-solution of the
equation (27), respectively. So,

m ≤ z(t) ≤ M.

This implies

(49) |z(t)| ≤ C = Ce−ε1(k1−k2)t for k1 = k2

and

(50) e−k1tek̄2t
τ ≤ C = Ce−ε1(k1−k2)t for k1 = k2.

Combining (47), (48), (49) and (50), we prove (35) and (36) for k1 ≥ k2 with
0 < ε1 < 1. Thus, the proof for this lemma is complete. �

Next, we consider the following nonlocal linearized time-delayed reaction-diffusion
equation (which will be derived in section 3 for the proof of stability of traveling
wavefronts)

(51)



























∂v

∂t
+

n
∑

i=1

c0i
∂v

∂xi
−D∆v + c1v

= c2

∫

Rn

fα(y)e
−λ∗(y1+cτ)v(t− τ, x− y − cτe1)dy

v(s, x) = v0(s, x), s ∈ [−τ, 0], x ∈ Rn

for some given constant coefficients c0i, c1 and c2. Here

x− y − cτe1 = (x1 − y1 − cτ, x2 − y2, · · · , xn − yn).

Now we are going to derive its solution formula as well as the asymptotic behavior
of the solution. By taking Fourier transform to (51), we have

(52)
dv̂

dt
+A(η)v̂ = F

[

c2

∫

Rn

fα(y)e
−λ∗(y1+cτ)v(t− τ, x− y − cτe1)dy

]

(t− τ, η),
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where

(53) A(η) = D|η|2 + c1 + i
n
∑

i=1

c0iηi, with |η|2 =
n
∑

i=1

η2i .

Note that,

F
[

c2

∫

Rn

fα(y)e
−λ∗(y1+cτ)v(t− τ, x− y − cτe1)dy

]

(t− τ, η)

= c2

∫

Rn

e−ix·η
(

∫

Rn

fα(y)e
−λ∗(y1+cτ)v(t− τ, x− y − cτe1)dy

)

dx

= c2

∫

Rn

fα(y)e
−λ∗(y1+cτ)

(

∫

Rn

e−ix·ηv(t− τ, x− y − cτe1)dx
)

dy

= c2

∫

Rn

fα(y)e
−λ∗(y1+cτ)

(

∫

Rn

e−i(x+y+cτe1)·ηv(t− τ, x)dx
)

dy

= c2

∫

Rn

fα(y)e
−λ∗(y1+cτ)e−i(y+cτe1)·η

(

∫

Rn

e−ix·ηv(t− τ, x)dx
)

dy

=
(

c2

∫

Rn

fα(y)e
−λ∗(y1+cτ)e−i(y+cτe1)·ηdy

)

v̂(t− τ, η)

= B(η)v̂(t− τ, η),(54)

where

(55) B(η) := c2

∫

Rn

fα(y)e
−λ∗(y1+cτ)e−i(y+cτe1)·ηdy.

Substituting (54) to (52), we have

(56)
dv̂

dt
+A(η)v̂ = B(η)v̂(t− τ, η), with v̂(s, η) = v̂0(s, η), s ∈ [−τ, 0].

Solving (56) by the solution formula (28), we obtain

v̂(t, η) = e−A(η)(t+τ)eB(η)t
τ v̂0(−τ, η)

+

∫ 0

−τ

e−A(η)(t−s)eB(η)(t−τ−s)
τ

[ d

ds
v̂0(s, η) +A(η)v̂0(s, η)

]

ds,(57)

where

(58) B(η) := B(η)eA(η)τ .

Then, by taking the inverse Fourier transform to (57), we get

v(t, x) =
1

(2π)n

∫

Rn

eix·ηe−A(η)(t+τ)eB(η)t
τ v̂0(−τ, η)dη

+

∫ 0

−τ

1

(2π)n

∫

Rn

eix·ηe−A(η)(t−s)eB(η)(t−τ−s)
τ

×
[ d

ds
v̂0(s, η) +A(η)v̂0(s, η)

]

dηds,(59)
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and its derivatives, for a multi-index j = (j1, · · · , jn) with nonnegative integers ji
and |j| = ∑n

i=1 ji, can be expressed as

∂j
xv(t, x) =

1

(2π)n

∫

Rn

eix·η
(

n
∏

i=1

(iηi)
ji
)

e−A(η)(t+τ)eB(η)t
τ v̂0(−τ, η)dη

+

∫ 0

−τ

1

(2π)n

∫

Rn

eix·η
(

n
∏

i=1

(iηi)
ji
)

e−A(η)(t−s)eB(η)(t−τ−s)
τ

×
[ d

ds
v̂0(s, η) +A(η)v̂0(s, η)

]

dηds.(60)

Now we are going to derive the asymptotic behavior of v(t, x).

Theorem 2.3 (Decay rates). Let v0 ∈ C1([−τ, 0];W 2,1(Rn) ∩ L2(Rn)) and

(61) c3 := c2

∫

Rn

fα(y)e
−λ∗(y1+cτ)dy > 0.

Then, for c1 ≥ c3, there exists a constant 0 < ε1 < 1 such that the solution of the
linearized equation (51) satisfies

‖∂j
xv(t)‖L2(Rn) ≤ Ct−

n
4 − |j|

2 e−ε1(c1−c3)t, t > 0,(62)

‖∂j
xv(t)‖L∞(Rn) ≤ Ct−

n
2 − |j|

2 e−ε1(c1−c3)t, t > 0.(63)

Proof. Denote

I1(t, η) : =
(

n
∏

i=1

(iηi)
ji
)

e−A(η)(t+τ)eB(η)t
τ v̂0(−τ, η),(64)

I2(t− s, η) : =
(

n
∏

i=1

(iηi)
ji
)

e−A(η)(t−s)eB(η)(t−τ−s)
τ

×
[ d

ds
v̂0(s, η) +A(η)v̂0(s, η)

]

.(65)

Then, (60) is reduced to

(66) ∂j
xv(t, x) = F−1[I1](t, x) +

∫ 0

−τ

F−1[I2](t− s, x)ds.

So, by using Parseval’s equality, we have

‖∂j
xv(t)‖L2(Rn) ≤ ‖F−1[I1](t)‖L2(Rn) +

∫ 0

−τ

‖F−1[I2](t− s)‖L2(Rn)ds

= ‖I1(t)‖L2(Rn) +

∫ 0

−τ

‖I2(t− s)‖L2(Rn)ds.(67)

Note that, from (53) and (55), we have

(68) |e−A(η)(t+τ)| = e−(D|η|2+c1)(t+τ) = e−k1(t+τ)

by defining

(69) k1 := D|η|2 + c1,

and

(70) |B(η)| ≤ c2

∫

Rn

fα(y)e
−λ∗(y1+cτ)dy = c3 =: k2,

and

(71) |B(η)| = |B(η)eA(η)τ | ≤ c3e
(D|η|2+c1)τ = k2e

k1τ =: k̄2,
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and further

(72) |eB(η)t
τ | ≤ ek̄2t

τ .

By the definition of Fourier transform, we have

(73) sup
η∈Rn

|v̂0(−τ, η)| ≤
∫

Rn

|v0(−τ, x)|dx = ‖v0(−τ)‖L1(Rn),

then, we obtain

‖I1(t)‖L2(Rn)

=
[

∫

Rn

∣

∣

∣

(

n
∏

i=1

(iηi)
ji
)

e−A(η)(t+τ)eB(η)t
τ v̂0(−τ, η)

∣

∣

∣

2

dη
]1/2

≤
[

∫

Rn

(

n
∏

i=1

|ηi|2ji
)(

e−k1(t+τ)ek̄2t
τ

)2

|v̂0(−τ, η)|2dη
]1/2

.(74)

Noting (69) for k1 = D|η|2 + c1, (70) for k2 = c3 and (71) for k̄2 = k2e
k1τ , and

k1 = D|η|2 + c1 ≥ c3 = k2 due to c1 ≥ c3, and using (35) in Lemma 2.2, we get

(75) e−k1tek̄2t
τ ≤ Ce−ε1(k1−k2)t = Ce−ε1(D|η|2+c1−c3)t

for some constant 1 > ε1 > 0.
Thus, applying (75) into (74), we obtain

‖I1(t)‖L2(Rn)

≤ C
(

sup
η∈Rn

|v̂0(−τ, η)|2 · e−2ε1(c1−c3)t
n
∏

i=1

∫

R

|ηi|2jie−2ε1Dη2
i tdηi

)1/2

≤ C
(

sup
η∈Rn

|v̂0(−τ, η)|
)

e−ε1(c1−c3)t
(

n
∏

i=1

∫

R

|ηi|2jie−2ε1Dη2
i tdηi

)1/2

≤ Ct−
n
4 − |j|

2 e−ε1(c1−c3)t‖v0(−τ)‖L1(Rn),(76)

where we used

(

n
∏

i=1

∫

R

|ηi|2jie−2ε1Dη2
i tdηi

)1/2

=
(

n
∏

i=1

1

(
√
t)2ji+1

∫

R

|ζi|2jie−2ε1Dζ2
i dζ

)1/2

[by substituting ζ :=
√
tη ]

≤ C
(

n
∏

i=1

t−ji− 1
2

)1/2

= Ct−
|j|
2 −n

4 .

Again, by using the property of Fourier transform, we have

|(iηi)ji v̂0| = |̂∂ji
xiv0| ≤

∫

Rn

|∂ji
xi
v0|dx = ‖∂ji

xi
v0‖L1(Rn),

and

sup
η∈Rn

|A(η)v̂0(s, η)| = sup
η∈Rn

∣

∣

∣

(

D|η|2 + c1 + i

n
∑

i=1

c0iηi

)

v̂0(s, η)
∣

∣

∣

≤ C‖v0(s)‖W 2,1(Rn).(77)
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Thus, in a similar way, we can prove

‖I2(t− s)‖L2(Rn)

=
[

∫

Rn

∣

∣

∣

(

n
∏

i=1

(iηi)
ji
)

e−A(η)(t−s)eB(η)(t−τ−s)
τ

×[∂tv̂0(s, η) +A(η)v̂0(s, η)]
∣

∣

∣

2

dη
]1/2

≤
[

∫

Rn

(

n
∏

i=1

|ηi|2ji
)

e−2(D|η|2+c1)(t−s)(ek̄2(t−τ−s)
τ )2

×|∂tv̂0(s, η)A(η)v̂0(s, η)|2dη
]1/2

≤ C
(

sup
η∈Rn

|∂tv̂0(s, η) +A(η)v̂0(s, η)|
)

e−ε1(c1−c3)(t−s)

×
(

n
∏

i=1

∫

R

|ηi|2jie−2ε1Dη2
i (t−s)]dηi

)1/2

≤ C(t− s)−
n
4 − |j|

2 e−ε1(c1−c3)(t−s)[‖v′0s(s)‖L1(Rn) + ‖v0(s)‖W 2,1(Rn)].(78)

Substituting (76) and (78) to (67), we immediately obtain (62).
By the same manner, we can similarly prove (63). The detail is omitted. Thus,

the proof for this lemma is complete. �

Remark 2.4. In [37], the solution to the linear reaction-diffusion equation with
time-delay

∂v

∂t
+ k1

∂v

∂ξ
−D

∂2v

∂ξ2
= εb′(0)ek2τ

∫

R

fα(y)e
−λ∗(y+c∗τ)v(t− τ, ξ − y − c∗τ)dy

is given in the integral form of the regular heat equation (no time-delay for the
Green function):

v(ξ, t) =

∫

R

G(t, ξ − ζ)v0(0, ζ)dζ

+εb′(0)ek2τ

∫ t

0

∫

R

G(t− s, ξ − ζ)

×
∫

R

fα(y)e
−λ∗(y+c∗τ)v(t− τ, ξ − y − c∗τ)dydζds

with G(t, ξ − ζ) = 1√
4πDt

e−
(ξ−ζ+k1t)2

4Dt , which causes the iteration of the solution

v(t, ξ) in [kτ, (k+1)τ ] step by step with an increasing boundedness like Ck(1+t)−1/2

in the proof of Lemma 3.7. In order to fix such a gap, here we derive the integral
formula of the solution as (51) involving the time-delay τ , and obtain the optimal
rates O(t−

n
2 ) for c1 = c3, which is just the case of critical waves as showed in (107)

and (108) below.

3. Global Stability for Planar Traveling Waves

It is known that the existence and uniqueness of the solution to (1) can been
proved via the standard energy method with continuity-extension method (c.f.,
[39, 38]) or the theory of abstract functional differential equations [34], so we omit
the details here. The main purpose in this section is to prove the stability Theorem
1.2 for all traveling waves including the critical traveling waves with time-delay or
not.
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Let c ≥ c∗ and the initial data u0(s, x) be such that 0 = u− ≤ u0(s, x) ≤ u+ for
(s, x) ∈ [−τ, 0]×R and τ ≥ 0, and define

(79)

{

U+
0 (s, x) = max{u0(s, x), φ(x1 + cs)},

U−
0 (s, x) = min{u0(s, x), φ(x1 + cs)}, for (s, x) ∈ [−τ, 0]×Rn,

which implies

0 = u− ≤ U−
0 (s, x) ≤ u0(s, x) ≤ U+

0 (s, x) ≤ u+ for (s, x) ∈ [−τ, 0]×Rn,(80)

0 = u− ≤ U−
0 (s, x) ≤ φ(x1 + cs) ≤ U+

0 (s, x) ≤ u+ for (s, x) ∈ [−τ, 0]×Rn.(81)

Note that, the initial data U±
0 (s, x) are piecewise continuous, and don’t have a

good enough regularity, which may also cause the absence of regularity for the
corresponding solutions. In order to overcome such a shortening, instead of these
initial data, we choose two smooth functions as the new initial data:

U+
0 (s, x) is smooth such that U+

0 (s, x) ≤ U+
0 (s, x) ≤ u+,(82)

U−
0 (s, x) is smooth such that u− ≤ U−

0 (s, x) ≤ U−
0 (s, x).(83)

Let U+(t, x) and U−(t, x) be the corresponding solutions of (1) with the initial
data U+

0 (s, x) and U−
0 (s, x), respectively, that is,

∂U±

∂t
−D

n
∑

i=1

∂2U±

∂x2
i

+ d(U±) =

∫

Rn

fα(y)b(U
±(t− τ, x− y))dy,(84)

U±(s, x) = U±
0 (s, x), x ∈ Rn, s ∈ [−τ, 0].(85)

By similar arguments as in [26, 30, 35, 36] or the abstract results in [34], it easily
follows that equation (1) admits the comparison principle. Thus, we have

u− ≤ U−(t, x) ≤ u(t, x) ≤ U+(t, x) ≤ u+ for (t, x) ∈ R+ ×Rn,(86)

u− ≤ U−(t, x) ≤ φ(x1 + ct) ≤ U+(t, x) ≤ u+ for (t, x) ∈ R+ ×Rn.(87)

In what follows, we are going to complete the proof for the stability in three
steps.

Step 1. The convergence of U+(t, x) to φ(x1 + ct)
For any given c ≥ c∗, let ξ = (ξ1, ξ2, · · · , ξn) := x+cte1 = (x1+ct, x2, · · · , xn) ∈

Rn and

(88) V (t, ξ) := U+(t, x)− φ(x1 + ct), V0(s, ξ) := U+
0 (s, x) − φ(x1 + cs).

It follows from (86) and (87) that

(89) V (t, ξ) ≥ 0 and V0(s, ξ) ≥ 0.

We see from (1) that V (t, ξ) satisfies (by linearizing it around 0)

∂V

∂t
+ c

∂V

∂ξ1
−D∆V + d′(0)V

−b′(0)

∫

Rn

fα(y)V (t− τ, ξ − y − cτe1)dy

= −Q1(t, ξ) +

∫

Rn

fα(y)Q2(t− τ, ξ − y − cτ)dy + [d′(0)− d′(φ(ξ1))]V

+

∫

Rn

fα(y)[b
′(φ(ξ1 − y1 − cτ)− b′(0)]V (t− τ, ξ − y − cτe1)dy

=: I1(t, ξ) + I2(t, ξ) + I3(t, ξ) + I4(t, ξ),(90)
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with the initial data

(91) V (s, ξ) = V0(s, ξ), s ∈ [−τ, 0],

where

(92) Q1(t, ξ) = d(φ+ V )− d(φ) − d′(φ)V

with φ = φ(ξ1) = φ(x1 + ct) and V = V (t, ξ), and

(93) Q2(t− τ, ξ − y − cτe1) = b(φ+ V )− b(φ)− b′(φ)V

with φ = φ(ξ1 − y1 − cτ) and V = V (t− τ, ξ − y− cτe1). Here Ii(t, ξ), i = 1, 2, 3, 4,
denotes the i-th term in the right-side of line above (90).

From (H3), i.e., d
′′(u) ≥ 0 and b′′(u) ≤ 0, applying Taylor formula to (92) and

(93), we immediately have

Q1(t, ξ) ≥ 0 and Q2(t− τ, ξ − y − cτe1) ≤ 0,

which implies

(94) I1(t, ξ) ≤ 0 and I2(t, ξ) ≤ 0.

From (H3) again, since d′(φ) is increasing and b′(φ) is decreasing, then d′(0) −
d′(φ(ξ1)) ≤ 0 and b′(φ(ξ1 − y1 − cτ)) − b′(0) ≤ 0, which imply, with V ≥ 0,

(95) I3(t, ξ) ≤ 0 and I4(t, ξ) ≤ 0.

Thus, applying (94) and (95) to (90), we obtain

(96)
∂V

∂t
+ c

∂V

∂ξ1
−D∆V + d′(0)V − b′(0)

∫

Rn

fα(y)V (t− τ, ξ − y − cτe1)dy ≤ 0.

Let V̄ (t, ξ) be the solution of the following equation with the same initial data
V0(s, ξ):

(97)























∂V̄

∂t
+ c

∂V̄

∂ξ1
−D∆V̄ + d′(0)V̄

−b′(0)

∫

Rn

fα(y)V̄ (t− τ, ξ − y − cτe1)dy = 0, (t, ξ) ∈ R+ ×Rn,

V̄ (s, ξ) = V0(s, ξ), s ∈ [−τ, 0], x ∈ Rn.

By the comparison principle [36], we have

(98) 0 ≤ V (t, ξ) ≤ V̄ (t, ξ), for (t, ξ) ∈ R+ ×Rn.

Let

(99) v(t, ξ) := e−λ∗(ξ1−x∗)V̄ (t, ξ).

From (97), v(t, ξ) satisfies

∂v

∂t
+ c0

∂v

∂ξ1
−D∆v + c1v

= c2

∫

Rn

fα(y)e
−λ∗(y1+cτ)v(t− τ, ξ − y − cτe1)dy,(100)

where

(101) c0 := c− 2Dλ∗, c1 := cλ∗ −Dλ2
∗ + d′(0) > 0, and c2 := b′(0).

When τ = 0, then (100) is reduced to

(102)
∂v

∂t
+ c0

∂v

∂ξ1
−D∆v + c1v = c2

∫

Rn

fα(y)e
−λ∗y1v(t, ξ − y)dy.
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For τ > 0, applying Theorem 2.3, we obtain the following decay rates:

(103) ‖v(t)‖L∞(Rn) ≤ Ct−
n
2 e−ε1(c1−c3)t,

where c3 is defined in (61), which can be directly calculated as, by using the property
(8),

c3 = b′(0)

∫

Rn

fα(y)e
−λ∗(y1+cτ)dy

= b′(0)

∫

R

fα1(y1)e
−λ∗(y1+cτ)dy1

= b′(0)eαλ
2
∗−λ∗cτ > 0.(104)

When c > c∗, namely, the wave φ(x1 + ct) is non-critical, from (16) in Proposition
1.1, we realize

(105) c1 := cλ∗ −Dλ2
∗ + d′(0) = Gc(λ∗) > Fc(λ∗) = b′(0)eαλ

2
∗−λ∗cτ := c3.

Thus, (103) immediately implies the following exponential decay

(106) ‖v(t)‖L∞(Rn) ≤ Ct−
n
2 e−ε1(c1−c3)t.

When c = c∗, namely, the wave φ(x1 + c∗t) is critical, from (17) in Proposition 1.1,
we realize

(107) c1 := c∗λ∗ −Dλ2
∗ + d′(0) = Gc∗(λ∗) = Fc∗(λ∗) = b′(0)eαλ

2
∗−λ∗c∗τ := c3.

Then, from (103), we immediately obtain the following algebraic decay

(108) ‖v(t)‖L∞(Rn) ≤ Ct−
n
2 .

Since V (t, ξ) ≤ V̄ (t, ξ) = eλ∗(ξ1−x∗)v(t, ξ), and 0 < eλ∗(ξ1−x∗) ≤ 1 for ξ1 ∈
(−∞, x∗], we immediately obtain the following decay for V .

Lemma 3.1. It holds that:

(i) when c > c∗, then

(109) ‖V (t)‖L∞((−∞,x∗]×Rn−1) ≤ Ct−
n
2 e−ε1(c1−c3)t, t > 0;

(ii) when c = c∗,

(110) ‖V (t)‖L∞((−∞,x∗]×Rn−1) ≤ Ct−
n
2 , t > 0.

Next we prove the decay rate for V (t, ξ) in [x∗,∞)×Rn−1.

Lemma 3.2. It holds that

‖V (t)‖L∞([x∗,∞)×Rn−1) ≤ Ct−
n
2 e−νt, for c > c∗,(111)

‖V (t)‖L∞([x∗,∞)×Rn−1) ≤ Ct−
n
2 , for c = c∗.(112)

with some constant 0 < ν < min{ε1(c1 − c3), d
′(u+)− b′(u+)}.

Proof. From (84) and (6), as set in (88) V (t, ξ) := U+(t, x) − φ(x1 + ct) with
ξ = (ξ1, ξ2, · · · , ξn) = (x1 + ct, x2, · · · , xn), we have

(113)
∂V

∂t
+ c

∂V

∂ξ1
−D∆V + d(φ+ V )− d(φ) =

∫

Rn

fα(y)[b(φ+ V )− b(φ)]dy.

Applying Taylor expansion formula and noting (H3) for d
′′(u) ≥ 0 and b′′(u) ≤ 0,

we have

d(φ+ V )− d(φ) = d′(φ)V + d′′(φ̄1)V
2 ≥ d′(φ)V,(114)

b(φ+ V )− b(φ) = b′(φ)V + b′′(φ̄2)V
2 ≤ b′(φ)V,(115)
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where φ̄i (i = 1, 2) are some functions between φ and φ + V . Substituting (114)
and (115) into (113), we have, for c > c∗,

(116)







































∂V

∂t
+ c

∂V

∂ξ1
−D∆V + d′(φ)V

≤
∫

Rn

fα(y)b
′(φ(ξ1 − y1 − cτ))V (t− τ, ξ − y − cτe1)dy,

for t > 0, ξ ∈ [x∗,∞)×Rn−1

V |ξ1=x∗ ≤ C2(1 + t)−
n
2 e−ε1(c1−c3)t, for t > 0, (ξ2, · · · , ξn) ∈ Rn−1

V |t=s = V0(s, ξ), for s ∈ [−τ, 0], ξ ∈ [x∗,∞)×Rn−1,

and for c = c∗,

(117)







































∂V

∂t
+ c

∂V

∂ξ1
−D∆V + d′(φ)V

≤
∫

Rn

fα(y)b
′(φ(ξ1 − y1 − cτ))V (t− τ, ξ − y − cτe1)dy,

for t > 0, ξ ∈ [x∗,∞)×Rn−1

V |ξ1=x∗ ≤ C3(1 + t)−
n
2 , for t > 0, (ξ2, · · · , ξn) ∈ Rn−1

V |t=s = V0(s, ξ), for s ∈ [−τ, 0], ξ ∈ [x∗,∞)×Rn−1,

provided some positive constants C2 and C3. Here, x∗ is selected to be sufficiently
large such that, for ξ1 ≥ x∗ ≫ 1,

(118) d′(φ(ξ1)) ≥
∫

Rn

fα(y)b
′(φ(ξ1 − y1 − cτ))dy,

due to that, (H2) for d
′(u+) > b′(u+) implies

lim
ξ1→∞

d′(φ(ξ1)) = d′(u+) > b′(u+)

=

∫

Rn

fα(y)b
′(u+)dy

=

∫

Rn

fα(y)
[

lim
ξ1→∞

b′(φ(ξ1 − y1 − cτ))
]

dy

= lim
ξ1→∞

∫

Rn

fα(y)b
′(φ(ξ1 − y1 − cτ))dy,

which further confirms (118) for ξ1 ≥ x∗ ≫ 1.
In the case c > c∗, let

(119) V̄ (t, ξ) = C4(1 + t+ τ)−
n
2 e−νt, t ∈ [t∗,∞)

where C4 > V0(s, x) ≥ 0 is a selected large constant, and t∗ and x∗ are chosen
sufficiently large, and ν > 0 is set small within 0 < ν < min{ε1(c1 − c3), d

′(u+) −
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b′(u+)}, such that

− n

2(1 + t+ τ)
− ν + d′(φ(ξ1))

−eντ
(1 + t+ τ)

n
2

(1 + t)
n
2

∫

Rn

fα(y)b
′(φ(ξ1 − y1 − cr))dy

= [d′(u+)− b′(u+)]−
n

2(1 + t+ τ)
− ν

−[d′(u+)− d′(φ(ξ1))]−
∫

Rn

fα(y)[b
′(φ(ξ1 − y1 − cr)) − b′(u+)]dy

−
[

eντ
(1 + t+ τ

1 + t

)
n
2 − 1

]

∫

Rn

fα(y)b
′(φ(ξ1 − y1 − cr))dy

≥ 0, for t ≥ t∗, ξ1 ≥ x∗.(120)

We choose C4 > 0 large enough such that V̄ (t, ξ) ≥ V (t, ξ) for t ∈ [0, t∗] ×Rn.
By a simple but tedious computation as we did in (41), we can verify that V̄ (t, ξ)
is an upper solution to (116) in the form

(121)











































∂V̄

∂t
+ c

∂V̄

∂ξ1
−D∆V̄ + d′(φ)V̄

≥
∫

Rn

fα(y)b
′(φ(ξ1 − y1 − cτ))V̄ (t− τ, ξ − y − cτe1)dy,

for t > t∗, ξ ∈ [x∗,∞)×Rn−1

V̄ |ξ1=x∗ ≥ C2(1 + t)−
n
2 e−ε1(c1−c3)t, for t > t∗, (ξ2, · · · , ξn) ∈ Rn−1

V̄ |t=s ≥ V0(s, ξ), for s ∈ [−τ, 0], ξ ∈ [x∗,∞)×Rn−1.

Thus, we get, in the case of c > c∗,

(122) 0 ≤ V (t, ξ) ≤ V̄ (t, ξ) = C4(1+τ+t)−
n
2 e−νt, for t > t∗, ξ ∈ [x∗,∞)×Rn−1.

This proves (111).
When c = c∗, we can similarly check that

(123) V̄ (t, ξ) = C5(1 + τ + t)−
n
2 , t ∈ [t∗,∞)

is an upper solution to (116) in the form

(124)











































∂V̄

∂t
+ c

∂V̄

∂ξ1
−D∆V̄ + d′(φ)V̄

≥
∫

Rn

fα(y)b
′(φ(ξ1 − y1 − cτ))V̄ (t− τ, ξ − y − cτe1)dy,

for t > t∗, ξ ∈ [x∗,∞)×Rn−1

V̄ |ξ1=x∗ ≥ C2(1 + t)−
n
2 , for t > t∗, (ξ2, · · · , ξn) ∈ Rn−1

V̄ |t=s ≥ V0(s, ξ), for s ∈ [−τ, 0], ξ ∈ [x∗,∞)×Rn−1.

Then, we get, in the case of c > c∗,

(125) 0 ≤ V (t, ξ) ≤ V̄ (t, ξ) ≤ C(1 + t)−
n
2 , for t > 0, ξ ∈ [x∗,∞)×Rn−1.

This proves (112). So, the proof of this lemma is complete.

Combing Lemma 3.1 and Lemma 3.2, we obtain the decay rates for V (t, ξ) in
L∞(Rn).

Lemma 3.3. It holds that:
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(i) when c > c∗, then

(126) ‖V (t)‖L∞(Rn) ≤ Ct−
n
2 e−νt, t > 0

with 0 < ν < min{ε1(c1 − c3), d
′(u+)− b′(u+)};

(ii) when c = c∗,

(127) ‖V (t)‖L∞(Rn) ≤ Ct−
n
2 , t > 0.

Since V (t, ξ) = U+(t, x) − φ(x1 + ct), Lemma 3.3gives directly the following
convergence for the solution in the cases with or without time-delay.

Lemma 3.4. It holds that:

(i) when c > c∗, then

(128) sup
x∈Rn

|U+(t, x)− φ(x1 + ct)| ≤ Ct−
n
2 e−νt, t > 0

with 0 < ν ≤ min{ε1(c1 − c3), d
′(u+)− b′(u+)}

(ii) when c = c∗, then

(129) sup
x∈Rn

|U+(t, x)− φ(x1 + c∗t)| ≤ Ct−
n
2 , t > 0.

Step 2. The convergence of U−(t, x) to φ(x1 + ct)
For any given c ≥ c∗, let ξ1 = x1 + ct, ξ = x+ cte1

(130) v(t, ξ) = φ(x1 + ct)− U−(t, x), v0(s, ξ) = φ(x1 + cs)− U−
0 (s, x).

As in Step 1, we can similarly prove that U−(t, x) converges to φ(x1+ct) as follows.

Lemma 3.5. It holds that:

(i) when c > c∗, then

(131) sup
x∈Rn

|U−(t, x) − φ(x1 + ct)| ≤ Ct−
n
2 e−νt, t > 0

with 0 < ν < min{ε1(c1 − c3), d
′(u+)− b′(u+)};

(ii) when c = c∗, then

(132) sup
x∈Rn

|U−(t, x) − φ(x1 + c∗t)| ≤ Ct−
n
2 , t > 0.

Step 3. The convergence of u(t, x) to φ(x1 + ct)
Finally, we prove that u(t, x) converges to φ(x1 + ct). Since the initial data

satisfy U−
0 (s, x) ≤ u0(s, x) ≤ U+

0 (s, x) for (s, x) ∈ [−τ, 0] × Rn, where τ can be
taken as τ > 0 or τ = 0, then the comparison principle implies that

U−(t, x) ≤ u(t, x) ≤ U+(t, x), (t, x) ∈ R+ ×Rn.

Thanks to Lemmas 3.4 and 3.5, by the squeeze argument, we have the following
convergence results.

Lemma 3.6. It holds that:

(i) when c > c∗, then

(133) sup
x∈Rn

|u(t, x)− φ(x1 + ct)| ≤ Ct−
n
2 e−νt, t > 0

with 0 < ν < min{ε1(c1 − c3), d
′(u+)− b′(u+)};

(ii) when c = c∗, then

(134) sup
x∈Rn

|u(t, x)− φ(x1 + c∗t)| ≤ Ct−
n
2 , t > 0.
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