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In this paper we study the asymptotic behaviour of the solution for a nonconvex relaxation
model. The time decay rates in both the exponential and algebraic forms of the travelling
wave solutions are shown by the weighted energy method. Our results develop and improve
the stability theory in [8,9].

1. Introduction

Relaxation is a phenomenon which occurs in water waves, thermo-nonequilibrium
gases, rarefield gas dynamics, traffic flow, viscoelasticity with memory and magneto-
hydrodynamics. Hyperbolic conservation laws with relaxation also serve as kinetic
models. The relaxation is usually stiff when the relaxation time is much shorter than
the scales of other physical quantities. The 2 x 2 relaxation hyperbolic equations were
first analysed by T.-P. Liu [10] when considering nonlinear stability criteria for diffusion
waves, expansion waves and travelling waves. Since then, there has been much work
carried out on this subject, see [1-4,7-10,12,16] and the references therein.

This paper is concerned with the simplest model of two equations which captures
the basic features of those physical models in the form

vx = 0, xeR1,teR+,

f(u)-v (1.1)

Such a model is included in [3,10], and was also introduced by Jin and Xin [4 ]
for numerical analysis, and studied by H. Liu and Wang, Woo and Yang [8 ,9] as
well as Mascia and Natalini [12] for the stability of travelling waves.

We consider the Cauchy problem of model (1.1) with initial data

(1-2)

where (u0, t;0)(x)->(«+, v+) as x-* +co, (M+,!;+) are the given state constants, and
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1054 Ming Mei and Tong Yang

v+ =/(«+). Here u is some conserved physical quantity, v is some rate variable that
measures the departure of the relaxation from the local equilibrium, 0 < £ « 1 is the
relaxation time and a is a positive constant satisfying

— \fa<f'(u) < y/a, for all u under consideration, (1.3)

which is the subcharacteristic condition introduced by T.-P. Liu [10].
By scaling the variable (x, t) to a new one (ex, et), equation (1.1) is reduced to

+ vx = 0, xeR1,teR + ,
+ aux=f{u)-v.

The behaviour of the solution (u, v) for (1.1) and (1.2) at fixed time as £->0+ is
equivalent to the long-time behaviour of the solution (u,v) in (1.4) and (1.2) as
r->oo, see [7].

The travelling waves, which are the viscous shock waves of (1.4) and (1.2), are the
solutions of (1.4) in the form

Uu, v)(x, t) = (U, V)(x - st) = ([/, V)(z),

\{U,V)(z)->(u±,v±), a s z ^ ± o o ;

s is the propagation speed of waves. The stability and the time decay rates are shown
in [8,9], and the //-stability is given in [12]. Applying the L2-weighted energy method
used in [13], see also [5,6,14], the authors in [8,9] proved that the travelling wave
solutions of strong shocks are stable for both the nondegenerate and degenerate cases,
when a» 1. More precisely, if the initial data (M0, VO)(X) approach a travelling wave
solution (U, V)(x) with a spatial decay rate 0(|x|~a) for any given a>0, then the
solution (u, v) approaches a shifted travelling wave solution (U, V)(x — st + x0) with a
shift constant x0 in the algebraic time decay rate t ~°c+'/, for any rj ^ 0, but rj = 0 only as
a, is an integer, i.e. a = [a], in the case of nondegenerate shock/'(u+) <s< /'(«_); while
the algebraic time decay rate t~(a/2)+'1 for any n>0 even if a = [a], in the case of
degenerate shock f'(u + ) = s <f'(u-). However, the decay rates they obtained are not
optimal. As shown in [17] for the scalar viscous conservation laws, we also expect to
get the algebraic time-decay rates by removing r\ for both the degenerate and non-
degenerate cases. Roughly speaking, the aim of one part of this paper is to improve the
time decay rates as t~a in the case of nondegenerate shock f'(u+) <s< / ' ("-), as well
as t~"/2 for the case of degenerate shock f'(u+) = s < /'(«-), even for noninteger a. The
other part of this paper aims to show the time exponential decay rate e~m for some
constant 9 > 0, when the initial data (u0, vo)(x) approach a travelling wave solution
([/, V)(x) in the spatial decay rate O(e^a|x|) for some given a>0. To prove this, we
make use of the weighted energy method in the first author's work [15] for the single
equation of conservation laws. We also point out that the stability and the time decay
rates hold, when a is large for the strong shock profiles, but without the assumption
that a » 1 for the weak shock profiles.

This paper is organised as follows. After stating some notation below, we give
some preliminaries and main theorems in Section 2. In Section 3, we reformulate
the original problem. Section 4 is the proof of the exponential time decay rate. In
Section 5, we give the proof of the improved algebraic time decay rates. Finally, we
remark on the stability and time-decay rates of the strong detonation travelling
waves for a viscous combustion model in Section 6.
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Convergence rates to travelling waves 1055

NOTATION. L2 denotes the space of measurable functions on R which are square
integrable, with the norm

\\f\\ = (\\f(x)\2dx\.

Hl(l^.O) denotes the Sobolev space of L2-functions f on R whose derivatives d}
xf,

7 = 1 , . . . , / , are also L2-functions, with the norm

I l l -

L2, denotes the space of measurable functions on R which satisfy w(x)*fe L2, where
w(x) > 0 is called a weight function, with the norm

\fL=( [ w(x)\f(x)\2 dxX.

H'w (1^0) denotes the weighted Sobolev space of L2-functions f on R whose
derivatives 8J

xf, j = 1 , . . . , / , are also L2-functions, with the norm

\f\i,w=( £ \djj\2y
\j=o

Denoting <x> = V1 + x2 and

x2, if x ^ 0,

if x < 0,

we will make use of the spaces L2
X>+ and H'<x>+ (/ = 1, 2) later. If w(x) = <x>", we

denote Ll, = L2. The weighted space L2 for such weight function w = <x>"<x>+ is
denoted as L2

<x>+, and the corresponding norm is |-L<X>+. We denote also
f(x)~g(x) as x->x0 when C~xg^f^Cg in a neighbourhood of x0, and
l(/i>/2>/3)lx~ l/ilx + \f2\x + I/3lx> where |-|x is the norm of space X. Without
any ambiguity, we denote several constants by Ch or ch i = l , 2 , . . . , or by C.
When C - 1

 = w(x)^C for xeR, we note that L2 = H° = Ll = Hl and ||-|| =
II • It r^ " I ^ I . I
II I I0 Iw I l0,W*

Let T and B be a positive constant and a Banach space, respectively. We denote
Ck(0, T; B) (k ̂  0) as the space of B-valued fc-times continuously differentiable func-
tions on [0, T], and L2 (0, T; B) as the space of B-valued L2-functions on [0, T\.
The corresponding spaces of B-valued functions on [0, 00) are defined similarly.

2. Preliminaries and main results

The travelling wave solution of system (1.4) is a solution (U, V)(z), (z = x — st),
satisfying equations (1.4) and (17, V)(± 00) = (u+, v+), namely,

'-sUz+Vz = 0,

-sVz + aUz=f(U)-V, (2.1)

[(U,V)(±co) = (u±,v±),
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1056 Ming Mei and Tong Yang

which implies

(a-s2)Uz = f(U)-V. (2.2)

Integrating the first equation of (2.1) over (+ oo, z) and noting (I/, F ) (± oo) = (u+, v+),
as well as v± = / (»+) , yields

-sU+V=-su±+v+ = -su± + /(«+). (2.3)

Substituting (2.3) into (2.1), we have

(a-s2)Uz=f(U)-f(u±)-s(U-u±)=.h(U). (2.4)

From (2.3), we see that the speed s and the state constants (u+,v+) satisfy the
so-called Rankine-Hugoniot condition

v+-v- f(u + )-f(u.)
s = = . (2.5)

M + —M_ M+ —ti-
l t is well known that the ordinary differential equation (2.4) has a solution if and
only if the Oleinik entropy condition

-s(u-u+){<0'
[>0,

h(u) = f(u)-f(u+)-s(u-u+){<0' u+<u-> (2.6)

holds. This entropy condition implies that

/ ' («+)<«</ ' (« - ) (2.7)

or

/'(«+) = s < / ' ( « - ) or /'(« + ) < s =/ ' («- ) or / '(«±) = s. (2.8)

The entropy condition (2.7) is the well-known Lax shock condition. We call it the
nondegenerate shock condition. For each case in (2.8), we call it the degenerate shock
condition, or the contact shock condition. If the viscous shocks (U, V)(x — st) are
degenerate, we restrict ourself to the case

/ '(u+) = s </ '(«_), (2.9)

since other cases in (2.8) can be treated similarly. Furthermore, we assume that for
the case (2.9),

/j(fl)(u + ) = 0 and fc(" + 1)(u+)^0 f o r n ^ l . (2.10)

In this paper, without loss of generality, we focus on the case

Regarding the existence of the travelling wave solutions, by a similar proof in [6]
for the scalar viscous conservation laws, see also [13,14], the existence result is
given in [9] as follows:

PROPOSITION 2.1 [9]. Under Oleinik shock condition (2.6) and the Rankine-Hugoniot
condition (2.5), there exists a travelling wave solution (U,V)(x — st) of (1.4) with
{U, V)(± oo) = («+, v+), unique up to a shift, and the speed satisfies

s2<a. (2.11)
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Convergence rates to travelling waves

Moreover, it holds that

(a-s2)Uz = h(U)<0 foru+<u-

and, as z-» +00,

(\h(U)\~\(U-u±,V-v±)(z)\~exp(-c±\z\), if /'(ii+)<s

\\h(U)\^1+^~\(U-u+,V-v+)(z)\~\z\-^\ iff'(u+) = s

where c±=\f'{u±) — s\/(a-s2)>0.

Denning the following weight functions, cf. [13,15],

(I/-u+)(t/-ii) (C/-U+)*(H_-CO*

1057

(2.12)

(2.13)

h(U)

)
> w 2 ( [ / ) = -

h(U)

for l/e(u+,w_), which are positive due to M + < M _ and h(U)<0, we
properties of the travelling wave solutions (U, V) as follows:

LEMMA 2.2. Let (U, V){x — st) be the travelling wave solution o/(1.4). Then:

as z-> + 00, and

= 0(1)' a — s2

-h(U)(w2h)"(U) = O(l)w2(U), forf'(u+) < s < / ' («_) .

Proof. It is easy to check (2.15) and (wjft)"([/) = 2 by (2.13) and (2.14).
For (2.16) and (2.17), (2.14) and (2.13) give

(w2h)"(U)=-((U-u+)Hu--U)±)"

(2.14)

give the

(2.15)

(2.16)

(2.17)

for /'(«+) < s </'(«-)• This proves (2.17).
We also have, by (2.12),

h(U)

Wi{U)a-s2'

and by (2.4), see also (2.14),

where kt = 1 and k2 = \. Since

0 = fc(«±)
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for some u+ e («+,«_) and |h'(^0l = \f'(U) — s\ ^ C\u+ — u_ |, we can conclude that

h(U)

U-u,

h(U) , h(U)
• + •

U-u+ ' U-u-

^C\u+— w_|, for i= 1,2,

where C > 0 is independent of | u + — u _ | and a. Thus, we show that

fc,
a — s

h(U) h(U) 1

U-u+ -Th'(U) <c
\u+-u-\

a-s2

This completes the proof of Lemma 2.2. •

REMARK 2.3. It is well known that if \u+ — w_ | « 1 or a» 1, then |w,(l/)z/w,(C/)|« 1,
i — 1, 2. This will be used to get the a-priori estimates below.

After assuming
p + oo

(2.18)

(2.19)

the authors in [9] proved the time decay rates to the travelling wave solutions
as follows.

THEOREM 2.4. [9] . Under the assumptions of (1.3), (2.5), (2.6) and (2.18), and letting
a be suitably large:

(i) the casef'(u + ) < s < / ' ( " - ) : suppose that (<p0, iAo)(x) e L2nH2 holds. Then there
exists a positive constant et such that if\(<p0, iAo)L+ ll(̂ o> lAo)ll2<£i> then the system
(1.4) and (1.2) /zas a unique global solution (u, v)(x, t) satisfying

(uo(x) - U(x + x0)) dx = 0,

also letting x0 = 0 for simplicity, and denoting

9>o(x)= I (uo-U)(y)dy, Mx) = {v0-

sup |(II, v)(x, t) - - st)\ ^

(2.20)

/or an_y constant £ ^ 0 and e = 0 on/y as a is integer.
(ii) 77ie case / '(« + ) = s< / ' (u_) : suppose that (q>0,il/0)(x)eL2

<x>+nH2 holds,
where (0 < a < 2/n). Then there exists a positive constant s2 such that if
l(9'o>l/'o)L<x>+ + ll(9>o>1Ao)ll2<e2> then the system (1.4) and (1.2) fcas a unigwe
solution (u, v)(x, t) satisfying

sup |(M, V)(X, t) - (U, V)(x - st)\ ^ C( l + 0~(flt/4>

(2.21)

/or any constant s > 0 whether or not a is an integer.

However, these decay rates in [9] are not optimal. The e in Theorem 2.4 can be
dropped for both the nondegenerate and degenerate cases. The method of proof we
adopt follows from [17] for scalar equations. One of our main results can be stated
as follows:
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Convergence rates to travelling waves 1059

THEOREM 2.5 (algebraic rates). Under the same assumptions as in Theorem 2.4, let a
be suitably large or \u+ — u_| be suitably small. Then the solution (u, v)(x, t) o/(1.4)
and (1.2) satisfies the following:

(i) the case/'(u + ) < s < / ' ( « _ ) :

s u p \(u, v)(x, t) - (U, V)(x - st)\ S C ( l + t ) ~ ^ p
xeR

(2.22)

(ii) the case/'(« + ) = s </ ' (u_) :

sup |(u, V)(X, t)-(U, V)(x-st)\ ^ C(l + t)-^\\{q>0, >Ao)Ux>+ + ||(p0, iMIa)-

(2.23)
On the other hand, when the initial perturbation (<p0, iA0)(

x) n a s a n exponentially
spatial decay rate as x-> ± oo, we will expect that the solution (u, u)(x, t) of (1.4) and
(1.2) converges to the travelling wave solution (U, V)(x — st) at an exponential time
decay rate, too. This is our other aim in the paper. The method of proof we use
is the weighted energy method developed by the first author in [15] for scalar
equations. The exponential time decay is stated in the following theorem:

THEOREM 2.6 (exponential rates). Let a be suitably large or \u+ — u_| be suitably
small. If f'(u + )<s</'(«_) and <p0eH\,2{V), \//0e Hl,2(V), then there exist positive
constants e3 and 6 = 0(\u+ — U-\,a) such that if \(q>o, ^o)l2,w2 =

 e3> then the Cauchy
problem (1.4) and (1.2) has a unique global solution (u, v)(x, t) satisfying

u-Ue C°(0, o o ; ^ 2 ) n L 2 ( 0 , oo; H3
W2),

v-Ue C°(0, oo; H*2)nL2(0, oo; Hl2)

and

sap\(u,v)(x,t)-{U, F)(x-St)|^Ce-("/2|^o,'Ao)l2,w2- (2.24)
xeR

REMARK 2.7. As in [8, 9] , we also need the condition a» 1 for the stability of the
strong viscous shock waves. However, as shown in Theorems 2.5 and 2.6, if the
shock is weaker, i.e. the strength \u+ — M_ | « 1, the condition a» 1 can be dropped.

3. Reformulation of the original problem

Letting (U, V)(z) be the travelling wave solution, and putting

(u,v)(x,t) = (U,V)(z) + ((pz,il/){z,t), z = x-st, (3.1)

we substitute (3.1) into the original problem (1.4) and (1.2), and integrate the first
equation once with respect to z, to yield a new system as follows:

(<Pt -s<pz + ip = O,

>t - S>K + a<pzz = f(U + <pz) - f(U) - >A, (3.2)

The first equation of (3.2) gives \j/= —{q>t — s(pz). Substituting it into the second
equation of (3.2) yields

L{(p) : = {<pt - sq>z\ - s{(pt - sq>z)z - a<pzz + y t + h'(U)<pz = F, (3.3)
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1060 Ming Mei and Tong Yang

where

F=-(f(U + <pz)-f(U)-f'(U)<pz) and |F|=O(1)|^2|. (3.4)

The corresponding initial data for the scalar differential equation (3.3) are

q>{z, 0 ) = (po{z), <pt{z, 0 ) = s<p'0(z) - ^ 0 ( z ) = : <px(z). (3.5)

We now state the theorems corresponding to Theroems 2.5 and 2.6.

THEOREM 3.1 (exponential rates). Under the same assumptions as in Theorem 2.6, if
(poeHl,2iU), ?>i e H2

2(t/), then there exist positive constants e4 and 9 such that if
\9o\3,w2 + \9i\2,w2 =

 e4> then the Cauchy problem (3.3) and (3-5) has a unique global
solution f{z, t) satisfying

<p{z, t) e C°(0, oo; H3
W2)nnL2(0, oo; Hl2)

0>r(z, t) e C°(0, oo; H2
W2)nL2(0, oo; H2

W2)

and

\<P(t)\2
3,W2 + \<Pt(t)\lW2 g Ce-<"(\<p0HW2 + | ^ | | > w a ) . (3.6)

THEOREM 3.2 (algebraic rates). Under the same assumptions as in Theorem 2.6, let a
be suitably large or \u+ —u_| be suitably small. Then the solution (u, v)(x, t) of (1.4)
and (1.2) satisfies the following:

(i) the casef'(u +) < s < f'(u _):

sup \(<p, cpz, <pt)(z, t)\ g C(l + t)-W2)(|(^o, ^o)l. + ll^o, to>)U- (3-7)
zsR

(ii) the casef'(u+) = s < / ' («_) :

sup \(f, <pz, (pz)(z, t)\ < C(l + t)-M*K\(9o, ^0)L<»>+ + \\(<Po, «Ao)ll2)- (3-8)
zeR

4. Exponential time decay rate

In this section, we investigate the exponential time decay rate for the stability
problem of the travelling wave. The local existence and uniqueness of the solution
cp of (3.3) and (3.5) is well known by a standard argument. Our intention in this
section is to establish the a-priori estimate.

Define the solution space of (3.3) and (3.5) as

X.iO, T)= {<peC°(Q, T; Hl2)nL2(0, T; H3
W2), 9t e C^O, T; H2

W2)nL2(0, T; H2
W2)}

and let

Nt(T)= sup {Irit>kw2+-Mt)l2>wa}
ostgr

for T e [ 0 , oo].
Firstly, we have the following lemma:

LEMMA 4.1 (basic energy estimate). For any T>0, let <ps X1(0, T) be a solution of
(3.3) and (3.5), and assume that a»l or \u+ — M _ | « 1 , and (1.3) hold. Then there
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Convergence rates to travelling waves 1061

exists a positive constant 9 dependent on \u+ — M-1 and a such that

ff
JoJo

holds for t e [0, T] provided Nt(T)« 1.

Proof. We multiply (3.3) by 2w2(U)q> to obtain

2w2(U)<p • L(</>) = - 2Fw2(U)<p. (4.2)

By a simple but tedious computation, we have from (4.2)

[w2(U)<p2 + 2w2(U)<p(<p, - s(pz) + s w 2 ( t / ) ^ 2 ] , - 2w2(U){<p, - s<pz)
2

+ 2aw2(U)<p2
z - (W2h)"(U)Uz<p2 + { • • • } , = -2Fw2(U)g>, (4.3)

where we used (a — s2)Uz = h(U); {•••} denotes the terms which will disappear after
integration with respect to z e R.

On the other hand, we multiply (3.3) by 2w2{U)(pt — sq>z) to obtain

2w2(U)(<pt - s<pz) - L(<p) = - 2Fw2(U)(<pt - s<pz), (4.4)

which gives

\aw2<p2
z + w2(<pt - s<pz)

22, + (2w2 + sw2z)(<pt - s(pz)
2

+ saw2z<p2 + 2f'(U)w2<pz(<p, - s<pz) + 2aw2zq>z((pt - scpz)

~ [sw2{(pt - sq>z)
2 + 2aw2q>z{<pt - s<pz) + asw2(/>

2Jz

= -2Fw2{<pt-sfz). (4.5)

Hence, the combination (4.3) x \ + (4.5) yields

{E^if, (<p, - s<pz)) + E3{<pz)}t + E2{<pz, {<pt - sq>z))

(-

where

p + ( p t s p , ) L (4.6)

P, (<Pt ~ s<Pz)) = w2 (<Pt ~ s(Pz? + <P{<Pt ~ sq>z) + - ( 1 + s — I <p2 L (4.7)
L l \ W2 / J

E2(<P, {ft - s(pz)) = w2 I 1 + s — ) {<pt - sq>z)
2

a^) <pz(<pt- s(pz) + a ( l + s^) tf\ (4.8)

(4.9)

(4.10)
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1062

Since

see (2.16),

w2z

w2

we have

-0(1)

Ming M

u+-u^\

a — s2 as a» 1 or \u+ — M _ | » 1,

(4.11)
W2\

for some positive constant ct, and also

for some positive constant c2 provided a»\ or \u+— u_ | « 1 and the fact (1.3)
a>f'(U)2. Thus, the discriminants D, (i = 1, 2) of £, (i = 1, 2) are negative, that is,

( ) ( ^ ) , . C l < ^ (4.13)
2 \ wij \ w2{U)J

and

( ^ ^ ) ( ^ ^ ) ^-4c2<0. (4.14)
w2{U)J

These facts imply that

Ei(<p, (<P, - s<pz)) ^ c3w2(U)(p2 + c4w2(U)(<p, - s<pzf (4.15)

and

E2(<pz, {<pt - s<pz)) ̂  c5w2(U)<p2 + c6 w2(U)(<pt - s<pzf (4.16)

for some positive constants c;, i = 3, 4, 5, 6.
On the other hand, (2.17) gives us that

for some positive constant c7, which implies

E4(<p)^c7w2(U)<p2. (4.17)

Hence, we have by (4.15)-(4.17)

E^v, (<pt - s<pz)) + E3(<pz) k c8(\<p(t)\lW2 + \<pt{t)\2
W2) (4.18)

and

E2{<pz, (<pt - s<p2)) + EM ^ c9(\(p(t)\lW2 + \q>t(t)\l3) (4-19)

for some positive constants c8 and c9.
Integrating (4.6) over [0, t ] x K, and making use of (4.18), (4.19) and
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Convergence rates to travelling waves 1063

we have

cs Jo

(4-20)

Letting O < 0 < c 9 / c 8 and N^(t)<{cg-cg6)lc6C, we obtain (4.1) from (4.20). This
completes the proof of Lemma 4.1. •

LEMMA 4.2. Assume that a » 1 or \u+ — u_ | « 1, and (1.3) /IOWS. Then:

U + l«»ilf.»2) (4-21)
/or J e [0, T] provided N^t)« 1.

Proo/. We first differentiate the equation (3.3) once with respect to z, and multiply
it by 2w2(U)tpz and 2w2(C7) dz{(pt — s(pz) respectively, that is,

2w2(U)g>t • 3M<P) = -2w2(U)(p2Fz (4.22)

and

2w2(U) 3z((pt - s(pz) • dzL(<p) = -2w2(U) dz((pt - s<pz)Fz. (4.23)

Combining (4.22) x^ + (4.23), and integrating it over [0, T] x R and using (4.1)
gives us the desired estimate (4.21) in the same way as in Lemma 4.2. The details
are omitted here. •

In a similar way, differentiating the equation (3.3) twice with respect to z, and
multiplying it by 2w2(U) d\<p and 2w2(U) dz(<pt — sg>z), respectively, we then integrate
it over [0, t] x R and make use of Lemmas 4.1 and 4.2 to obtain the higher derivatives
estimate as follows:

LEMMA 4.3. Assume that a»l or \u+ —u_| « 1, and (1.3) hold. Then:

l,2 + Wi\l,2) (4.24)

for t e [0, T] provided N^t)« 1.

Thus, we have the a-priori estimate as follows:

LEMMA 4.4. Assume that a » 1 or \u+ — u_ | « 1, and (1.3) holds. Then:

W(t)\lW2 + \<P,(t)\lW2 + e [
Jo

(4.25)
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1064 Ming Mei and Tong Yang

and

l?(0li,Wa + \<P,(t)\l,W2 ̂  Ce-e'(\<p0\lW2 + \9l\lW2) (4.26)

for t e [0, T] , provided N^t)« 1.

Proof. Combining Lemmas 4.1-4.3 yields (4.25). Based on (4.25) and by applying
Gronwall's inequality, we can obtain the decay rate (4.26). •

Proof of Theorem 3.1. Applying the method of continuous extension, the a-priori
estimate of Lemma 4.4 together with the local existence result then implies
Theorem 3.1. •

5. Algebraic time decay rates

In this section, we intend to improve the algebraic time decay rates for both the
nondegenerate and degenerate cases in [9 ] , by a method similar to that used in
[17]. We focus here only on the nondegenerate case /'(«+) < s < / ' ( u _ ) , since the
degenerate case / '(«+) = s < / ' («_) can be treated similarly.

Let

_ M++U-
u = e(u+,w_)

and z* be a unique number in R such that U(z*) = u. Denote also

where <(z - z*)/a} = V l +(z-z*)2/a2.
By multiplying (3.3) by 2K(z, t)cp and 2K(z, t){q>t — sq)z), respectively, to give

2K{z,t)cp'L{(p) = 2FK(z,t)q> (5.1)

and

2K(z, t){<pt - s<pt) • Ufp) = 2FK(z, t){q>t - up,), (5.2)

and combining (5.1) x \ + (5.2), the authors in [9] showed the following lemma:

LEMMA 5.1 [9 ] . There is a positive constant es such that

N2(T):= sup \{(p,(pz,(pt)(t)\x<E5.
ts[o,r]

Then it holds that, for t € [0, T],

I
Jo

SCU^,<pz,(pt xy\\<pz(x)\\2dx\

(5.3)
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Convergence rates to travelling waves 1065

for any y ^ 0 and ft e [0, a] , and

\{<p,cpz,<pt){i)\l-y + (ai-y) f
Jo

[ (l + T)ylfa,,P,)(T)l^ydT
Jo

(5.4)

/or y feeing an integer in [0, a] .

If a is integral, then by taking y = a (5.4) gives

tT\\(<p,(Pz,<pt){t)\\2+ f
Jo

which reduces to our desired decay rate.
If a is not integral, then taking ft = 0 in (5.3) yields

(5.5)

Also, taking y = [a] in (5.4) yields

w + (a - [a]) f
Jo

. (5.6)

We are going to estimate the last term in (5.5) by making use of (5.6) and Holder's
inequality:

p(i+tr1ii(9»,?»..p.)(
Jo

f f
Jo J

M>((^, 9»z, ?,)(z, T))2 Y ]

- z*)/a>-<w + 1 - ^ , ^ , ^,)(z, T))2 )̂ '

= P
Jo
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1066 Ming Mei and Tong Yang

•,^^)(0)i2(W+1-a)('
'o

[«]+l-a

(1 + T)
 a y " <it[ • (5-7)

o J

Now putting

y = a + e (5.8)

for any e > 0, a simple computation yields the last integral in (5.7) as

f' [a] + 1 - a

Jo e
^ C ( l + t)£/(M + 1"a)- (5.9)

Applying (5.8), (5.9) and (5.7) to (5.5) gives us

Since

| | ( ^ <pz, q,t)(0)\\ < \(<p, <pz,

we have the following lemma:

LEMMA 5.2. For any e > 0,

p, Vz, <pt)(t)\\
2+ f

Jo

(5.10)
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Convergence rates to travelling waves 1067

namely,

£C\(<p,<p,,<pt)(0)\l (5-11)

Using Lemma 5.2, in a similar way as in Lemma 5.2 we can show the following
estimate. The details are omitted.

LEMMA 5.3. For any e>0,

Jo

<pt)(O)\Z), ' = 1 , 2 . (5.12)

Thus, we can easily prove the a-priori estimate as follows by Lemmas 5.2 and 5.3:

LEMMA 5.4. For any e>0,

+\\g>1\\l + \<Po\l. + \<Px\l)- (5-13)
This lemma implies Theorem 3.2.

6. Remark

The same method can be applied to the study of convergence rates in both algebraic
and exponential forms for the strong detonation travelling waves for a viscous
combustion model

z t = -K<p(u)z,

where q, fi and K are given positive constants. The stability of travelling waves for
this model was studied in [11] and a convergence rate was given in [18].
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