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1. Introduction

Hydrodynamic models are usually used in the description of the charged fluid particles such as
electrons and holes in semiconductor devices and positively and negatively charged ions in plasma
[2,16,23,31], and are presented as Euler-Poisson equations. For unipolar hydrodynamic model, the
studies on the existence of solutions and their large time behavior as well as relaxation-time limit
have been extensively carried out, for example, see [1,3-6,8,9,14,15,17-20,22,24,27,29,30,33,34] and
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the references therein. However, for the bipolar hydrodynamic models, the related research on this
topic now becomes more and more attractive [7,10-13,26,28,32], but, due to complexity and difficulty
of the system itself, the research is still little and quite incomplete.

In this paper, continuing our recent studies in [12,13,26], we consider the 1-D bipolar hydro-
dynamic model of semiconductor devices, the Euler-Poisson system with the physically relevant
assumptions of non-flat doping profile and two different pressure functions:

ne+ Jx=0,
]2
Je+ (— +p(n)> =nk -],
n X
he + Kx =0, (11)
KZ
K¢ + (— +q(h)> =—hE - K,
h X

Ex=n—h— D),

with the initial-value condition

n(x,0) =ng(x) > ny asx— Foo,

h(x,0) =hg(x) — h4 asx— +oo,

J(x,0)= Jo(x) > J+ asx— Fo0, (1.2)
K(x,0) =Ko(x) > K+ asx— Foo,
E(—oo,t) = E_.

Here, n=n(x,t) >0, h=h(x,t) >0, ] = J(x,t) and K = K(x, t) represent the density of electrons, the
density of holes, the current of electrons, and the current of holes, respectively, and E = E(x, t) is the
electrical field. The nonlinear functions p(n) and q(h) denote the pressures of the electrons and the
holes, respectively, which are usually different (more physical case) and satisfy:

p.q€ C3(0,+00), with szp’(s) > 0 and szq’(s) > 0 strictly increasing for s > 0. (1.3)

D(x) # 0 is the doping profile standing for the density of impurities in semiconductor devices. ny,
hy, J+, K+ and E_ are the state constants for the quantities at far fields.

In the special case, when the doping profile is completely flat D(x) = 0 (the flat doping profile
means |D’(x)| < 1), the two pressure functions are completely identical p(s) = q(s), and E_ =0, the
system (1.1) reduces to

ne + JX = 07
]2
Je+ <7+P(n)> =nE—J,
ht + Kx =0, (1.4)

K2
Ki+(—+pkh) ) =—hE—-K,
h X

Ex=n—h,

and the asymptotic behavior of the solution was intensively studied in [7,11-13]. All these previous
studies consider the diffusion waves as the asymptotic profiles for the original solutions. Here, the
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so-called diffusion waves for (1.4) are the self-similar solutions to the corresponding porous media
equations

T__lt =p(M)xx,
J =_—p(n)x,_ ) (15)
(ﬁ,J)Z(ﬁ,])<\/1__H)—>(ni,0) as x — Foo.

In the switch-off case (the device has no global voltage, i.e., E(—o0,t) — E(+00,t) = 0) but a pio-
neering work on the study of asymptotic behavior of solutions to the bipolar semiconductor model,
Gasser, Hsiao and Li [7] first proved that the smooth solutions of the initial-value problem to the
bipolar hydrodynamic system (1.4) converge to the diffusion waves (1.5), precisely,

sup|(n, J,h, K, E)(x,t) — (i, ], 7, ] 0)<L)‘ =0 (77,74, t74, 77, e70)  (16)
xerR| T TNV F e

for the initial-perturbation in the sense of L%, while

sup
XER

(n,],h,K,E)(x,t)—(ﬁ,],ﬁ,],O)(\/lx_H)‘:O(])(t’l,t’%,t’],t’%,e"’ot) (1.7)

for the initial perturbation in L!-sense. See also the corresponding convergence in weak sense in [11].
For the switch-on case, there exist some L%-gaps between the original solutions and the corresponding
diffusion waves at far field x = o0, and for this reason the convergence to the diffusion waves was
an open problem for many years. By heuristically analyzing what are those exact gaps, Huang, Mei
and Wang [12] technically constructed some correction functions to fill in the L%-gaps and proved
the L°°-convergence (1.6) and (1.7) by the energy method. Furthermore, in [13] they obtained the
L°°-stability of diffusion waves to the case with boundary effect.

When the two pressure functions are different, p(s) # q(s), both densities of electrons and holes,
n(x,t) and h(x, t), should have different asymptotic profiles, so do the currents of electrons and holes,
J(x,t) and K(x,t), and when D(x) # 0 is non-flat, and E_ # 0, thus, O will not be the asymptotic
profile for the electrical field E(x,t). Based on such an observation, obviously the above-mentioned
diffusion waves (i, J, 7, J,0)(x/+/1+t) are no longer the asymptotic profiles of the original solutions
(n, J,h, K, E)(x,t). A natural but important question is what will be the really asymptotic profiles
for the system (1.1) and (1.2) in this really physical case, and how to derive the optimal convergence
rates. These will be the main targets considered in the present paper.

Inspired by the study on unipolar hydrodynamic model, and by the variable scaling method, as we
pointed out in [26] for the bounded domain case, the better asymptotic profiles for the system (1.1)
should be its corresponding steady-state system

\7){ :O’

72
(V +p(N)>X=N5 -J.
’CXZO,

IC2
(ﬁ + q(?—l))x =—-HE-K,
Ex=N—H—D(x),
W, H)(Fo0) = (n+, hy),
E(—o0)=E_.
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These steady-state solutions are also called stationary waves. In this paper, when the flow is fully
subsonic, even if the system is in the switch-on case (global voltage exists in the device, i.e.,
E(—o00,t) # E(+00,t)) and the case of p(s) #q(s), |ID'(x)] € 1 and E_ # 0, we will prove that the
solutions (n, J,h, K, E)(x,t) of the system (1.1) and (1.2) are unique, exist globally and converge to
the stationary waves (N, 7, H, K, £)(x) time-algebraically in the form of

3 5 3 5 3
sup|(n, J,h, K, E)(x,t) — (W, T H, K, E)(x)| = 0(1) (73,74, 74, t74,t74)
XeR

for the initial-perturbation in the sense of L2. In order to get such optimal decay rates in the sense of
L? initial perturbation, here we have to face two technical difficulties:

i) p(s) #q(s). Indeed when p(s) =q(s), D(x) =0 and E_ =0, after perturbation around the diffu-
sion waves, the main working equation for the perturbation of the electrical field function derived in
[7,12] is the single Klein-Gordon equation

Xee + Xt — (P/(ﬁ)Xx)x +2nx =f,

which can be standardly proved to be time-exponentially decaying. While, when p(s) # q(s), D(x) #0
and E_ # 0, the governing equations are the strongly coupled system of damped wave equations
(see (4.1))

b+ — (P N)gx), +Nx = f,
Ve + e — (@ (H)n)  + Hx = 8.
X=0—-1,

which will be more complicated and more difficult to treat than the single Klein-Gordon equation.
In fact, this system possesses only algebraic decay (see also the special case of constant equilibria
studied in [21]);

ii) Different from the bounded domain case studied in our previous work [26], where we can
establish the Poincaré inequality which then guarantees an exponential decay for the solution, here
we can obtain only algebraic decay rates, and to get the desired energy estimates is more technical
than the case of bounded domain (see Lemma 4.3 and Lemma 4.4 later).

The paper is organized as follows. In Section 2, we first investigate the corresponding steady-state
equations, and prove the unique existence of the steady-state solutions (called also stationary waves).
In Section 3, we analyze what are the exact L°°-gaps between the original solutions and the stationary
waves at far fields x = 00, and use the technique we recently developed in [12] to construct some
correction functions to delete those gaps, such that the perturbation around the stationary waves
filling with these correction functions are in L2(R), then we state our convergence theorem. Finally,
in Section 4, we give the proof of convergence theorem. Here the crucial step is to establish the a
priori energy estimates with some new development.

At the end of this section, we introduce some notations. Throughout this paper, the sta-
tionary waves are denoted by (N, J,H,K,&)(x), and the correction functions are denoted by
@, ],fl,f(, IA:‘)(x, t). Co, Cj, etc. always denote some specific positive constants, and C denotes the
generic positive constant. L?(R) is the space of square integrable real valued functions defined on R
with the norm | - ||, and H¥(R) (H¥ without any ambiguity) denotes the usual Sobolev space with the
norm || - ||k, especially | - |lo = - ||. We also denote

|1 o ) P = AR+ 122 4+ 1 2.

Let T > 0 be a number and B be a Banach space. We denote by C9([0, T1, B) the space of the B-valued
continuous functions on [0, T], L2([0, T], B) as the space of the B-valued L2-functions on [0, T]. The
corresponding spaces of the B-valued functions on [0, co) are defined similarly.
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2. Stationary waves

In this section, we investigate the existence of stationary solutions to the 1-D steady-state equa-
tions of (1.1), namely, the following system of equations

Jx=0,

j2
(W +p(N))X=N£—J,
’Cx :0,

K2 B (2.1)
(7 + q(’H))X =-HE-K,
Ex=N—H—-D®X),

W, H)(Fo0) = (n+, hy),
E(—o0)=E_.
Let
E(Hoo)=E,.

Since we expect Ny(£oo) =0, Hy(Foo) =0 and Ey(Foo) =0, from (2.1) and (1.2) we immediately
obtain

J=ntEx, K=—-hiEs, Dy :=D(£o0) =nt —hyg, (2.2)

which implies the following compatibility conditions that we need to assume throughout this paper

E.— n_E_ h_E_
L n+ - h+
Denote
D* =sup D(x), D, = inf D(x). (2.3)
xeR xeR

We also assume that the doping profile satisfies
D(x) e C°(R), and |D(x)—D+|< O0(1)|D* — Dy|e” ™™ asx— +oo, (2.4)
where 7+ > 0 are two constants. Dividing the second and the fourth equation of (2.1) by A/ and H

and differentiating them with respect to x, and substituting (2.1)s to the resultant equations, respec-
tively, we have

Py J? B Nx
(757 -3 )6), = b 9

qH) K 3 Hy (2.5)
(( - —@>HX>X_H—N+D()<)+KH—,
WV, H)(£00) = (n4, hy).

In order to keep the ellipticity of the system (2.5), we need
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2
P(N) '7 >0 — N2p' V) > T2,

ICZ
—q '‘H)——5>0 < HqH)>K

which imply that the velocities of electrons and holes must satisfy

K
U, V)| = ‘(% ﬁ)‘ <|(VPWN), V@ (H) )| =:c(N,H) (the speed of sound),

namely, the system describes a fully subsonic flow. Since both s?p’(s) and s2q'(s) are increasing for
s > 0 (see (1.3)), we can conclude that there are minima values n,, h, > 0 such that

s°p'(s) > J% fors>n,, and s°¢'(s)>K? fors> h,.

So, in order to keep the system to be uniformly elliptic, or equivalently, the flow to be fully subsonic,
we need to restrict

N4 > Ny, hi > h*. (2.6)

Now we prove existence and uniqueness of stationary solutions to (2.1), even for the non-flat
doping profile D(x), namely we may allow D’(x) to be large.

Theorem 2.1 (Existence and uniqueness of stationary waves). Assume that (1.3), (2.4) and (2.6) hold. There
exists a constant 8o > 0, such that when

0= Iy —n_|+ |hy —h_| +|E4| +|E_| +|D* — D.| < o, 2.7)

then the system (2.1) possesses a unique classical solution (N, 7, H, IC, £) (x) which satisfies

N(x)>n, and HX)>h, forallxeR, (2.8)

jZ ICZ
p’N) — i 0, qMH) - 2 0 (uniform ellipticity), (2.9)
INx) —n_| +|H® —h_| +|Ex) — E_| < Cne™ "™ forx <0, (2.10)
IN(x) —ny| +|HE&) —hy| +|Ex) — Ex| < Cne™ ¥ forx >0, (211)
INK ()| + | Ha ()| + |Ex®)| < Cne™ ™™ forx <0, (2.12)
NG| + [Hx ()| + € (0| < Cne™™ X forx >0, (213)

where ny are defined in (2.4).
Proof. Define the solution space by
X={(mh,&)®) |n heeC'(R)withn>n,and h > h,}

equipped with the norm
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[(n.h. o), = sip e —n_| + [h(x) —h_| + |e(x) —

xeR4

+ sup e M|y ()] + [hx )| + ex®) |}
xeR_

+ sup ™M |ny ()] + [he®)] + |ex®)|}.

xeR

Notice that (2.1) is equivalent to

J =n+E4,

(p W) ) J
N A3 N’

K=-htE4,

(e

Ex=N—H—-D®Xx),
W, H)(Fo0) = (n+, hy),
E(—o0) =

Letting (n, h, €) € X, one has

In(x) —n_| <Oy —n_le” ¥ forx <0,
In(x) —ny| <Oy —n_le” ¥ forx >0,
|h(x) —h_| < O()|hy —h_|e”-" forx <0,
|h(x) —ny| < O)|hy —h_le” ™™ forx >0,
le®) —E_| <OM)|E4+ —E_le”"- ¥ forx<o0,
le(®) — E+| <OM)|E4 — E_le”™ X forx > 0.

Now we linearize Eqs. (2.14) around (n, h, €) € X as follows

PN =& — %

QW= .
Ex=n—h—D(®X),

W, H)(£o0) = (N4, h),
E(—o0)=E_,

where P(s) and Q(s) are the positive and increasing functions defined by

p's) T2 , q@s) K

P(s) = -3 >0, Q' (s) = e

> 0.

E-|}

+ sup e M |n(x) —ny |+ [h(x) — hy| + o) —

Eil}

(2.14)
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We can write

Ny = (8 - %)/P'(n),

K\, o
Hy = (—8 - E)/Q (),

Ex=n—h—D(x),
W, H)(F£o0) = (nx, hy),
E(—o0)=E_,

(2.15)

which defines the operator P(n, h, ) as follows
P(n,h,e) =N, H,E).

Let us integrate (2.15); over (—oo, X] for x < 0. Note that 7 =n_E_, P’(n) > C; > 0 with n > n, and
Q/(h) > C; > 0 with h > h, for some positive constants C; and C,. Let n, & € X, then we obtain

X

/ (s(y) - %)/P/(n(y))dy

—00

N@x) —n_|=

X

f ((8()’) —E_ ) - (ij) - %))/P’(n(y))dy

—0o0

X

<C / [le) — E-|+|n(y) —n_|]dy

X

<C / [IE4 — E_|+ Iny —n_|]e"-Wldy

—00

<C[IEx —E_|+Iny —n_[]e”™ M, forx<o0. (2.16)

On the other hand, integrating (2.15); over [x,o00) for x > 0, and noting that J =nyE, we can
similarly obtain

Iny =N @| < C[IE4 — E_| +Inp —n_|]e”™ X forx>0.
In the same fashion, we can also prove

|Hx) —h_| < C[|E4+ — E_|+ |hy —h_|]e”"-¥, forx <0,

|hy —H®)| < C[|E+ — E_| + |hy —h_|]e”™ X, forx>0.

Integrating (2.15)3 over (—oo, x] with x <0, and noting that D_ =n_ — h_ (see (2.2)), we have
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X

/ [n(y) —h(y) — D(y)]dy

—00

) —E_| =

X

f [(n(y) —n_) — (h(y) —h_) — (D(y) — D_)]dy

—00

X
<C / [|”+ —n_|+|hy —h_|+ |D* - D*|]e_’7*|J’|dy

—00

<C[Iny —n_|+|hy —h_|+ |D* = D,|]e""M, forx<o0.
Integrating (2.15)3 over [x, co) with x > 0, and noting that D, =n, — hy, we further have
|Ex —£0)| < C[Ing —n_| + |hy —h_| + |D* — D,|]e™ "X forx <o0.

Similarly, estimating Eqs. (2.15) directly, we can prove

IVl < C(IE4 — E_| +Iny —n_[)e " * forx <0, (217)
Il < C(IE+ — E_| + |ny —n_[)e" ™™ forx >0, (2.18)
|Hxl < C(IE4+ — E_| + |hy —h_|)e” ¥ forx <0, (219)
|Hxl < C(IE+ — E_| + |hy —h_|)e”"** forx >0, (2.20)
|&x| < C(Ingy —n_| + |hy —h_| +|D* = D,|)e™ " forx <0, (2.21)
&l <C(Iny —n_|+|hy —h_|+ |D* = D, [)e "+ forx > 0. 222
1€ < C(Iny |+ lhy |+ | * (2.22)

Combining (2.16)-(2.22), we then get
[N, 8| <Ca(Iny —n_|+|hy —h_|+|Ex — E_| +|D* — D,J)

for some positive constant C3, and

N >min{n_ — 0()(IE4 — E_| + Iny —n_[)e” =",
ny — O (|E4 — E_| + Iny —n_[)e" "X}
>n, (see(2.6))
H(x) > min{h_ — 0(1)(|E4+ — E_| + |hy —h_|)e” =",
hy — O()(|E4 — E_| + |hy —h_[)e" !}
>h, (see(2.6))
provided with |ny —n_|+|hy —h_|+|Ey —E_|+|D* — D,| < 1.

Thus, we have proved that (N, H, £)(x) is uniformly bounded in X, and we can prove, with the
same arguments, that the following iteration

(N(l)’ 'H(’), 5(1)) — p(N(l*U’ H(I*U’ 5(1*1))’ I>1
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defines a Cauchy sequence, where (V@ H©® £©@)(x) is selected in X. Therefore, there exists a sub-
sequence, still denoted as (N, 1D, D), such that

lim (WO, 1D, eD)= (W, #H,8), and WV, H,E) =PWN,H,E),

I—>+00

namely, (N, H, &) is the solution of (2.1).
Next, we prove the uniqueness of the solution. In fact, let (N, H;, &) € X for i =1,2 be two
solutions of (2.1), or equivalently, of (2.5), which can be also written as

1
(PR, = Ni — Hi — D) — J(A—/i>x,

i=1,2.
(Q(H)) = Hi = Ni + D(x) — K(,Hi) !

(Vi Hi)(£00) = (n+, hy),

Considering the difference of A7 — N3 and Hq — H,, we have

1 1
(POND) = PND)) o = (N7 = N2) — (M1 — Ha) — J(A—G _ M)

1 1 (2.23)
(Q(H1) — Q(H2)) = (M1 — Ha) — Wi — Np) — K(H_l _ H_z)

N1 = N2, Hi — Ha)(£o0) = (0,0).
Taking
[(@23)1- 1 = N+ 2231 (1~ 1)),
R
and integrating it by parts, we obtain

/ (PN — P(N2)) (N7 — Na)xdx+ / (Q(H1) — Q(H2)) (M1 — Ha)xdx
R R

+/((N1 —N2) — (Ha —7'12))2 dx

R
—j/<l 1)(/\/ MNo)xd /C[(l l)(?—l Ha)xd (2.24)
=- /\_/1_/72 1 —/N2)xdx — 7'[_1_7'[_2 1 — ri2)x dX. .
R R

Notice that, by the Holder inequality,

/(P(Nl) —P(N2)), (N1 — Np)xdx

R

2/7’/(/\/'1)|(/\/1 —Nz)x|2dx+/(7”(/\/'1)—P’(Nz))/\fzx(/\ﬁ — N2)xdx
R R
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> C1[Nix — Naxll? = 0 () [Naxlloo N7 — N2l IN1x — Nl

> C1llNix = Naxll® = 0 (D INT = N2l [M1x = Naxll, (2.25)
and

/(Q(’Hl) — Q(H2)),(H1 — Ha)xdx

R
> CollHax — Haxll® — 0 ()l H1 — HalllIH1x — Haxll, (2.26)

where [Nox| <C(ny —n_|+|hy —h_|+|E4|+|E_|+|D* — D.|) = Cn (see (2.17)-(2.22)). Notice also
that

1 1
)g[(_ _ —)w] — Na)edx| < OCONING — N[Ny — Al (227)
N TN
R
1 1
’ic / (— - —)(w — Ha)edx| < O(ONIHT — Hall[H1x — Haxll, (2.28)
H1  Hy
R

where we used | J|=|ntE41| < C|EL| <Cnand |K|=|hEs| <Cn.
By using the estimates (2.25)-(2.28) in (2.24), we prove

IN1x = Naxll + [ Hax — Haxll < OO (N — N2l + I H1 — Hall). (2.29)

Thus, by the Sobolev inequality || f |z < ~/2|l fllll fxll, and using (2.29), we then have

V1 = Nallree + [[H1 — Ha L
<V2(IN1 = NallIN1x — Noxll + [1H1 — HalllHax — Haxll)
<OMN(INT = Nall? + 111 — Ha %)
<OMN(ING = Mallree IV = N2l + 1Ha — Hallee 1Ha — Hallp)
<OMN(INT = Ml + [H1 — Hallre).

Here we used the fact (see (2.10)-(2.11))

0
VT = N2l + I1Hy — Hallp < /(IM —n_|+ N2 —=n_| +|H1 —h_| 4 [H2 —h_]|)dx

—00

+ [ (IM = ngl+ N2 —ng | + [H1 —hy| + [Ho — hyl)dx

/A
N

Therefore, we prove

(1= 0(Mn)(IM — Nzl + [H1 — Halli=) <O.
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which implies

N1 =N, Hi=Ho,

provided n « 1. The proof is complete. O

Remark 2.2. In Theorem 2.1, we proved the existence and uniqueness of the stationary solution for a
non-flat doping profile D(x) (the physical case). However we need it to decay exponentially to Dy at
far fields x = +o0. But such a requirement is not necessary when D(x) is almost flat. In fact, if D(x)
is almost flat, namely,

pwl<t [ Ipw-p-fdy+ [Iow)-Dildy <1,

then, with a similar calculation in [22], the existence and uniqueness of the stationary solution can
be obtained without the assumption of exponential decay of D(x) to D+ as x — +oo.

3. Convergence to stationary waves

In this section, we are going to state our main results, that is, the 1-D solutions (n, J, h, K, E)(x, t)
of the bipolar hydrodynamic model (1.1) and (1.2) globally exist, and converge to the steady-state
solutions (N, 7, H, K, £)(x) of (2.1) time-algebraically.

3.1. Heuristic analysis at far fields

First of all, let us investigate the behavior of the solutions to (1.1) and (1.2) at far fields x = F-o00,
and see what will be the exact gaps between the original solutions and the corresponding steady-state
solutions. Set

(n®, JE, hE K= EX)(©) := (n, ], h, K, E)(£o0, D).

As shown in [12] (initially inspired by [25]), by solving the corresponding ordinary differential equa-
tions of (1.1) as x — +o0:

d + . +
—nT(@t)=0, ie, t) =ny,
dtn () ie, n—(t)=nt

d .. top gt
EJ O =nLE=() — J7O),

d
G O=0. e, hF©=hs. (31)

%Ki(t) = —h EE(@®) — K* (),

(n®, JE hE K5)(0) = (ns, Jo, he, Ko,
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we have
t
JE@E) = Jee ! +ni/e*<f*5>5i(s)ds,
0
. (3.2)
KE(t)=Kyee ' —hy / e~ EE(s)ds.
0
Since
E~(t)=E (—oo,t)=E_, (3.3)
we quickly obtain from (3.2) that
“t)=n_E_+(J_ —n_E_)e ",
J ® J ) (3.4)
K~ (t)=—h_E_+ (K- +h_E_)e™".
Integrating (1.1)s5 over (—oo, +00) with respect to x, and noting (3.3), we get
o
EtY(t)—E_= / [n(x,t) — h(x,t) — D(x)] dx.
—0
Setting t = 0 in the above equation, we derive the initial condition for E*(t) as
o
EY(0)=E_+ / [no(x) — ho(x) — D(x)]dx := Eqq. (3.5)
—00

On the other hand, differentiating (1.1); with respect to t and using (1.1); and (1.1)3, we have
Ex=(n—h—-DX),=—(J — K.

Integrating it over (—oo, 0o) with respect to x, and noting %E*(t) = (E_) =0 (see (3.3)), we further
have

d
GErO=-[I"O-K'0]l+[]" 0 -k ©] (3.6)
which is equivalent, by using (3.4), to

JTt) =K+ (@t) = —%E*(t) + M- +h)E_+[(J-—n_E_)—(K_+h_E_)]e”". (3.7)

Taking t =0 in (3.6), we get the initial condition for %EJf(t) as follows

d +
GETO| =l — K+ -~ K= Eon. (38)
t=0
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Subtracting (3.1)4 from (3.1); for index “+”, we get
droy + + + +
7O =K O] =0 +h)ETO - [JTO - KT O] (3.9)

Substituting (3.7) to (3.9), and noting n.Ey =n_E_ and hyEy = h_E_, and applying the initial
conditions (3.5) and (3.8), we obtain the following ODE

d? d
T3 —ET(@®) + E+(f) + (4 +h)ET () = (g +hy)Ey,
(3.10)
EY|._,=Eo L = Eqy.
t=0 dt =0
Solving (3.10), we have
E, + Are M1t 4 Aje22t, forng +hy < %,
ET(t) = E++A3e_%t+A4te_%t, for ny +h+:%, (3.11)

E, + Ase 2t cos A3t + Age_%t sinist, forny +h, > %,

where

1—-1—-4(n h 1

A= (e + +), forny +hy < —,

2 4

1+1—-4n h 1

Ay = + (s + +), forny +hy < -,

2 4

JVamn hy)—1

)\’3=&7 forn++h+>_!

2 4
Ar2(Eo1 — E4) + Eo2 A1(Eor —E4+) + Eo2
A= , Ay = ,

A2 — M Al — A2

1
A3 =Eo1 — Ey, A4=502+5(Eo1 —E),
1
As =Eo1 — E4, Ag = Eoz+§(501 —E4) ) /As.
Substituting (3.11) to (3.2), we can solve for J*(t) and KT (t) as

n+E+ + (J+ _ n+E+)e—t + n+A1 (e—)qt —t) + n+A2 (e—)»zt e—t)’
forny +hy < Z’

NeEq + (Jo —niE)e™t +2ny As(e 2t —et) + 2ny Ag(te 2t — 2e 7t + 2e71),

_1
JHt) = forny +hy =g,
nyEr+(Jy —neEp)e t+ 1'1?5 (2e*2 cosAst —2e~F +2x3e” 2 tsin A3t)
+ ”+A62 (2e‘%tsinA3t —4)3e”2 coskgt +4xrze™h),
1+423

forny +hy > 1,
(3.12)
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and

—hyE + (Ky +hiEp)e™" — ’}t—ﬁ;(e*“ —e )~ ’}t—’}j(e*“f —e™h,

forny +hy < }l,
hyEy 4+ (Ko +hyEp)e~ — 2hy As(e 2t — e~t) — 2hy Ag(te™ 2% — 2e~ 20 4 2e7 ),
K+(t) _ for ny + h+ = éll’

—hyEy+ (Kp+hiEp)et — %(Ze‘%t cos st — 2e~t + 2132  sin Ast)
3
h+ A (2e*%t sinAst — 4)L3e*%t cos A3t + 4rze™"),

1+422

forny +hy > 1.

(3.13)
Summarizing (3.4) and (3.11)-(3.13), we have
[n(xo0,t) —n+| =0,
|h(£o0,t) —h£|=0,
| J(4+00,t) —nyE4| = 0(1)e™ ™",
—oo,t) —n_E_|=0(1)e™",
|J( ) | ) (3.14)

|K(+00,t) — (—hyE4)| = 0(1)e™ ™",
|K(—00,t) — (~h_E_)| = 0(1)e™",
|E(+00,t) — E4| = 0(1)e ™",
|E(—00,t) — E_| =0,

1

for some constant 0 < vg < 5.

3.2. Correction functions

From (2.1)-(2.2) and (3.14), now it is well-known that the difference between the original solutions
(n, J,h, K, E)(x,t) and the stationary solutions (N, 7, H, KC, £)(x) at far fields x = oo is
[n(Fo0, t) — N'(xo0)| =0,
|h(£o0, t) — H(£o0)| =0,
|J(+00,t) = J| = 0(1)e™"" #£0,
|J(=o0,t) = T|=0(1)e " #0,
|K(+00,t) — K| = 0(1)e " £0,
|K(—o00,t) —K|=0(1)e" #0,
|E(+00,t) — E(+00)| = 0 (1)e 0" £0,
|E(—o0,t) — £(—00)| = 0.

Clearly, there are some gaps for | — 7, K — K and E — &, which, indeed, are essentially caused by the
switch-on condition E4y — E_ # 0, such that

J—J, K—K, E—E¢L*R).
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Thus, the usual L?-energy method cannot be applied in this case to prove the stability of stationary
waves in L%-sense. In order to delete these gaps, we need to technically construct some correction

functions. Inspired by [12], we select the correction functions (f, ] fl, K, E)(x,t) such that

ﬁf + ]X = 07
Je=nE—],
hy + Ky =0,
K=—-hE —K,
Ex=h—h,
nkx,t) —0 as x — o0, (3.15)
Jxt)y—> JFO)—T asx— Foo,
h(x,t) >0 as x — Foo,
Kx,t) > KT(t)— K asx— +oo,
E(x,t)—>0 asx — —o00,
E(x,t) > EY(t) — E, asx— +oo,
where fi(x) and Fl(x) are selected as
x+2Lg
A(x)=n_+(ny —n-) / mo(y)dy
—00
and
x+2Lg
hoo=h_+ (s —h ) / mo(y) dy
—00

and mg(x) is selected as

mo(x) >0,  mg e C5°(R), suppmg < [—Lo, Lol, /mo(y) dy =1,
R

with some constant Ly > 0, and the initial data fi(x, 0), fl(x, 0), ](x, 0), IA<(x, 0) and f:"(x, 0) are chosen
as follows

fi(x, 0) = mo(x) / [no(x) — N'(x)] dx =: figmo (%),

—00

h(x, 0) = mo(x) f [ho(x) — H(x)] dx =: homo (%),

Jx 0 =[J"©@ - T]+[Jt 0 - ]~ (0] / mo(y)dy.

—00
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X

K(x,0)=[K(0) — K]+ [KT(0) — K~ (0)] / mo(y)dy,

—0o0

X

Ex,00=[ET(0) — E4] f mo(y) dy.

-0
Here, from (3.15)s, the following compatibility condition
Ex(x,0) =fi(x,0) — h(x,0)

holds. In fact, from (3.16) and (3.5), we have

Ex(x,0) = [E*(0) — E4Jmo(x)

[10(0) — ho(x) — D(X)]dx — (E4 — E)>m0(x)

oo

[no(x) —ho(x) — D(x)]dx — / Ex dx) mo(x)

oo

—00

é\g é\g é\g é\g

) — h(x, 0).

(=}

nx,

[no(x) —ho(x) — D(x)]dx — / [N(x) —H(x) — D] dx) mo(x)

[no(x) — N'(x)]dx — / [ho(x) — H(x)] dx)mo(x)

(3.16)

In the same fashion as in [12] but with a tedious computation, we can solve (more precisely saying,

we construct) the above correction functions as follows

t

Ax, ) = <ﬁo + f =) = J7 )] ds)mooo —: fi(Omo(x),

0

X

](X,f)Zlf(t)—JJr[JJr(f)—J*(t)]/mo(Y)dy,

—0o0

t
h(x,t) = <fz0 + / [K=(s) — KT (s)] ds) mo(x) =: k(t)mo (x),
0
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X

Kx.0=K () —K+[KT(©®) — K™ (0] / mo(y)dy,

X

Ex.0)=[E*(©) - E4] / mo(y) dy.

—00

where fi(t) and h(t) are the main part of antiderivatives (with zero constant terms) of J~(t) — J*(¢)
and K~ (t) — KT (¢), respectively, and based on (3.4), (3.12) and (3.13), it holds

i@ < ce™™,  |h(@)| < Ce "

for 0 < vy < %
On the other hand, noting (1.1)1, (2.1); and (3.15)y, i.e.,

=N —f)y=—(—T - D

after integrating it over (—oo, co) with respect to x, we have
d [ . -
m / [n(x,t) =N X =i, 0)]dx=—( =T = D|,__ =0,
which implies
/ [n(x.t) =N (x) —fi(x, t) ] dx = / [no(x) — N'(x) — fi(x, 0)] dx = 0.
Similarly, we also have
/ [h(x, ) — HXx) — h(x, )] dx = / [ho(x) — H(x) — h(x, 0)]dx = 0.

Summarizing what we have obtained before, we have the following lemma.

Lemma 3.1. It holds that

@, ], 1, R EYO) | oy < Coe™" (317)
and
suppfi = supp h = suppmo < [—Lo, Lo] (3.18)

foro =]+ |J-|+IE_|+|E4|and 0 < vo < 5.
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Furthermore, it can be verified

o0

/[n(x, ) — A, 1) — N ]dx= /

[no(x) —f(x,0) — N'(x)]dx =0,

o0

/ [h(x, ) —h(x,t) — HE0 Jdx = | [ho(x) — h(x,0) — H(x)]dx =0,

J(£00, ) = J(£00,t) — T =0,
K(£o00,t) — K(+o0,t) — K =0,
E(do00,t) — E(£o0,t) — £(+00) =0.

3.3. Convergence theorems

Now we are going to make the perturbation of (1.1) to the steady-state equations (2.1) corrected
by (3.15):

=N =)+ —T—Dx=0,

- Ve L .
(]—J—J)z+<7—ﬁ+p(n)—p(1\f)> =nE-NE—-RE—-(J-T -],
(h—H—h)y+K—K—K)x=0, (3.19)

. K2 K2 o .
(K—K—-K)+ (T T +qn) —q(’H)) =—(hE —HE —hE)— (K - K = K),

(E—E—Eyx=m—-N—f)—(h—H—h).

Let

p(x.t) = /[n(y,t)—N(y)—ﬁ(y,t)]dy,
Y(x, ) = / [h(y,t) — H(y) — h(y,)]dy,
O(x, )= J(x,0) = T — J(x,0),

D, t):=K(x, t) — K — K(x,t),
x(x,t):=Ex,t) — Ex) — Ex, ),

Po(x) := f [no(y) = N(y) —i(y,0)]dy,
Yo(x) == / [ho(y) — H(y) — h(y,0)]dy,
o(x) := Jo(x) — T — ] (x,0),

Bo(x) := Ko(x) — K — K (x, 0).
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Then (3.19) is reduced to

¢ +0=0,
9t+(p/(N)¢x)x=NX — 0 — F1x — Fox + F3,
Ip‘t“—ﬁ:Ov
, (3.20)
Ot + (4 F) ), = —Hx = — Gix — Gax + G3,
X :(p_w’
(¢,1//,9,ﬁ)|t=0=(¢0, Yo, 0o, P0) (%),
where
Fi:=pW 4+ ¢x) — pWN) — p' (N, (3.21)

g THI+0? TP _T+]-¢0® T
2T N4fidge N NAitee N

F3:=WN —ME+@+¢)(x +E+E), (3:22)
Gi:=qH +h+¥x) —qH) — g H) ¥,

_(K+k+9)> K2 K+K-y)* K

Gz: ~ ~ B
H+h+yy H H+h+ Yy H

Gy:=—(H—hE—(+v(x +E+E). (3.23)

Theorem 3.2 (L%-convergence). Assume that (¢o, ¥o) € H>(R) x H3(R), (89, 9o) € H*(R) x H2(R), and
(1.3), (2.4) and (2.6) hold. Then there exists a constant 81 > 0 such that when n + @9 < &1 (n is defined
in (2.7)), the solutions (¢, 0, ¥, ¥, x)(x, t) of the IVP (3.20) uniquely and globally exist, and satisfy

(.60, 9,9, x) € C°(0, +oo; H3(R) x H*(R) x H*(R) x H2(R) x H*(R)),
Xt € C°(0, +00; H'(R))

and

3 2
S a+o'oke. o)+ S a+0*2ake. »H o

=0 =0

2 1
+S a0 x| + Y a + 03 ok

=0 =0
< Cn+ [ @0, ¥o)|5 + | o, Do), ]- (3.24)
By using the Sobolev inequality || f|lo®r) < \/i“f”%fn@) ||fx||22/fR), and noting the exponential de-

cay for (a1, ],fl,f(, By, t) (see (3.17)), then, from Theorem 3.2, we have the following stability of
stationary waves.
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Corollary 3.3 (L*°-stability of stationary waves). Under the assumption of Theorem 3.2, the solutions
(n, J,h, K, E)(x,t) of the IVP (1.1) and (1.2) uniquely and globally exist, and converge to the stationary so-
lutions (N (x), T, H(x), K, £(X)) of (2.1) in the form of

sup|(n(x.©) ~ N 00)| < €1 +071,
sup|(J(x.0) = T@)| < €@ +0)74,
supl ((x, ) ~ )| < € +0)79, (3.25)
i;‘g'(’“"’ B —K@)| <+,
sup|(E(x.0) —£@)| < €@ +071,

Remark 3.4.

1. In the previous works [7,11-13], the authors assume p(s) = g(s), D(x) =0, and E_ =0 and
ny = hy. But here we allow p(s) # g(s), |D’(x)] « 1 (non-flat), and E_ # 0 and ny # hy, which
is essentially different from the previous studies for the case of unbounded domain.

2. The algebraic decay rates shown in (3.24) and (3.25) are optimal when the initial perturbation is
in L2-sense. If the initial perturbation is further in L!(R), the better decay rates are expected by
constructing some approximation Green functions for the coupled system, but hard to show at
this moment. This still remains open for future.

3. Different from the case of bounded domain, where we can establish the Poincaré inequality so
then we may further archive the exponential convergence, also there is no restriction on the size
of doping profile |[D* — D, | = supycg D(x) — infxer D(x), however, here we can show the algebraic
convergence only (actually as shown in [21], the decay rates should be algebraic only even for the
special case with constant coefficients), and we still need reasonably to assume |D* — D,| « 1
because of the technical requirement on energy estimates for this unbounded domain case.

4. Proof of convergence theorem

Theorem 3.2 can be proved by the elementary L?-energy method with continuation argument
based on the local existence of the solutions (¢, 0, v, 9, x)(x,t) to (3.20) and the a priori energy
estimates. The local existence of the solutions (¢, 0, vy, 9, x)(x,t) can be obtained by the standard
iteration method. The key step is to establish the a priori energy estimates, which is our main target
in this section.

For T > 0, we define the solution space as follows

Y(0,T):={(¢,¥. X)x.1) | 3{¢p. 3}y € C(0, T; H*'(R)), 1=0,1,
dx eC(0,T; H*\(R)), [=0,1, 0<t < T}

equipped with the norm

3 2
M(T)?:= sup 1Y (1 +0|ak@. v©O ] + Y+ 02|k v O |
=0

0<t<T v

2 1
+Y A+ o akx o + > a+ 0 ol ] |-
=0 =0
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Substituting (3.20); and (3.20)3 into (3.20); and (3.20)4, respectively, and applying (3.20)s, we get

et + bt — (D' Ny, + N (@ — %) = Fru+ Fax — F3,
Yie + Ve — (@ (HOVx), + HW — ¢) = Gix + Gax — G3,

(4.1)
X=¢—1,
(@, ¥, ¢e, Vo) |,_o = (b0, Yo, =60, —D0) (X).
Lemma 4.1 (Basic energy estimates). It holds
t
2 2
16090 v v e 0O + [ @ 00| ds
0
2 2
< C[|@o. vo) |7 + | Bo. 90)|* + 1] (4.2)
provided with M(T) +n < 1.
Proof. Let’s perform the following computation
o
[ (@)1 x 06+ 200 + (410 x N -+ 200) d
—00
which implies
d
R I1(x, t)dx + f Ir(x, t)dx = / I3(x,t)dx + / I4(x,t)dx, (4.3)
R R R R

where

1 1
Li(x,t) = ’H(dxpt + 507+ ¢3> +p (N YH2 + N (wwf + 597+ wf) +q (HNy?

+NH(p — )%,

I2(x, 1) = HeE + HP' (NG + 2Hxp (N )utpt + NYE + NG F)YZ + 2Neg )Y
+NH(p — )%

I3(x, t) = —(F1 + F2)(H(¢ + 2¢1)), — F3 - H(p + 2¢).

I4(x, ) = =(G1 + G2) (N (¥ + 291)),, — G3N' (¥ + 2¥).

We first estimate the nonlinear terms in the right-hand side of (4.3). By Taylor’s formula
Fi=p' (Nt + 0 (D) (1 + ¢)?,
and using the Sobolev inequality

D1, |pxl, |de| < CM(T),
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and the exponential decay of (7, fl) shown in Lemma 3.1, we have

’/ Fi(Ho)xdx| = U[P’(N)ﬁ + 0(1)(f + ¢x)° ] (Hp)x dx
R R

<OMne™" + 0 ()M(T) |ox(t) “2 (4.4)

Since

2/F1(’H¢>t)de:2/F17-[x¢>tdx~l—2/F17-l¢xtdx,

R R R

similarly to (4.4), we have

< O(Mne™" + 0 (HM(T)|¢x(®)]*. (4.5)

‘Z/Fﬂ-txdndx
R

To estimate 2 fR F1Hpx dx, we first note that

) N +i+ex 1
FiHox = 5!?{[( / p(S)dS> —pW\)gx — Ep’(N)@%” —HpWN +1+ g, (4.6)
N

Let
z
H(z) :=/p(s)ds.
N

Since
HN)=0, H'(@=p@, H'@=p2,
then Taylor’s formula gives

N i+
R N 1, R R
P(©)ds =HW + 7+ ¢ = pA\) (@ + ¢ + P (V) + ¢+ 0D+ ¢o)°.
N

Substituting this to (4.6), we obtain

9 .1 . . . .
FiHox = ﬁ{ﬂ(p(/\/)nt + Ep’(N)n(n +2¢0+ 0D +¢x)3>} —HpWN + A+ ¢)i;.

Thus, we have

—2/F1H¢xt dx < —2% / H(p(]\/')ﬁt + %p/(/\/)ﬁ(ﬁ +2¢x) +0 (D) (A + ¢x)3> dx + 0(1)ne™ oL,
R R
(4.7)
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On the other hand, since

T+]—e? J?

=it e. N
__2_‘7¢ jz(b 2j+]_¢tj_ jz ﬁ
SN TN N At e NN At
2j(ﬁ+¢x)_N(]_¢t)¢+ TR+ ¢x) 5
NN +0+ ¢y "TNIZWN A+ o)
27 J? A A
= =579 = 3T 0D +A) + 0D + A + ¢+ 90 (6x + d0),

taking integration by parts, using the Cauchy inequality and the time-exponential decay of (n, ]) as
shown in Lemma 3.1, we obtain

(4.8)

/FZ(H¢)xdx<f7-L S ¢y dx+ 0 (Dne™" + 0(1)[n + M(T)] | (¢x.
R

and

_2/F2(H¢t)xdx=2/F2XH¢fdx
R R

Q.lg_

f 2¢xdx+0(1)ne*”°f+0(1)[n+M(T>]\|(¢x,¢t><t>|| (4.9)

R
From Lemma 3.1, we note that
IN =il <Cn |E@] 0 <Cne ™, A@)| 2 < Che™™,
then we further estimate the nonlinear term involving F3 as

/ F3H (¢ +2¢) dx < O (DnM(T)e™" + 0 ()M(T) [ (¢, ¢) (£) ||2 (4.10)
R

Summarizing (4.4), (4.5), (4.7), (4.8), (4.9) and (4.10), we obtain

d 2
/I_:;(X Hdx < — /’HNZ(bde—I—a/RﬂX,t)dXﬂL/H%@%dx
R R

R
2 —vot
+ 0 [n+MMD]| (¢, YO |~ + O (D[ + M(T)]e ™", (411)

where

1
Rix,t) := —2’H<p(J\/')ﬁt + EP’(N)ﬁ(ﬁ +2¢x) + 0 (1) (7 + ¢x)3>
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satisfying

/R1(x, t)dx < 0(Dne™" + 0(D)[n + M(T)] | ¢x(t) ”2. (412)
R

Similarly, we can also estimate I4 as follows

/1 (x,t)dx < d fNszde d /R (x t)dx+/]\/l€2w2dx
ARVEES 4 H2 K e ] "2 H2 K
R R R

R
+ 0D [0 +MD)]| W YOO + 0D [0+ M(T)]e ™™, (4.13)
where
Ry(x,t) := —2N<q<H>12t + %q’(%)ﬁ(ﬁ +2y0) + 0(D)(h + wx)3>
satisfying
/ Ry (x,t)dx < O (1)ne™"" + 0 (1)[n + M(T)]|| < (0) ||2. (4.14)
R

Substituting (4.11) and (4.13) into (4.3), we get
d jz ]Cz jz K:Z
E/[“(X’ £) —qu)ﬁ —N@wf] dx+/[lz(x, £) —HA—ﬂdﬁ —N@wf} dx
R R

< C[n+MT)]e™" + [0+ MD)]| (@, e Yo v O

+ % /[R1(x, t) + Ra(x, )] dx. (4.15)
R

From the uniform ellipticity (2.9), we obtain for some constant C4 > 0 that

J? K2 1 , J?
060 = HiZ 08 = N o U =H(¢¢f + 597 +¢?) +H(p W) - m)dﬁ

1 , K2
+N<wt +ov wf) +N(q (H) - W)wf
+NH@ —¥)?

> Ca(p? + o2 + ¢F + Y2+ ¥l + i+ XP). (4.16)

By using |Hx|, INx| < Cn we get for some constants Cs, Cg > O that
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jZ

12<xt>—H ¢>x %zw,?:whv%(p/w) e

,Cz
+ Nyt +/\/'<q/(7-l) - ﬁ)lﬁf + 2Nxq' ) Y

+NH(P —)?
> Cs(1— ) (92 + ¢ + v2 + ¥2) + Cs x%.

Integrating (4.15) over [0, t] and applying (4.12), (4.14), (4.16) and (4.17), we further obtain

[C4— 0 () (0 +MT)][[($: b de, ¥, ¥ao v O

t t
+[Cat=m) — 0 (n+ M(T))] / | (Gxr bt Y W) (5)|* ds + Co f x| ds
0 0

< C[n+ | o, ¥o) |2 + | 6o, 90| *]-

Let n + M(T) <« 1, then

t
| (@, b, b, ¥, wx,wf,xxt)uz+/H<¢x,¢f,I/fx,wt,xxs)uzds<c[H<¢o,wo>|ﬁ+ | 0, 90| +1].
0

The proof is complete. O

Lemma 4.2 (Higher order energy estimates). It holds

t

1@, O + | @ vo® | + [x O + /[H @ VOO |+ [ x6)]5]ds

0
<[l @0, v0) |2 + | G0, 90) |3 + 1]
provided with M(T) +n < 1.

Proof. By calculating

t
/ / [B(41); - Hlby + 260) + x(41)3 - N (Y + 290) ] dxds,
0

and applying (4.2), we can similarly prove

t

” (&x> Pxxs Bxt> Vs Yxxs Yt X (£) ”2 +/H (xxs Bxt» Vxxs Uxes Xx)(S) ”2d5

0
< C[|| (@0, ¥0) |5 + || G0, 90) > + 1]

provided n + M(T) < 1.

>¢x + 2Hxp (N e

3175

(4.17)

(418)

(4.19)
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Furthermore, by taking

t
/ /[@%(41 N - Hidxx + 2hxx) + 33(41 )2 - N (Yrx + Zl/fxxt)] dxds,
0 R

and applying (4.2) and (4.19), we can prove

t
H (@xxs Pxxxs Pt s Yxxs Waxs Yt Xoo) (£) H2 + / H (Dxxxs Prxts Wexs Wt s Xxx)(S) ”2 ds
0

< C[[[ o, ¥o) |3 + | G0, 90) | + 1] (4.20)

provided n + M(T) < 1.
Combining (4.2), (4.19) and (4.20), we prove (4.18). O

Now we are going to derive the decay rates for the derivatives of (¢, ¥, x).

Lemma 4.3. It holds

t
a +t)H(¢x,wx,cpt,«/ft,x)(t)HZ+/(1 +9)| (¢, v (5| ds
0
<[l @0, v0) |2 + | G0, 90)|* +n]

t t
+C77/(1 +5) [ (Bxxs Y (5) szS—I—CU/(l +5)° [ @x, Yr) (5) H2d5 (4.21)
0 0

provided that M(T) +n < 1.

Proof. Multiplying (4.1); by (1 + t)H¢¢ and (4.1); by (1 + t)Nv, adding them together and then
integrating the resultant equation with respect to x over (—oo, c0), we have

d

1
" { SA+0 f (H[¢f + P NI$7 ] + N[y +d HIVE] +NH(p —¥)?) dx}
R

+(1 +t)/[H¢t2+/\fwt2]dx+(1 +t)/p/(/\f)7-tx¢x¢tdx+(1 +t)/q’(7—t)/\fxwxwtdx
R R R

1
-3 / (He? + Hp' NIG2 + NP2 + NG GOYE + NH@ — 1)) dx
R
— 40 / H(Fix+ Fax — F)pedx+ (1410) / N(Grx + Gax — Ga)vrd. (4.22)
R R

As shown before, we can estimate
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Hd J? 2
1+ t)/%(m + Fox — F3)¢r dx < 3&{“ +t)/ m«ﬁi dx} + 0 ()| px(0)
R R

+ 0 +0[n+MT)]| ) \|2 +0(1)(1+t)e ™",

(4.23)

and

N d K2
a +t>/N(G1x+ Gox — G3) e dx < 3&{“ +t)/ ﬁwfdx} + o))
R R

+0MA+0[n+MD]|ve® | + 0D +t)e ",
(4.24)

By using (4.23) and (4.24) in (4.22) and integrating the resultant equation with respect to t over [0, t],
we have

2 K:Z
a +t)/{ﬂ[¢3 + (p’(N) - /%)4&} +./\f|:1//t2 + <q/(’H) - ﬁ>¢3} —H\/?-sz}dx
R

t t

+2/(1 +s)/[H¢3+N¢E]dxds+2/(1 +s)/p’(N)Hx¢x¢[dxds
R 0 R

0

t
+2 f (1+5) / q' (H) Ny dxds
0 R
t
< C[|[ o, ¥o) |2 + || G0, 90| > + 1] + 0<1>/H(¢x,wx><s>uzds
0

t
+ 0 [n+MT)] /(1 +9) (@, v (9| ds. (4.25)
0

In order to estimate

t t
/(1 +5)/p’(N)Hx¢x¢tdde+/(l +S)/q’(H)waxwtdxds,
0 R 0 R

since we don’t have some positive terms like

t t
/(1+s)f¢x2dxds+/(1+s)/¢3dxds,
0 R 0 R

to control it, we need a careful but technical treatment as follows
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t
/(1 +5)/p/(N)Hx¢x¢t dxds
0 R

t

< / (1496 1 |6 . d / PN Hydx

0 R

t
<Cp / (1+45)[¢x(5)] ;o | #(5) | o ds  [by Sobolev's inequality: || f 1= < V2l fII}5° 1 fl 4]
0
| 1 1 1 1
< Cn/(l +9)||8x(5) ]| 2 | dxx () || % |3 (5)|| * || e (s) || 2 ds
0

t
1 1 1 1
=Cn/||¢x<s)||2(1 +9)4 ]| e () |20+ )| e ) |20 +5)2 | pue(5)] ? s
0

[by Holder's inequality]

t 1t i
< Cn</||¢x<s)|}2ds) (f(l +s)|!¢xx(s>||2ds)
0 0
t 1,0t i
x (/(l +5)|| Bt (s) ||2 ds) </(1 + )% px(s) ||2 ds) [by Cauchy-Schwart inequality]
0 0
t

t
<Cn/||¢x<s)||2ds+6n[<1 +9)| b | ds
0 0

t t

+Cn [ (1 +5)|pe(s)|* ds + C / (1 +5)%| pue(s)| s, (4.26)
0

0

and similarly,

t t t
f (1+5) / q' (H) Nt dxds| < Cn f [vx()|* ds+Cn f (149w ds
0 R 0 0

t t
+Cn/(l +s)H1/ft<s>szs+Cnf(1 +5)% [ Ve ()| ds.
0 0

(4.27)

Thus we can submit (4.26) and (4.27) to (4.25), and apply the uniform ellipticity condition (or say,
the subsonic condition) (2.9) and Lemma 4.2, to have



D. Donatelli et al. / . Differential Equations 255 (2013) 3150-3184 3179

[Ca— 01+ MT)]A + 0] (éx. be. ¥ ¥, OO

t
+[Ca—0M)(n+ M(T))]/(l +9) @, )| ds
0
t
< C[|| @0, v |} + | G0, 90 |* + 1] +Cn/<1 +9)]| xxs Y0 (9) | s
0

t
+n / (1492 (e, w00 3) 2.
0

This immediately gives (4.21) by letting M(T) + n < 1. The proof is complete. O

Lemma 4.4 (Decay rates for (¢x, ¥xs X » Oxx» ¥xxs Xx))- It holds

t
A+ 0 (@ ¥ b0, )OO + /(1 +9)] (6, v )P ds + (1402 (b Ve s Yt x0 O
0

t

+ / (14 9) | e ¥ ® |2 + (1492 e V) )| ds

0
< C[|[ o, ¥o) |2 + | G0, 90| + 1] (4.28)

provided that M(T) +n < 1.

Proof. By carrying out the following calculation

t

/ (1+s) / [3x(4.1); - Hebye + By(41); - N dxds,
R

0

and applying the energy estimate proved in Lemma 4.2 and the decay estimate of Lemma 4.3, with
the same method used in Lemma 4.3, we can prove

t
(1 + 0] (B Daxs bats Y Vi Yo 0O + / (1 +5) | (bxxs Bt Ycer Y (9)]| * s
0

t

< C[n+ | @o. vo) |5 + [ 0. 90) 3] +Cn / (1452 @xe, V) ()] 2 ds (4.29)
0

as long as M(T) +n <« 1.
Furthermore, by taking

t
/ (1 +5)? / [80 (4.1); - Hebae + (A1) - N dxds,
0 R
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and applying (4.29), we then obtain

t
(1 4+ 6% (bxxs Sxes Ve Vs X0 O + / (1452 (s, vu) (5| s
0

< C[n+ [ o, ¥o) |5 + [ o, 90)|7] (4.30)

by taking M(T) + n < 1. Thus, combining (4.21), (4.29) and (4.30) gives (4.28). The proof is com-
plete. O

Lemma 4.5 (Decay rate for (¢xxx, Yxxx> Xxx))- It holds

a1+ t)3 ” (xxxs Yxxs Pt s Yt Xxx) () Hz

t

+ / [(1+ 92 (B V) ©) > + (14 93] Bt V) ()]} ds

0
< C[|[ o, ¥o) 3 + | G0, 905 + 1] (4.31)

provided that M(T) + n < 1.

Proof. In the same fashion of Lemma 4.4, by computing

t
/ (1+5)> / [02(4.1); - Hpxt + 2(4.1); - N'rex | dxds,
0 R

we first obtain

t
1+ t)z ” (Dxxs Praxs Pt > Yxs Yas Yt > Xxae) () H2 + /(1 + 5)2 “ (xxxs Pxxt s Yaxxs Yt ) () ”2 ds
0

<C[n+ [ o, ¥o) |2 + [ 6o, 90)[5] (432)
provided that M(T) + 1 < 1, and by calculating

t

/ (1+5s)3 / [02(4.1); - Hepuxe + 92(4.1) - N'rxe | dxds,
0 R

we further have

t
(1407 | Baes Daxes Ve Yies ) O + / (14 93] @uxt, ) (9] > ds
0

< Cn+ | @o. v |2 + [ o, 90 |2] (433)

as long as M(T) + n <« 1. Thus, combining (4.32) and (4.33) gives (4.31). The proof is complete. O
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Lemma 4.6 (Decay rate for (¢¢, y¢)). It holds

t
(A + 02| (e, Yr bxts Vit et Ve x0 O] + / (1 + 92| (Bats Yts b, V) ()| ds
0

< (1o, vo) 5+ [ G0, v0) || +n]
provided that M(T) +n < 1.

Proof. By calculating

t
/ f [3e(4.1)y - H(be + 2h0) + 3e(4.1)5 - N (W + vir) ] dxds,
0 R

and using Lemma 4.2, we obtain the energy estimate for (¢, ¥et)

t
| @t bxes bres Ve Ve Ve X0 O | + / | e s Yies Vs x0) )| ds
0

< C[n+ | @o. v0) |2 + [ G0, 90 |7] (4.34)
when M(T) +n <« 1.
By taking

t
/ /(1 +9)[0:(4.1)1 - H(Pr + 26ne) + 0¢(41); - N (Y + 29r) | dxds,
0 R

and using (4.34), we then obtain

t
(40 B, daes dies Vs Yixes Y, X0 O ) + / (49 (@xes bees Vs Ve, X0 )| s
0

< C[n+ | @o. v) |3 + [ o, 90 |7] (4.35)

ifM(TM) +n<«1.
Finally, by carrying out

t

//(1 +9)2[3(4.1); - Hge + 2¢e) + d(4.1)y - N (e + 24re) | dxds,
R

0

and using (4.35), we then obtain
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t
(402 [ @t bxes bees Ve Vs Ve xO© | + / (1457 (Bxes ees Yixes Ve x| 2 ds
0

C[n+ [[@o. o) [ + | @o. 90)[]
provided that M(T) + n <« 1. This proves the lemma. O

Lemma 4.7 (Decay rate for (¢xt, Yxe, Xt)). It holds

t
(140 | Bac. Vs b Ve xOO > + / (14 93| (ee, v )| ds

C[|l o, vo) |5 + || o, 90| + 1] (4.36)
provided that M(T) + n < 1.

Proof. As shown before, one can take

t

/ /(1 +5)? [0:(4.1)1 - Hepee + 9¢(4.1)y - Nt | dx s,
0 R

then we can similarly prove (4.36). The details are omitted. O

Lemma 4.8 (Decay rate for (¢xxt, Wxxt» Xxt))- It holds
2
1+0* ” (@xxts Uxxts et s Uxees Xxt) (E) ”

t
+/ (1+s)° |(¢xxt,1/fxxt)(5)|| +(1+9)* H(¢xm1/fxn)(5)|| ]ds
0

C[| @0, ¥o)|3 + | G0, Do) |5 + 1] (4.37)
provided that M(T) +n < 1.

Proof. By the same manner as before, let us take

t

//(1 + 5)4[3t(4~1)1 - Hepxee + 0r(4.1)y - Ny | dxds,
0 R

then we can similarly prove (4.37). O
Combining Lemmas 4.3-4.8, we immediately establish the following estimates.

Lemma 4.9 (Decay rate for the derivatives of (¢, ¥, x)). It holds
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3 2
S a+o! ok vo) + 3 a+ 02l g oo

=0 =0

2 1
+Y A+ [l x O] + 31 +0" ol o]
=0 =0

<[]0, ¥ |3 + || o, 90) |3 + 7]

provided that M(T) + n < 1.
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