
M. J. Gander, M. Mei and E. J. P. Georg Schmidt. (2007) “Phase Transitions in a Relaxation Model of Mixed
Type with Periodic Boundary Condition,”
Applied Mathematics Research eXpress, Vol. 2007, Article ID abm006, 34 pages.
doi:10.1093/amrx/abm006

Phase Transitions in a Relaxation Model of Mixed Type with
Periodic Boundary Condition

Martin J. Gander1, Ming Mei2,3,∗ and E. J. P. Georg Schmidt3

1Department of Mathematics, University of Geneva CH-1211 Geneva,
Switzerland and 2Department of Mathematics, Champlain College,
St.-Lambert, Quebec, Canada J4Y 2P3 and 3Department of Mathematics
and Statistics, McGill University, Montreal, Quebec, Canada H3A 2G6

Correspondence to be sent to: Ming Mei, Department of Mathematics, Champlain College,
St.-Lambert, Quebec, Canada J4Y 2P3. e-mail: mei@mathstat.concordia.ca

We study the asymptotic behavior of solutions for a 2×2 relaxation model of mixed type

with periodic initial and boundary conditions. We prove that the asymptotic behavior

of the solutions and their phase transitions are dependent on the location of the initial

data and the size of the viscosity. If the average of the initial data is in the hyperbolic

region and the initial data does not deviate too much from its average,we prove that there

exists a unique global solution and that it converges time-asymptotically to the average

in the same hyperbolic region. No phase transition occurs after initial oscillations. If

the average of the initial data is in the elliptic region and the initial data does not

deviate too much from its average, and in addition if the viscosity is big, then the

solution converges to the average in the same elliptic region, and does not exhibit

phase transitions after initial oscillations. If, however, the viscosity is small, numerical

evidence indicates that the solution oscillates across the hyperbolic and elliptic regions

for all time, exhibiting phase transitions. In this case, we conjecture that the solution

converges to an oscillatory standing wave (steady-state solution).
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1 Introduction and main results

Relaxation phenomena arise in many physical situations, such as gases which are not

in thermodynamic equilibrium, river flows, traffic flows, kinetic theory, viscoelasticity

with memory and general waves, see for example [3, 5, 15–17, 19–22, 24, 27, 30] and the

references therein, in particular, the textbook by Whitham [37]. The most basic features

of relaxation phenomena are captured by the following 2 × 2 relaxation model

vt − ux = 0,

ut − σ(v)x =
f (v)−u

τ ,
x ∈ (−∞,∞), t > 0, (1.1)

where v(t, x) is some conserved physical quantity, like the specific volume in the case

of gases that are not in thermodynamic equilibrium, and u(t, x) is some rate variable

like the velocity in that case. The parameter σ(v) denotes the nonlinear pressure, f (v)

represents the flux function, and τ is the so-called relaxation time. Usually, τ = τ (v,u)

depends on the specific volume v and the velocity u, see [37]. We, however do not consider

the variability of τ here, and thus assume τ = 1 throughout this paper.

It is well known that the characteristic roots of (1.1) are

λ± = ±
√

σ ′(v).

The usual assumption on σ(v) is that σ ′(v) > 0 for all v under consideration, which

means that the roots λ± are real so that the system (1.1) is a hyperbolic conservation

law. In [17], Jin and Xin do a detailed discretization study for the important special

case in which σ(v) = av, with a a positive constant. The first investigation of the

nonlinear stability of diffusion waves, traveling waves and rarefaction waves as time

t → +∞ is due to T.-P. Liu [20] in 1987. Since then the subject has been broadly and

deeply developed by many people: see, for example, [5, 19, 21, 22, 24, 27, 30, 38–41]. The

asymptotic behavior of solutions to the equilibria as relaxation time τ → 0+ was well

studied in [3, 15–18, 35], etc. When σ ′(v) changes sign, then the system (1.1) is of mixed

type. Its behavior is elliptic in some regions where σ ′(v) < 0, and hyperbolic in other

regions where σ ′(v) > 0. Such a problem can exhibit phase transitions. Two prototypes

of this situation are the case where the strain σ(v) = v3 − v in viscoelastic dynamics, and

the pressure p(v)(= −σ(v)) =
Rθ

v−b −
a
v2 with positive constants R, θ, a and b satisfying

Rθb/a < (2/3)3 and v > b in van der Waals fluid dynamics. In such a mixed case, the

study becomes more difficult.
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In this paper, as in the case of the above two examples of σ(v), we assume that

there exist two constants v1 and v2, v1 < v2, such that


σ ′(v1) = σ ′(v2) = 0,

σ ′(v) > 0 for v ∈ (−∞, v1) ∪ (v2,∞),

σ ′(v) < 0 for v ∈ (v1, v2).

(1.2)

The nonlinear function f (v) is assumed to be smooth enough for all v ∈ R. With (1.2), the

system (1.1) is hyperbolic in the region (−∞, v1) and (v2,∞), and elliptic in the region

(v1, v2).

The Cauchy problem for (1.1) is ill posed due to the sign changes of σ ′(v): in the

elliptic region, this would require one to specify the value of v(t, x) at t = T as another

“boundary” condition for some positive constant T. Because of this, artificial viscous

terms are often added to make the system well posed. For example this has been done

for the phase transition problems of the viscous-capillary p-system ([1, 4, 11, 25, 28, 42];

M. Mei, Y. S. Wong, L. Liu, unpublished data). Another way to study the phase transition

phenomena within a strongly hyperbolic background is the construction of shock and

wave curves, as well as the vanishing viscosity approach (see [2, 6–10, 12, 28, 29, 31–

34]). Regarding the numerical computation for phase transition phenomena to the other

models, we refer to, for example, [13, 36] and the references therein.

1.1 Periodic initial-boundary value problem

In this paper, we study the following system, in which an artificial viscous term εvxx is

added to the first equation in (1.1):

vt − ux = εvxx,

ut − σ(v)x = f (v) − u,
x ∈ (−∞,∞), t > 0, (1.3)

with the periodic initial-boundary value conditions

(v,u)(0, x) = (v0,u0)(x),

v(t, x) = v(t, x + 2L),
x ∈ (−∞,∞), (1.4)

where L > 0 is a given constant. The initial data (v0,u0)(x) satisfy the compatibility

condition (v0,u0)(x) = (v0,u0)(x + 2L).
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Equilibrium solutions will play an important role in what follows. One can easily

establish that all equilibria of the above system (or of the original system (1.1)) have

the form (v,u) ≡ (m0,m1), where m0 is an arbitrary constant and m1 = f (m0). An

equilibrium (m0,m1) is said to be hyperbolic if m0 ∈ (−∞, v1) ∪ (v2,∞) and elliptic if

m0 ∈ (v1, v2).

We now show that every solution of the system (1.3) and (1.4) is associated with

a certain equilibrium. Integrating the first equation in (1.3) with respect to x over [0, 2L]

and using the periodicity u(t, x) = u(t, x + 2L) and vx(t, x) = vx(t, x + 2L), we obtain

d
dt

∫ 2L

0
v(t, x)dx =

∫ 2L

0
[ux(t, x) + εvxx(t, x)]dx = 0,

and thus the integral of v(t, x) stays constant in time,

∫ 2L

0
v(t, x)dx =

∫ 2L

0
v0(x)dx.

Hence there is a natural association between the initial data (v0,u0) and the equilibrium

(m0,m1) with

m0 =
1
2L

∫ 2L

0
v0(x)dx and m1 = f (m0). (1.5)

We note that

∫ 2L

0
[v(t, x) − m0]dx = 0. (1.6)

The main purpose of this paper is to study the asymptotic behavior of solutions

(v,u)(t, x) for the periodic initial-boundary problem (1.3) and (1.4). We prove that

the asymptotic behavior of the solutions (v,u)(t, x) and their phase transitions are

dependent on the location of the initial data (v0,u0)(x) and the size of viscosity ε.

First of all, we investigate the criteria for linear stability or instability. We lin-

earize the system (1.3) around the associated equilibrium (m0,m1), and set

(V,U) = (v − m0,u − m1). Then (V,U) satisfies

Vt − Ux = εVxx,

Ut − σ ′(m0)Vx = f ′(m0)V − U,
(1.7)
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where we used m1 = f (m0), see (1.5). Differentiating the first equation of (1.7) with

respect to t and the second one with respect to x, and substituting the first equation into

the second equation, we obtain

Vtt + Vt − εVxxt − (ε + σ ′(m0))Vxx − f ′(m0)Vx = 0. (1.8)

This equation admits a solution of the form

V(x, t) = Ṽeαt+iβx, (1.9)

where Ṽ is a constant, α is the frequency and is complex, and β is the wave num-

ber satisfying the periodicity condition eiβx = eiβ(x+2L), which implies β =
kπ
L for

k = 0, 1, 2, . . .. Substituting (1.9) into (1.8) yields

α2
+ (1 + εβ2)α + (ε + σ ′(m0))β2

− if ′(m0)β = 0,

which has two modes α+ and α− given by

α± =
−(1 + εβ2) ±

√
(1 + εβ2)2 − 4[(ε + σ ′(m0))β2 − if ′(m0)β]

2
=

−(1 + εβ2) ±
√

a + bi
2

,

where

a = (1 + εβ2)2
− 4(ε + σ ′(m0))β2, b = 4f ′(m0)β. (1.10)

A straightforward, but tedious computation shows that the real part of
√

a + bi is

∣∣∣Re
(√

a + bi
)∣∣∣ =

√
a + r

2
, r =

√
a2 + b2.

Thus, we have

Re(α−) < Re(α+) = −
1
2

[
(1 + εβ2) −

√
a + r

2

]
.

If Re(α+) < 0, then from (1.9) we have |(V,U)| = |(v − m0,u − m1)| ≤ O(1)e−|Re(α+)|t. In

order to obtain Re(α+) < 0, we must have

1 + εβ2 >

√
a + r

2
.
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Using (1.10) and r2 = a2 + b2, another straightforward but lengthy calculation reveals

(1 + εβ2)2(ε + σ ′(m0)) > f ′(m0)2.

Since β =
kπ
L ≥ 0 for k = 0, 1, 2, . . ., which implies (1 + εβ2)2 ≥ 1, we must assume for

stability

ε + σ ′(m0) > f ′(m0)2. (1.11)

This is an optimal sufficient condition for stability whenever m0 is in the hyperbolic or

elliptic region. If m0 is in the hyperbolic region, i.e., σ ′(m0) > 0, and if σ ′(m0) is big

enough, so that

σ ′(m0) > f ′(m0)2, (1.12)

we may take ε = 0. The condition (1.12) is the so-called sub-characteristic condition

introduced first by T.-P. Liu in [20] for the study of stability of elementary waves in

hyperbolic conservation laws with relaxation. If m0 is in the elliptic region, i.e., σ ′(m0) <

0, the sufficient condition (1.11) can be rewritten as

ε > |σ ′(m0)| + f ′(m0)2. (1.13)

For instability, we need at least Re(α+) ≥ 0. As shown before, we can similarly have

ε < |σ ′(m0)| + f ′(m0)2 (1.14)

at least as a necessary condition for a possible instability.

We turn to the nonlinear stability and instability of solutions to the system

(1.3) and (1.4). First of all, we introduce the steady-state solutions to the system (1.3)

and (1.4). Such steady-state solutions are in the form (v,u) = (V,U)(x) satisfying the

following system

−Ux = εVxx,

−σ(V)x = f (V) − U,

(V,U)(x + 2L) = (V,U)(x),(
1

2L

∫ 2L
0 V(x)dx, 1

2L

∫ 2L
0 U(x)dx

)
= (m0,m1).

(1.15)
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Obviously, the constant equilibrium (m0,m1) is a trivial steady-state solution to (1.3)

and (1.4). When the initial average m0 is in the elliptic region (v1, v2), and the artificial

viscosity ε is small enough, then the steady-state solutions are usually nontrivial and

nonunique. This will be studied carefully with some criteria for the location of the initial

average mean m0 and the size of the viscosity ε in the near future.

Integrating the first equation of (1.15) with respect to x, we obtain

− U = εVx − C, (1.16)

where C is an integral constant. Substituting (1.16) into the second equation of (1.15), we

then have

− σ(V)x = f (V) + εVx − C. (1.17)

Integrating (1.17) with respect to x over [0, 2L], and noting the periodicity V(0) = V(2L)

which implies
∫ 2L

0 σ(V)xdx = σ(V(2L)) − σ(V(0)) = 0 and
∫ 2L

0 εVxdx = εV(2L) − εV(0) = 0,

we obtain the integral constant:

C =
1
2L

∫ 2L

0
f (V)dx. (1.18)

Thus, the steady-state system (1.15) for (V,U)(x) is reduced to a single steady-state

equation for V(x) as follows



εVx + σ(V)x + f (V) − C = 0,

V(x + 2L) = V(x),
1

2L

∫ 2L
0 V(x)dx = m0,

C =
1
2L

∫ 2L
0 f (V)dx.

(1.19)

For a hyperbolic equilibrium (m0,m1) and a viscosity ε sufficiently large to sat-

isfy the optimal condition (1.11), we prove that the system has a unique global solution

for all associated initial data close enough to the equilibrium. Moreover, that solution

converges asymptotically to the equilibrium and no phase transitions occur after some

possible initial oscillations. A similar result holds for elliptic equilibria. In that case ε

has to be large enough for (1.13) to hold and again there are no phase transitions except

possibly in an initial time period. When the viscosity ε is small, numerical experiments

show that the solution (v,u)(t, x) oscillates across the hyperbolic and elliptic regions for
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all time, exhibiting phase transitions. In accordance with our numerical study in the last

section of this paper, we conjecture that the solution converges to an oscillatory standing

wave (one nontrivial steady-state solution (V,U)(x)).

Notation. Before stating our main results, we need to set up some notation.

Throughout the paper, C > 0 denotes a generic constant, while Ci > 0 (i = 0, 1, 2, . . .)

represents a specific constant, R = (−∞,∞). Since solutions (v,u)(t, x) of (1.3) and

(1.4) are periodic, we introduce spaces of periodic functions which will be used in our

analysis. Letting p = 2L denote the period, and we first introduce the Hilbert space

L2
per(R) of locally square integrable functions which are periodic of period p,

L2
per(R) =

{
v(x) | v(x) = v(x + 2L) for all x ∈ R, and v(x) ∈ L2(0,p) for x ∈ [0,p]

}
,

with the norm given by integration over [0,p] (or over any other interval of length p),

‖v‖L2
per

=

( ∫ p

0
v2(x)dx

)1/2
.

We also define the Sobolev space Hk
per(R) (k ≥ 0) to be the space of functions v(x) in

L2
per(R) whose derivatives ∂i

xv, i = 1, . . . , k also belong to L2
per(R) with the norm

‖v‖Hk
per

=

( k∑
i=0

∫ p

0
|∂i

xv(x)|2dx
)1/2

.

Similarly, the periodic spaces L1
per(R) and L∞per(R) are defined, too. We also often use the

simplified notation ‖(f , g)‖2
L2

per
= ‖f ‖2

L2
per

+ ‖g‖2
L2

per
and ‖(f , g)‖2

Hk
per

= ‖f ‖2
Hk

per
+ ‖g‖2

Hk
per

. Let

T > 0 be a number and B be a Banach space. We denote by C0([0,T];B) the space of B-

valued continuous functions on [0,T]. The corresponding spaces of B-valued functions

on [0,∞) are defined similarly.

1.2 Main results

We are now ready to state our main results.

Theorem 1.1 (Convergence in Hyperbolic Phase). Let (m0,m1) be a hyperbolic equilib-

rium and suppose that (1.11) holds. Then there exist positive constants δ1, γ1 and C1 de-

pending on m0 and ε such that, for associated initial data v0(x) ∈ H3
per(R) with mean m0

and u0(x) ∈ H2
per(R), satisfying ‖v0 − m0‖H3

per
+ ‖u0 − m1‖H2

per
≤ δ1, there exists a unique
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global solution (v,u)(t, x) of the periodic initial-boundary value problem (1.3) and (1.4)

which satisfies

v(t, x) − m0 ∈ C0(0,+∞; H2
per(R)), u(t, x) − m1 ∈ C0(0,+∞; H2

per(R)),

and

sup
x∈R

|(v,u)(t, x) − (m0,m1)| ≤ C1e−γ1t(‖v0 − m0‖H3
per

+ ‖u0 − m1‖H2
per

), 0 ≤ t ≤ ∞.

(1.20)

Moreover, there exists

t∗ = max

{
0,

1
γ1

ln
C1(‖v0 − m0‖H3

per
+ ‖u0 − m1‖H2

per
)

v1 − m0

}

for m0 < v1, or

t∗ = max

{
0,

1
γ1

ln
C1(‖v0 − m0‖H3

per
+ ‖u0 − m1‖H2

per
)

m0 − v2

}

for m0 > v2, such that, when t > t∗, the solution of system (1.3) and (1.4) does not exhibit

phase transitions,

v(x, t) > v1 (or < v2) for x ∈ (−∞,∞), t > t∗. (1.21)
�

Theorem 1.2 (Convergence in Elliptic Phase). Let (m0,m1) be an elliptic equilibrium

and suppose that (1.13) holds. Then there exist positive constants δ2, C2 and γ2 depend-

ing on m0 and ε such that, for associated initial data v0(x) ∈ H3
per(R) with mean m0 and

u0(x) ∈ H2
per(R), if ‖v0 − m0‖H3

per
+ ‖u0 − m1‖H2

per
≤ δ2, there exists a unique global so-

lution (v,u)(t, x) of the periodic initial-boundary value problem (1.3) and (1.4) which

satisfies

v(t, x) − m0 ∈ C0(0,+∞; H2
per(R)), u(t, x) − m1 ∈ C0(0,+∞; H2

per(R)),

and

sup
x∈R

|(v,u)(t, x) − (m0,m1)| ≤ C2e−γ2t(‖v0 − m0‖H3
per

+ ‖u0 − m1‖H2
per

), 0 ≤ t ≤ ∞.

(1.22)
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Moreover, there exists

t̄∗ = max

{
0,

1
γ2

ln
C2(‖v0 − m0‖H3

per
+ ‖u0 − m1‖H2

per
)

m0 − v2
,

1
γ2

ln
C2(‖v0 − m0‖H3

per
+ ‖u0 − m1‖H2

per
)

v1 − m0

}

such that, if t > t̄∗, then the solution of system (1.3) and (1.4) does not exhibit phase

transitions,

v1 < v(x, t) < v2 for x ∈ (−∞,∞), t > t̄∗. (1.23)
�

Remark 1.3. 1. As analyzed before, the sufficient condition (1.11) (see also

(1.13) in the elliptic case of m0) is also optimal for the nonlinear stability.

2. The condition (1.13) means that the artificial viscosity ε must be big. The

large viscosity ensures strong parabolicity of the system (1.3).

3. In both Theorems 1.1 and 1.2, we need that the initial perturbation (v0(x) −

m0,u0(x) − m1) is small to prove global existence of the solution, but ac-

cording to our numerical study (see Section 4), this may not be neces-

sary. We still observe global existence and convergence with large ini-

tial perturbations. The essential criterion seems to be the location of

the equilibrium (m0,m1) and the size of the viscosity ε needed to ensure

ε + σ ′(m0) > f ′(m0)2. �

Conjecture 1.4 (Oscillatory Phase Transitions). If m0 is in the elliptic region (v1, v2),

and if the artificial viscosity ε is small enough such that the condition (1.13) does

not hold, then based on the numerical experiments shown in Sections 4.4 and 4.5 we

conjecture that the solution (v,u)(t, x) is oscillating for all time and converges time-

asymptotically to a periodic, oscillatory standing wave (nontrivial steady-state solution)

(V,U)(x), which exhibits phase transitions through three different phases from the

hyperbolic phase to the elliptic phase and then to the second hyperbolic phase. Here

(V,U)(x) is a steady-state solution of (1.3), i.e., the solution of (1.15). �

This paper is organized as follows: in the next section,we first reduce the original

periodic initial-boundary value problem to an equivalent system, and show two key a

priori estimates using the energy method. In Section 3, we prove the main theorems

depending on the a priori estimates by a continuity argument. Finally, we carry out

numerical computations in Section 4, corresponding to all the cases described above.
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2 Reformulation of the original problem

2.1 New system of equations

First of all, we reformulate the original periodic initial-boundary problem (1.3) and (1.4)

into a new system of equations. Differentiating the second equation in (1.3) with respect

to x and substituting the first equation of (1.3) into it, we get a scalar pseudo-hyperbolic

wave equation for v(t, x),

vtt + vt − εvxxt − εvxx − σ(v)xx − f (v)x = 0, x ∈ (−∞,∞), t > 0,

(v, vt)(0, x) = (v0,u0x + εv0xx)(x),

v(t, x) = v(t, x + 2L),
1

2L

∫ 2L
0 v(t, x)dx = m0, t ≥ 0,

(2.1)

where the last condition in (2.1) is from (1.6). Letting

φ(t, x) := v(t, x) − m0, (2.2)

Eqn. (2.1) can be reduced to

φtt + φt − εφxxt − (ε + σ ′(m0))φxx − f ′(m0)φx = F1xx+F2x, x ∈ (−∞,∞), t > 0,

(φ,φt)(0, x) = (v0 − m0,u0x + εv0xx)(x) =: (φ0,φ1)(x),

φ(t, x) = φ(t, x + 2L),∫ 2L
0 φ(t, x)dx = 0,

(2.3)

where

F1 = σ(φ + m0) − σ(m0) − σ ′(m0)φ, F2 = f (φ + m0) − f (m0) − f ′(m0)φ. (2.4)

Due to its periodicity φ(x, t) = φ(x+2L, t),we define for any given T > 0 the solution space

X(0,T) = {φ(t, x)|φ ∈ C0(0,T ; H2
per(R)),φt(t, x) ∈ C0(0,T ; H1

per(R))}

with the norm

M(T) = sup
t∈[0,T]

{‖φ(t)‖H2
per

+ ‖φt(t)‖H1
per
}.

Now we have the following results.
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Proposition 2.1. Under the assumptions in Theorem 1.1, there exist positive constants

δ1, γ1 and C3 > 1 such that, if ‖φ0‖H2
per

+ ‖φ1‖H1
per

≤ δ1, then the periodic initial-boundary

value problem (2.3) has a unique global solution φ(t, x) ∈ X(0,∞) satisfying

‖φ(t)‖H2
per

+ ‖φt(t)‖H1
per

≤ C3e−γ1t(‖φ0‖H2
per

+ ‖φ1‖H1
per

), 0 ≤ t ≤ ∞. (2.5)
�

Proposition 2.2. Under the assumptions in Theorem 1.2, there exist positive constants

δ2, γ2 and C̄3 > 1 such that, if ‖φ0‖H2
per

+ ‖φ1‖H1
per

≤ δ1, then the periodic initial-boundary

value problem (2.3) has a unique global solution φ(t, x) ∈ X(0,∞) satisfying

‖φ(t)‖H2
per

+ ‖φt(t)‖H1
per

≤ C̄3e−γ2t(‖φ0‖H2
per

+ ‖φ1‖H1
per

), 0 ≤ t ≤ ∞. (2.6)
�

2.2 A priori estimates

To prove Propositions 2.1 and 2.2, we need several lemmas to establish the a priori

estimates for the solution φ(t, x) of (2.3). First, we prove a so-called Poincaré inequality.

Lemma 2.3. Let φ(t, x) ∈ X(0,T) for T > 0 be a solution of (2.3). Then, for any given t ≥ 0,

there exists at least one point x∗ = x∗(t) ∈ [0, 2L] such that φ(t, x∗) = 0. Moreover,

‖φ(t)‖L∞per
≤ 2L‖φx(t)‖L∞per

, (2.7)

‖φ(t)‖L2
per

≤ 2L‖φx(t)‖L2
per
, (2.8)

‖φ(t)‖L1
per

≤ 2L‖φx(t)‖L1
per

(2.9)

holds for t ∈ [0,T]. �

Proof. For any given t ≥ 0, since φ(t, x) is periodic and
∫ 2L

0 φ(t, x)dx = 0, there must be

at least one point, say x∗ = x∗(t) ∈ [0, 2L], such that φ(t, x∗) = 0. If this is not true, then

either φ(t, x) > 0 or φ(t, x) < 0 for all x ∈ [0, 2L], which leads to
∫ 2L

0 φ(t, x)dx > 0 or∫ 2L
0 φ(t, x)dx < 0, which is in contradiction with the condition

∫ 2L
0 φ(t, x)dx = 0. Thus,

φ(t, x) = φ(t, x∗) +

∫ x

x∗

φx(t, y)dy =

∫ x

x∗

φx(t, y)dy

implies

|φ(t, x)| ≤
∫ x

x∗

|φx(t, y)|dy ≤
∫ 2L

0
|φx(t, x)|dx. (2.10)
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Immediately, (2.10) implies (2.7) as follows

‖φ(t)‖L∞per
≤ sup

x∈[0,2L]

∫ 2L

0
|φx(t, x)|dx ≤ 2L‖φx(t)‖L∞per

,

and (2.9) as follows

‖φ(t)‖L1
per

≤
∫ 2L

0

( ∫ 2L

0
|φy(t, y)|dy

)
dx ≤ 2L‖φx(t)‖L1

per
.

Furthermore, squaring both sides of (2.10) and using the Cauchy-Schwarz inequality

leads to

|φ(t, x)|2 ≤
(∫ 2L

0
|φx(t, x)|dx

)2

≤ 2L
∫ 2L

0
|φx(t, x)|2dx.

Integrating now with respect to x over [0, 2L] yields

‖φ(t)‖2
L2

per
≤ 4L2‖φx(t)‖2

L2
per
,

which completes the proof. �

Second, we show the local existence of the solution φ(t, x) of (2.3).

Lemma 2.4 (Local Existence). For any given initial data (φ0,φ1)(x) ∈ H2
per(R) × H1

per(R),

letting δ̄ be a positive constant such that ‖φ0‖H2
per

+ ‖φ1‖H1
per

≤ δ̄, there exists a time

t0 = t0(δ̄) > 0 such that (2.3) has a unique solution φ(t, x) ∈ X(0, t0) and M(t0) ≤
√

2C̄δ̄,

where

C̄ =

(
max

{3
4
,

3ε + σ ′(m0)
4

}/
min

{1
4
,

3ε + σ ′(m0)
4

})1/2
≥ 1. (2.11)

�

Proof: This local result can be shown using a fixed point iteration, (cf. [23]). We omit the

details here.�

Finally, we have the following a priori estimates.

Lemma 2.5 (A Priori Estimate in the Hyperbolic Case). Under the assumptions in Theo-

rem 1.1, let φ(t, x) be a local solution of (2.3) in X(0,T) for a given constant T > 0. Then

there exist positive constants C3 > 1 and δ3 independent of T such that, if M(T) ≤ δ3, then

‖φ(t)‖H2
per

+ ‖φt(t)‖H1
per

≤ C3(‖φ0‖H2
per

+ ‖φ1‖H1
per

)e−γ1t, 0 ≤ t < T. (2.12)
�
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Lemma 2.6 (A Priori Estimate in the Elliptic Case). Under the assumptions in Theorem

1.2, let φ(t, x) be a local solution of (2.3) in X(0,T) for a given constant T > 0. Then there

exist positive constants C̄3 > 1 and δ4 independent of T such that, if M(T) ≤ δ4, then

‖φ(t)‖H2
per

+ ‖φt(t)‖H1
per

≤ C̄3(‖φ0‖H2
per

+ ‖φ1‖H1
per

)e−γ2t, 0 ≤ t < T. (2.13)
�

Proof of Lemma 2.5. Multiplying (2.3) by ( 1
2φ + φt)e2γ1t and doing a simple but tedious

computation, we obtain

{e2γ1tA1(φ,φt,φx)}t + e2γ1tA2(φ,φt,φx,φxt) − e2γ1t{A3(φ,φt,φx,φxt)}x

= e2γ1t(
1
2

φ + φt)(F1xx + F2x), (2.14)

where

A1(φ,φt,φx) = (
1
4

−
γ1

2
)φ2

+
1
2

φφt +
1
2

φ2
t +

3ε + σ ′(m0)
4

φ2
x, (2.15)

A2(φ,φt,φx,φxt) = (
1
2

− γ1)φ2
t − 2γ1(

1
2

− γ1)φ2
− f ′(m0)φxφt

+

[
(
1
2

− γ1)(ε + σ ′(m0)) −
εγ

2

]
φ2

x + εφ2
xt, (2.16)

A3(φ,φt,φx,φxt) = ε(
1
2

φ + φt)φxt +
1
4

f ′(m0)φ2

+(ε + σ ′(m0))(
1
2

φ + φt)φx. (2.17)

Let 0 < γ1 < 1
4 . Using the inequality |ab| ≤ ηa2 +

1
4η b2 for any η > 0, we get

1
2

φφt ≤
η0

2
φ2

t +
1

8η0
φ2 for any η0 > 0,

and selecting η0 such that

1
2 − 4γ1

< η0 < 1, i.e.,
1

8η0
<

1
4

−
γ1

2
,

we obtain

(
1
4

−
γ1

2
)φ2

+
1
2

φφt +
1
2

φ2
t ≥ 1 − η0

2
φ2

t + (
1
4

−
γ1

2
−

1
8η0

)φ2 ≥ C4(φ2
+ φ2

t )

with the constant C4 given by

C4 = min

{
1 − η0

2
,

1
4

−
γ1

2
−

1
8η0

}
.
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We therefore obtain the estimate

C5(φ2
+ φ2

t + φ2
x) ≤ A1(φ,φt,φx) ≤ C6(φ2

+ φ2
t + φ2

x), (2.18)

where the constants C5 and C6 are given by

C5 = min

{
C4,

3ε + σ ′(m0)
4

}
, C6 = max

{
3
4
,

1
2

(1 − γ1),
3ε + σ ′(m0)

4

}
,

for γ1 < 1/4.

Integrating (2.14) over [0, 2L] × [0, t] and using (2.18) leads to

C5e2γ1t‖(φ,φt,φx)(t)‖2
L2

per
+

∫ t

0
e2γ1s

∫ 2L

0
A2(φ,φt,φx,φxt)(s, x)dxds

≤ C6‖(φ0,φ1,φ0,x)‖2
L2

per
+

∫ t

0

∫ 2L

0
e2γ1s(

1
2

φ + φt)(F1xx + F2x)dxds.
(2.19)

Now we are estimating the second term on the left-hand-side of (2.19). Using Lemma 2.3,

we first have

− 2γ1(
1
2

− γ1)‖φ(t)‖2
L2

per
≥ −8L2γ1(

1
2

− γ1)‖φx(t)‖2
L2

per
. (2.20)

On the other hand, the inequality |ab| ≤ ηa2 +
1

4η b2 for any η > 0 gives

|f ′(m0)φxφt| ≤
η

2
φ2

t +
1
2η

f ′(m0)2φ2
x. (2.21)

Thus, using (2.16), we obtain

∫ 2L

0
A2(φ,φt,φx,φxt)(s, x)dx

= (
1
2

− γ1)‖φt(s)‖2
L2

per
− 2γ1(

1
2

− γ1)‖φ(s)‖2
L2

per
+ ε‖φxt(s)‖2

L2
per

+

[
(
1
2

− γ1)(ε + σ ′(m0)) −
εγ1

2

]
‖φx(s)‖2

L2
per

−

∫ 2L

0
f ′(m0)φxφtdx

≥ (
1 − η

2
− γ1)‖φt(s)‖2

L2
per

+ ε‖φxt(s)‖2
L2

per
+ C7‖φx(s)‖2

L2
per
, (2.22)

where the constant C7 is given by

C7 :=
1
2

{
(ε + σ ′(m0)) −

1
η

f ′(m0)2
− γ1

[
2(ε + σ ′(m0)) + ε + 16L2(

1
2

− γ1)
]}

. (2.23)
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Applying (1.11), i.e.,

0 <
f ′(m0)2

ε + σ ′(m0)
< 1,

and selecting η to be such that

f ′(m0)2

ε + σ ′(m0)
< η < 1,

we obtain

ε + σ ′(m0) −
1
η

f ′(m0)2 > 0.

Furthermore, letting γ1 be such that γ1 � 1, the constant C7 satisfies

C7 =
1
2

{
(ε + σ ′(m0)) −

1
η

f ′(m0)2
− γ1

[
2(ε + σ ′(m0)) + ε + 16L2(

1
2

− γ1)
]}

> 0.

(2.24)

Thus, we can estimate the second term on the left-hand-side of (2.22) by

∫ t

0
e2γ1s

∫ 2L

0
A2(φ,φt,φx,φxt)(s, x)dxds ≥ C8

∫ t

0
e2γ1s‖(φt,φx,φxt)(s)‖2

L2
per

ds, (2.25)

where the constant C8 is given by

C8 = min

{
1 − η

2
− γ1, ε,C7

}
> 0.

The next step is to estimate the nonlinear term in (2.19). Using integration by parts,

|F1x | = O(1)|φφx| and |F2x | = O(1)|φφx|, the Sobolev inequality |φ(t, x)|, |φx(t, x)| ≤
C‖φ(t)‖H2

per
≤ CM(t), as well as Lemma 2.3, we have

∣∣∣∣∫ 2L

0
F1xx(

1
2

φ + φt)dx

∣∣∣∣ =

∣∣∣∣∫ 2L

0
F1x(

1
2

φx + φxt)dx

∣∣∣∣
≤ C

∫ 2L

0
|φφx |(

1
2

|φx | + |φxt|)dx ≤ C9M(t)‖(φx,φxt)(t)‖2
L2

per

(2.26)

and ∣∣∣∣∫ 2L

0
F2x(

1
2

φ + φt)dx

∣∣∣∣ ≤ C
∫ 2L

0
|φφx|(

1
2

|φ| + |φt|)dx

≤ CM(t)‖(φ,φx,φt)(t)‖2
L2

per
≤ C10M(t)‖(φx,φt)(t)‖2

L2
per

(2.27)
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for some positive constants C9 and C10. Substituting (2.25)–(2.27) back into (2.19) yields

e2γ1t‖(φ,φt,φx)(t)‖2
L2

per
+

C8 − (C9 + C10)M(t)
C5

∫ t

0
e2γ1s‖(φt,φx,φxt)(s)‖2

L2
per

ds

≤ C6

C5
‖(φ0,φ1,φ0x)‖2

L2
per

. (2.28)

Let δ3 be such that

0 < δ3 <
C8

C9 + C10
.

If M(t) ≤ δ3, we obtain from (2.28)

‖(φ,φt,φx)(t)‖2
L2

per
≤ C6

C5
e−2γ1t‖(φ0,φ1,φ0x)‖2

L2
per

. (2.29)

To estimate the higher order derivatives of the solution, we differentiate (2.3) with

respect to x and multiply by ( 1
2φx + φxt)e2γ1t to obtain

{e2γ1tA1(φx,φxt,φxx)}t + e2γ1tA2(φx,φxt,φxx,φxxt) − e2γ1t{A3(φx,φxt,φxx,φxxt)}x

= e2γ1t(
1
2

φx + φxt)(F1xxx + F2xx). (2.30)

Now integrating (2.30) over [0, 2L] × [0, t] and using (2.28), as we did in (2.29), we obtain

‖(φx,φxt,φxx)(t)‖2
L2

per
≤ C11e−2γ1t‖(φ0,φ1,φ0x)‖2

H1
per

(2.31)

for some positive constant C11, provided M(t) ≤ δ3.

Combining (2.29) and (2.31) yields (2.12) for some positive constant C3 > 1 and

the proof is complete. �

Proof of Lemma 2.6. This lemma can be proved similar to the one above. We omit the

details here. �
Based on Lemmas 2.4, 2.5, and 2.6, respectively, we can prove Propositions 2.1

and 2.2 as follows.

2.3 Proof of proposition 2.1 and proposition 2.2

Now we are going to prove Proposition 2.1 and Proposition 2.2. We focus only on the

proof of Proposition 2.1, because Proposition 2.2 can be proved similarly. Let
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δ1 =
δ3√
2C̄C3

, δ̄ = C3δ1 =
δ3√
2C̄

and the initial data (φ0,φ1) satisfy ‖φ0‖H2
per

+ ‖φ1‖H1
per

≤ δ1 < δ̄ due to C3 > 1.

By Lemma 2.4, there exists t0 = t0(δ̄) > 0 such that the solution of (2.3) exists

in X(0, t0) and satisfies M(t0) ≤
√

2C̄δ̄. On the interval [0, t0], since M(t0) ≤
√

2C̄δ̄ = δ3,

applying the a priori estimate (Lemma 2.5), we further have

‖φ(t)‖H2
per

+‖φt(t)‖H1
per

≤ C3(‖φ0‖H2
per

+ ‖φ1‖H1
per

)e−γ1t

≤ C3δ1 = δ̄ =
δ3√
2C̄

, t ∈ [0, t0], (2.32)

i.e., M(t0) ≤ δ̄ = δ3/(
√

2C̄). Now, we consider the periodic initial-boundary value problem

(2.3) with the new “initial data” (φ(t0, x),φt(t0, x)) at the new “initial time” t = t0, since

‖φ(t0)‖H2
per

+ ‖φt(t0)‖H1
per

≤ δ̄ (see (2.32)), then Lemma 2.4 gives φ(t, x) ∈ X(t0, 2t0) and

M(2t0) ≤
√

2C̄δ̄ = δ3.

Thus, we can apply Lemma 2.5 again on [0, 2t0] to have

‖φ(t)‖H2
per

+‖φt(t)‖H1
per

≤ C3(‖φ0‖H2
per

+ ‖φ1‖H1
per

)e−γ1t

≤ C3δ1 = δ̄ =
δ3√
2C̄

, t ∈ [0, 2t0]. (2.33)

Repeating the previous procedure, we extend the existence interval of φ(t, x) step by step

to [0,nt0] (n ∈ N+) and finally to [0,∞), i.e., φ(t, x) ∈ X(0,∞), as well as

‖φ(t)‖H2
per

+ ‖φt(t)‖H1
per

≤ C3(‖φ0‖H2
per

+ ‖φ1‖H1
per

)e−γ1t, for all t ∈ [0,∞),

and the proof is complete. �

3 Proof of theorems 1.1 and 1.2

We first prove Theorem 1.1. Since in Proposition 2.1, we need φ0(x) = v0(x)−m0 ∈ H2
per(R)

and φ1(x) = u0x(x) + εv0xx ∈ H1
per(R), we have to assume v0(x) − m0 ∈ H3

per(R) and

u0(x) − m1 ∈ H2
per(R) in Theorem 1.1. With m1 = f (m0) from (1.6), we obtain from the

second equation of (1.3)

(u − m1)t − (σ(v) − σ(m0))x = f (v) − f (m0) − (u − m1),
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which is equivalent to

u(t, x) = u0(x) +

∫ t

0
e−τ [(σ(v) − σ(m0))x + f (v) − f (m0)](τ , x)dτ .

Since v(t, x) = φ(t, x) + m0, Proposition 2.1 gives existence and uniqueness of the global

solution (v,u)(t, x) to the periodic initial-boundary value problem (1.3) and (1.4), as well

as the estimate (1.20) from (2.5) by Sobolev’s inequality for a positive constant C1.

It remains to prove that there is no phase transition after time t∗. For m0 ∈ (v2,∞)

(the case m0 ∈ (−∞, v1) can be treated similarly), using (1.20), where φ0 = v0 − m0 and

φ1 = v1, we obtain

v(t, x) = m0 + (v(t, x) − m0)

≥ m0 − sup
x∈[0,2L]

|v(t, x) − m0|

≥ m0 − C1e−γ1t(‖v0 − m0‖H3
per

+ ‖u0 − m1‖H2
per

)

= v2 + (m0 − v2) − C1e−γ1t(‖v0 − m0‖H3
per

+ ‖u0 − m1‖H2
per

)

≥ v2

for t ≥ t∗, where

t∗ = max

{
0,

1
γ1

ln
C1(‖v0 − m0‖H3

per
+ ‖u0 − m1‖H2

per
)

m0 − v2

}
.

Theorem 1.2 can be proved similarly. We omit the details here. �

4 Numerical computations

We solve the periodic initial-boundary value problem (1.3)–(1.4) using the pressure

function σ(v) = v3 − v, the flux function f (v) =
1
2v2 and the periodicity condition

v(x−π, t) = v(x+π, t), i.e. L = π. According to the sign of σ ′(v), the phases are divided into

a first hyperbolic region (−∞,− 1√
3
), an elliptic region (− 1√

3
, 1√

3
) and a second hyperbolic

region ( 1√
3
,∞), where v1 = −

1√
3

and v2 =
1√
3

are the two phase boundaries.

4.1 Two numerical schemes

The numerical schemes adopted here are the finite difference method and the Fourier

pseudo-spectral method, according to different cases.



20 M. J. Gander, M. Mei and E. J. P. Georg Schmidt

4.1.1 Finite Difference Method. If the initial average m0 is located in the hyperbolic

regions (−∞, v1) ∪ (v2,∞) and not close to the phase boundary v = v1 or v = v2,

respectively, the system (1.3) and (1.4) is strongly hyperbolic. If the initial average m0 is

located in the elliptic regions (v1, v2) and the artificial viscosity ε is big, the system (1.3)

and (1.4) is strongly parabolic. In these two cases, we use the central finite-difference

method to carry out the numerical experiments, because in these cases, the adopted

scheme is fast. Let N denote the number of time steps and M the number of spatial steps,

T be the length of the time interval we simulate, and ∆x :=
2π
M be the spatial discretization

step and ∆t :=
T
N be the time discretization step. To discretize the system (1.3) and (1.4),

we use the centered finite difference scheme

vn+1
m − vn

m

∆t
−

un
m+1 − un

m−1

2∆x
= ε

vn
m+1 − 2vn

m + vn
m−1

(∆x)2
, (4.1)

un+1
m − un

m

∆t
−

σ(vn
m+1) − σ(vn

m−1)
2∆x

= f (vn
m) − un

m, (4.2)

with the initial condition

(v0
m,u0

m) = (v0,u0)(m∆x), (4.3)

and the 2π-periodic boundary condition

(vn
j ,u

n
j ) = (vn

j+M ,un
j+M), j = −1, 0, (4.4)

and thus (vn
m,un

m) are approximations to (v,u)(n∆t,m∆x). Since our scheme is explicit

in time, there is a stability constraint on the time step; we use as a guideline the linear

stability condition

ε
∆t

(∆x)2
≤ 1

2
, (4.5)

but often need to choose the time step slightly smaller due to the nonlinear nature of

the problem. In the following numerical experiments for supporting Theorem 1.1 and

Theorem 1.2, we use M = 100, which in several of our simulations over long time

intervals requires many time steps for stability. We therefore often use less resolution

when plotting the results, than we used for the actual computations, to avoid cluttering

the graphs with too many data points.



Phase Transitions in a Relaxation Model of Mixed Type with Periodic Boundary Condition 21

4.1.2 Pseudo-Spectral Method. If the initial average m0 is in the unstable elliptic

region (v1, v2), and the viscosity ε is small, we adopt the Fourier pseudo-spectral method

to carry out our numerical experiments. We reduce (1.3) and (1.4) to


vtt + vt − εvxxt − εvxx − σ(v)xx − f (v)x = 0,

(v, vt)|t=0 = (v0, v1)(x),
1

2L

∫ 2L
0 v(x)dx = m0,

(4.6)

where v1(x) = u0x(x) + εv0xx(x). Let N = 2s, where s > 0 is an integer (in what follows,

we set N = 28 = 258 for our numerical experiments), and let ∆x =
2π
N , ∆t =

1
εN2 such that

the stability condition (4.5) holds. Let v̂(t, k) be the Fourier transforma of v(t, x). Taking

a Fourier transform of (4.6), we obtain

v̂tt + (1 + εk2)v̂t + εk2v̂ + k2σ̂(v) + ikf̂ (v) = 0,

(v̂, v̂t)|t=0 = (v̂0, v̂1)(k),
(4.7)

and then discretize (4.7) in time to obtain

v̂n+1 − 2v̂n + v̂n−1

(∆t)2
+ (1 + εk2)

v̂n+1 − v̂n−1

2∆t
+ εk2v̂n

+ k2σ̂(v)n + ikf̂ (v)n = 0.

Taking the inverse Fourier transform of the above equation, we obtain vn
m. This is the so-

called Fourier pseudo-spectral method, which is adopted to carry out some numerical

experiments for Conjecture 1.4, see the numerical results in Sections 4.4 and 4.5. Again,

in order to avoid cluttering the graphs with too many data points, as mentioned before,

we usually use less resolution for plotting the results.

4.2 Numerical simulations for theorem 1.1

To illustrate Theorem 1.1, we select the initial values to be v0(x) = 0.8 + 0.5 sin 2x

and u0(x) = 3 sin 4x, so that some parts of v0(x) are in the hyperbolic region ( 1√
3
,∞),

and some parts are in the elliptic region (− 1√
3
, 1√

3
). The average of this initial data,

m0 =
1

2π

∫ π
−π v0(x)dx = 0.8 > 1√

3
, is in the hyperbolic region ( 1√

3
,∞). The viscosity ε is

chosen to be ε = 0.5, ensuring that the condition (1.11), i.e., ε + σ ′(m0) > f ′(m0)2, is

satisfied. Figure 1 shows on the right that the solution v(x, t) of (1.3) and (1.4) converges

to the average m0 = 0.8, and stays in the same hyperbolic region ( 1√
3
,∞) as the average of
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Figure 1 On the left initial, transient behavior for an example where the average

of the initial data is in the hyperbolic region ( 1√
3
,∞), and on the right the asymp-

totic long time behavior, where the solution converges to the average of the initial

data, as predicted by Theorem 1.1.

the initial condition, after a short time of initial oscillation. There is no phase transition

after this short time of initial oscillation, as predicted by Theorem 1.1. On the left in

Figure 1 we show a closeup view in time of how the initial condition with two peaks

transits into a growing solution with four peaks, before decaying to the average of the

initial data.

4.3 Numerical simulations for theorem 1.2

We now choose v0(x) = 0.5 sin 2x and u0(x) = 3 sin 4x, such that the average of the initial

data is in the elliptic region, m0 =
1

2π

∫ π

−π v0(x)dx = 0 ∈ (− 1√
3
, 1√

3
). Choosing the viscosity

to be ε = 2, the sufficient condition (1.13), i.e. ε = 2 > |σ ′(m0)| + f ′(m0)2 = 1, holds, and

hence Theorem 1.2 applies, which again predicts asymptotic convergence to the average

of the initial condition. In Figure 2, on the right, we show the convergence of the solution

v(t, x) to m0 = 0. No phase transition occurs, as predicted by our analysis. In this case,

although the average of the initial value m0 is in the elliptic region, with the viscosity

big enough, the system (1.3) and (1.4) behaves strongly like a parabolic equation, and we

obtain asymptotic convergence. In Figure 2, on the left, we show again a closeup in time

of the solution, where one can see that the initial condition with 2 peaks shows a rapid

transition to a solution with 4 peaks, before the asymptotic decay starts to set in.

We now vary the viscosity ε, leaving all the remaining parameters and the initial

conditions the same. We choose first three values of the viscosity, ε = 1, ε = 0.9, and

ε = 0.8. Note that the condition (1.13) implies that ε = 1 is right on the boundary,

while the condition is violated for smaller ε. In Figure 3 we show in the three columns,
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Figure 2 On the left initial, transient behavior for an example where the average

of the initial data is in the elliptic region, m0 ∈ (− 1√
3
, 1√

3
), and on the right the

asymptotic long time behavior, where the solution converges to the average of the

initial data, as predicted by Theorem 1.2.

corresponding to the three values of the viscosity ε, snapshots at the times t1 = 0.05,

t2 = 0.4, t3 = 2, t4 = 50, and t5 = 100 of the solution v. While for short time the

solutions still look very similar for the different values of the viscosity ε, one can clearly

see for larger t a fundamental change in the behavior of the system: while for ε = 1 the

solution still seems to decay toward its average, this process is slowed down very much

for ε = 0.9 and ε = 0.8. Comparing the last two rows at times t = 50 and t = 100 for

ε = 0.9 and ε = 0.8, the solutions do not decay any further and seem to stay oscillatory.

This indicates that the sufficient condition (1.13) could also be necessary. One also

sees other interesting behavior: the oscillations that appeared to be very regular at the

beginning start to change, and some oscillations have become wider at the cost of their

neighbors, which becomes especially apparent in the last row of Figure 3. We investigate

this phenomenon further numerically in the next subsection.

4.4 Numerical simulations for conjecture 1.4: (I) continuous initial data

We investigate now numerically the behavior of solutions for viscosities ε < 1. Keeping

all the other parameters the same as before, but ε = 0.5 so that the condition (1.13)

does not hold, we first show the behavior of the solution v(t, x) in Figure 4. As shown

in Figure 4, when t = 0, the initial data v0(x) oscillates with two peaks and two valleys

between −0.5 and 0.5 which is in the elliptic region, (− 1√
3
, 1√

3
), and there are no phase

transitions. Then soon the solution v(t, x) goes through a transition, four peaks appear

and the solution increases until it exhibits phase transitions through all three phases.
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Figure 3 Snapshots of v(x, t) at t = 0.05,0.4,2,50,100 for ε = 1 in the left column,

for ε = 0.9 in the middle column, and for ε = 0.8 in the right column.
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Figure 4 Continuous initial data in the elliptic region, m0 ∈ (− 1√
3
, 1√

3
), with a

small viscosity ε = 0.5. The solution v(t,x) behaves like a standing wave with phase

transitions.
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Figure 5 Snapshots of v(x, t) at t = 0,0.2,0.5,1,100,5000 for ε = 0.5 and m0 = 0.

The solution v(t,x) exhibits phase transitions and behaves like a standing wave, as

predicted in Conjecture 1.4.

Then, as one can see in Figure 5, a steady state seems to form, with four regular flat peaks

and valleys.

We show also two other experiments, where the average of the initial data v0 is

nonzero. We keep u0 as before, but set for the first experiment v0 =
1
2(1 + sin(2x)), such
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Figure 6 Continuous initial data in the elliptic region, m0 =
1
2 ∈ (− 1√

3
, 1√

3
), with a

small viscosity ε = 0.5. The solution converges to a stationary wave.
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Figure 7 Snapshots of v(x, t) at t = 0,0.2,1,5,100,5000 for ε = 0.5 and m0 = 0.5.

The solution v(t,x) exhibits phase transitions and behaves like a standing wave, as

predicted in Conjecture 1.4.

that the average m0 =
1
2 is still in the elliptic region. In Figure 6 the result v(t, x) is

shown up to t = 50, and in Figure 7 we show the graph of the solution v(t, x) for time

t = 0, 0.2, 1, 5, 100, 5000, respectively. The solution converges to a stationary wave which

has four big peaks and four small valleys, and after a short initial time, the solution

exhibits phase transitions through all three phases from the hyperbolic phase to the

elliptic phase and then to the other hyperbolic phase.
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Figure 8 Continuous initial data in the elliptic region, m0 = −
1
2 ∈ (− 1√

3
, 1√

3
), with

a small viscosity ε = 0.5. The solution converges to a stationary wave.
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Figure 9 Snapshots of v(x, t) at t = 0,0.2,0.5,1,100,5000 for ε = 0.5 and m0 =

−0.5. The solution v(t,x) exhibits phase transitions and behaves like a standing

wave, as predicted in Conjecture 1.4.

Next we set v0 =
1
2(−1 + sin(2x)), such that the average m0 = −

1
2 is still in

the elliptic region, but now negative. In Figures 8 and 9, we show the corresponding

results.
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Figure 10 Riemann initial data in the elliptic region, m0 = 0 ∈ (− 1√
3
, 1√

3
), with a

small viscosity ε = 0.5. The solution converges to a stationary wave.

4.5 Numerical simulations for conjecture 1.4: (II) riemann initial data

In this section we keep ε = 0.5, but now we change the initial data to the discontinuous

Riemann data

v0(x) =


−α, x ∈ [−π,−γ),

β, x ∈ [−γ, γ),

−α, x ∈ [γ,π],

(4.8)

and u0(x) = 0. Here α and β are real parameters, and 0 < γ < π.

For the first experiment, we choose a symmetric configuration, γ = π/2, and set

α = β = 1. Then the initial average is m0 =
1

2π

∫ π
−π v0(x)dx = 0, which is in the elliptic

region (− 1√
3
, 1√

3
), and the condition (1.13) does not hold. In Figure 10, we show a graph

of the solution v(t, x) up to time t = 200, and in Figure 11 we show snapshots in time of

the evolution of v. The solution converges to a stationary wave which has one regular flat

peak and valley, and after time t = 5 the solution exhibits phase transitions through all

three phases.

For the second experiment, we keep the symmetric configuration, γ = π/2, and

set α = β = 0.1. The initial average m0 = 0 is again in the elliptic region (− 1√
3
, 1√

3
), and

the condition (1.13) does not hold. But now there are no phase transitions initially, in

contrast to the first experiment. In Figure 12 we show snapshots in time of the evolution

of v. One can see that the Riemann data is first rapidly smoothed and strongly attracted

toward the hyperbolic regions: three peaks reach this region and thus six transient phase
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Figure 11 Snapshots in time at t = 0,0.1,0.5,10,200,5000 of the solution v(t,x)

using symmetric Riemann initial data over all three phases. The solution v(t,x) ex-

hibits phase transitions and behaves like a standing wave, as predicted in Conjec-

ture 1.4.
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Figure 12 Snapshots in time at t = 0,5,10,30,65,100 of the solution v(t,x) using

symmetric Riemann initial data which is in the elliptic region only.

transitions form. These however disappear fairly quickly, and at t = 100 one can see a

very similar solution, as in the case of large Riemann initial data: the numerical solution

reaches a numerical steady state at t = 10.
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Figure 13 The solution v(t,x) with wide Riemann data with average m0 =
1
2 , over

all the phases, where a standing wave has formed.
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Figure 14 Snapshots in time at t = 0,10,1000 of the solution v(t,x) using

symmetric Riemann initial data whose average is in the elliptic region.

We now abandon the configuration with average initial data equal to zero and

show two numerical experiments, both with large initial data in both the hyperbolic

and elliptic region. For the first experiment we choose γ =
3π
4 , so the average m0 =

1
2

is positive and in the elliptic region. The results we obtain are shown in Figures 13 and

14. Again we see that very quickly two phase transitions are established, and soon the

solution behaves like a standing wave with phase transitions.

For the second experiment with nonzero initial average m0, we choose γ =
π
4 , so

that the average of v0 is negative, m0 = −
1
2 , but still in the elliptic region. As shown in

Figures 15 and 16, we note that the solution v(t, x) behaves like a standing wave with

phase transitions.
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Figure 15 The solution v(t,x) with narrow Riemann data and average m0 = −
1
2 is

across all three phases, and again a standing wave forms.

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5
hyperbolic

hyperbolic

elliptic

t=10

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5
hyperbolic

hyperbolic

elliptic

t=1000

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5
hyperbolic

hyperbolic

elliptic

t=0

Figure 16 Snapshots in time at t = 0,10,1000 of the solution v(t,x) using

symmetric Riemann initial data whose average is in the elliptic region.

5 Conclusions

We have analyzed the long-time behavior of the solution of a 2 × 2 system of mixed

type with a relaxation term and periodic boundary condition, in which the solution may

exhibit phase transitions. We showed that the occurrence of phase transitions in the

solution is dependent on the location of the initial data and the size of the artificial

viscosity ε. More precisely, as long as the average of the initial data m0 and the viscosity

ε satisfy the optimal sufficient condition (1.11), i.e., ε + σ ′(m0) > f ′(m0)2, after a short

time oscillation, the solution (v,u)(t, x) does not exhibit phase transitions but converges

to its initial average (m0,m1), provided that the initial condition does not deviate too

much from its average. In particular, if the initial average m0 in the hyperbolic region is

far away from the phase boundary v = v1 or v = v2, such that σ ′(m0) > f ′(m0)2, then

the system (1.3) is strongly hyperbolic, and even without artificial viscosity, i.e., ε = 0,
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the solution (v,u)(t, x) has been proved to converge in the hyperbolic phase to the initial

average (m0,m1) exponentially in time. If the initial average m0 is in the unstable elliptic

region, and if the viscosity ε is big enough, such that (1.13) holds, then the system (1.3)

behaves strongly like a parabolic system, and we proved convergence of the solution

(v,u)(t, x) to its initial average (m0,m1) without phase transition. These are our main

theoretical results.

For the case of small viscosity and with the initial average m0 in the elliptic

phase, i.e., (1.13) does not hold, our numerical study for σ(v) = v3 − v shows that the

solution v(t, x) is oscillatory for all time and exhibits phase transitions. In particular,

the solution v(t, x) behaves always like a periodic standing wave (steady-state solution).

However, these interesting problems of wave stability are open theoretically at this

moment; they are our conjectures in the present paper.
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