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1. Introduction

In this paper we study the large-time behavior of the global solutions to the Cauchy
problem for the generalized Benjamin-Bona—Mahony-Burgers (BBM-B) equations in
the form

Uy = Uy — Olhs + Pt + P(u)y =0, x€R', 120, (L.1)
with the initial data
uli=0 = up(x) >« as x — £oo, (1.2)

where o is a positive constant, § and i are any given constants in R!, and ¢(u) is a
C?—smooth nonlinear function.
Spectial case of Eq. (1.1) is the alternative regularized long-wave equation

Uy — Upyy + Uy + utiy =0 (1.3)

proposed by Peregrine [12] and Benjamin et al. [2]. This equation features a balance
between nonlinear and dispersive effects, but takes no account of dissipation. In the
physical sense, Eq. (1.1) with the dissipative term —ou, is proposed if the good
predictive power is desired, such problem arises in the phenomena for both the bore
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propagation and the water waves. The temporal decay rates of the solution of Egs. (1.1)
and (1.2) are studied in a number of works, see [1,3-8, 11, 14, 15] and the references
therein. Among them, when # = 0, and [ ug(y)dy = 0, xup(x) € L, or [d(&)] <
C|¢|, Amick et al. [1], Bona and Lou [3,4] and Dix [8] showed the decay rates, like
lu(®)llz2 = O(t~3*) and [ju(#)ll;2 = O(t=*) as ¢ — oo, of the solution of Eg. (1.1)
for ¢(u) = uP*'/(p + 1) and p > 1. Zhang [14, 15] proved the time decay of the
solution for Egs. (1.1) and (1.2) as (1+¢)~"2 in L°°-norm of u when the nonlinearity
$(u) satisfies |¢'(u)] < Clu|P*!, |¢"(u)| < Clu|? for p > 3. In this note, our purpose
is to show further the asymptotic behavior of the solution of Egs. (1.1) and (1.2). We
here improve essentially the previous works [1, 3, 4, 8, 14, 15] with the stronger decay
rates and the weaker sufficient conditions. Other new results will also be shown in the
present paper. Precisely, dropping the conditions xup € L' or |id(¢)| < C|¢], we will
prove the time decay rates of the solution like [|u(f)||zc = O(t™"), ||u(t)] 2 = Ot~*)
and [lux(?)||2 = O(t>"*) as t — oo, for any C?>—smooth nonlinearity ¢(x). For details,
see Theorem 2.1 and Remark 2.2 below. The scheme of the proof we adopt is based
on the method of Fourier transform together with the energy method, which also was
used by the author [10] to treat with the Rosenau-Burgers equations.

Our plan in this paper is as follows. After stating some notations in the last part of
this section, we give our main theorem on the decay rates of the solution of Egs. (1.1)
and (1.2) in Section 2. Section 3 is the proof of the main theorem.

Notations. We first give some notations for simplicity. C always denotes some positive
constants without confusion. H* (k > 0 integer) and W*” denote the usual Sobolev
spaces with the norm || - || and | - |[«,, respectively. L? denotes the square integrable
space with the norm || ||, and L is the essential bounded space with the norm || - [loo-
Suppose that f(x) € L' N L?(R); we define the Fourier transforms of f(x) as follows:

FIANE = @) = [ fwe ax
R
Let 7 and B be a positive constant and a Banach space, respectively. C*(0,T;B)
(k > 0) denotes the space of B-valued k-times continuously differentiable functions

on [0,7], and L?(0,T;B) denotes the space of B-valued L2-functions on [0,7]. The
corresponding spaces of B-valued function on [0, oc) are defined similarly.

2. Main theorem
Throughout this paper, we suppose that
o0
/ (uo(x) —t)dx = 0. (2.1)
—00
Let

o(x) = / (uo(y) — @) dy 22)
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and

v(t,x)=/ (ult, y) — @)dy; 2.3)

—0o0

we reformulate the initial-value problem (1.1) and (1.2) as the “integrated” equation
O — Vg — Wxx + (B + ¢'(8))0 + F(1x) = 0, (24)

with the initial data

vli=0 = vo(x), (2.5)
where
F(ve) = @i + ve) — (i) — @' (). (2.6)

It is well known that F(v,) satisfies the following by the Talyor’s formula:
|F(Ux)t < C|vx|2» |6xF(Ux)| < C|vaxx|- 2.7)
We state our main theorem as follows.

Theorem 2.1. Suppose that (2.1) and vo(x) € W' hold; then there exists a positive
constant 0y such that when ||vol|ps1 < 8y, then Egs. (2.4) and (2.5) have a unique
global solution v(x,t) satisfying

v(t,x) € C(0,00; H* N W) N C1(0, 00; L2 N L),

Moreover, the asymptotic decay rates of the solution v(t,x)

lo@) < CA+6)7", o) < C(1+ 1)1, (2.8)
osI < CA+ 1) floa(loo < C(1 + 1)1, (2.9)
oDl < CA+07 el < C(L+ 072, (2.10)
loa()] < C(1+ )~ (2.11)

hold for all t > 0.

Remark 2.1. Going back to the original problem (1.1) and (1.2), from Theorem 2.1, we
see that, when # = 0, up € W' and % ug(y)dy = 0, we have ||u(r)]| < C(1+1)~3,
lux()]| < C(1+1)"%* and |[u(#)]|o < C(1+1)~" for any nonlinear function ¢ € C2.
We improve the decay rate O(¢~'/2) in L°°-norm of u by Zhang [14,15] for |¢/()| <
ClulP*!, |¢"(u)| < Clu|? and p > 3. We also get the same decay rates in L?-norm
by dropping the sufficient conditions xuy € L! or |dg(¢)| < C|¢| used by Amick et al.
[1], Dix [8], and Bona and Luo [3,4] for ¢(u) = u?*'/(p+1) and p > 1.
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3. The proof of the main theorem

To prove Theorem 2.1, we need the preparations below. We take the Fourier trans-

form to Eq. (2.4) to yield
— (16’8 — aGE)*6 + (B + ¢/ (#))i&h + F(v,) =

which gives us

(&)= e—A(ﬁ)tﬁO(é) _ / — A - A]F_'(lix_)_(_{f_) ds,

0 1+¢2
where
’ 2
4 = 8@ +i DL, po - 2

Taking the inverse Fourier transform to Eq. (3.2) yields

U(t,x) = .2_1;/ hfx “A(s)l" (é)df

__I_/r/'x ix «A(s)(r-s)F(Ux)(S 9 qeds.
Tt /o 1+¢&

Differentiating Eq. (3.4) on x and ¢, respectively, we obtain

b(6x) = o= [ icei®e Mg, (&) de

27 J o
£l g —A(C)(1~s )F(UV)(‘S?é)
/ / 14 ¢ deds,
it = =5 [ Ao A e)a;

—/ / A(E)eitre A= o Flo:)(s: €) deds

1+&
> F(vx)(t &)
Zn/_ ¢ rra 9

1 > ; .
alt) = 3= [ (ieree iy ag
_ Flu:)(s,6)
2eitxe—A(E)t—5)Z A\IX AT 5 )
[ oo T
For a positive constant J, define a Banach space as the solution space

X5 = {v € C(0,00; H* N W) N C(0, 00; L* N L) |M(v) < 6}

(3.1)

(32)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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with the distance

M@)= sup {(1 + o) + (1 + " o(t)] o

0<t<o0

+(1 4+ oDl + (1 + D ox(Dl] oo
+(1+ o) + (1 + 0¥ o) oc

(1 + 0" o]} (3.8)

Rewriting Eq. (3.4) as the operatoral form v = Sv, we will prove that there exists the
positive constant J;, such that the operator § maps X;, into itself and has a unique
fixed point in Xj5,. Thus, such a fixed point v(f,x) is the solutior of Eq. (2.4) in Xj,,
namely u(2,x) = # + v,(t,x) is the unique solution of Eq. (1.1) globally in time. To
prove these, the following lemmas are available.

Lemma 3.1. Suppose that a > 0 and b > 0, and max(a,b) > 1, then
[ .
/(1 + )7 4+t —5)"2ds < C(1 + 1)” ™in(@d) (3.9)
Jo

Here, this lemma is more accurate than the Gronwall’s inequality to get the time
decay rates, we believe, although the Gronwall’s inequality are effectively used in the
previous works [14, 15]. Lemma 3.1 can be found in Ref. [13], see also Ref. [9].

Lemma 3.2. The following

00 o—B() /

/ 1+¢& dé < C(141)712, (3.10)
oo Mle—B(:y .

./-mmdféc(1+t) , (3.11)

|£[2e— 280 .

/ gy descd+o (3.12)
00 z4 ,—2B(EN ’

/ fle+ my dE < Ca+07, (3.13)

hold for all t > 0.

Proof. Proof of (3.10). We first have

00 —B(C)l —B(s)l
/ = dc—2/ / e (3.14)
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Since 1 < 1/(14¢2) <1 and e™8¢¥ < e~ for & € [0,1], we have

I o—BEX l
¢ —al?
dz:g/ e %2y
/o +& A ¢

1 1
_ / e—(ugz/z)(m)ea:’/z dé < e(a/Z)/ e—(ucz/z)(m) dé¢
0 0

< 2 /oo e~ &2+ g < C(1 + 1)~ 12, (3.15)
0

For the second term on the right-hand side of (3.14), noting § < &2/(1+ ¢2) < 1 for
¢ € [1,00), we have

0o e—B’(é)t d oo e—a!/Z dé cc wf (3 16)

—d&é < e e .
/1 148 é“/l 1+& "~

Thus, plugging (3.15) and (3.16) into (3.14) implies (3.10).

Proof of (3.11). We have similarly
N (4 56—3@):
/oo (1 4+ + (& =2 / / 1+ 52 ¢ 3.17)

First, by % <11+ &)< 1and 1/((1 + &)1 + &) < 1 for & € [0,1], we get

ée~B(f)t
o 1+&

e /2 2
/ —(152/2)(l+1) ad’/2 d«fl / —(aé?/2)(1+1) dg’z.
2 2 0

<C(1+10)7". (3.18)

dé < / ée—(ag 2y dé

Second, using the facts (3.16) and &/(1 + &) <1 for ¢ € [1,00) yields

00 53*3(@1 o0 —B(f)t —wp2
/1 xS / < e (.19)

Therefore, (3.17)—(3.19) give us the desired estimate (3.11).

Proofs of (3.12) and (3.13). In the same way as above, we can prove (3.12) and
(3.13). In fact, since

1 £2,.—2B(E) 1
&oe / 22—
S dé < e g
/o (14 ¢&2) ¢ < 0 ¢ J

x 1
< %/ e~ G < (1 +1)732, (3.20)
0
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54 —za(t)t / Fe “zaéz‘df

o (1+ 62)3
< 95_ / e~ U+ 485 < (1 + 1), (3.21)
0
and by (3.16)

oo ize-—ZB(i)t d o0 e——2B(§)r d Ce—* 322

2 dE< ——Fdé < Ce™ :
o0 £dg—2B() d 0 g— 2B dF < Ce~* 3.23

2 _dé< —d& < Ce™™, .
/1 (1+&y 5“/1 Ty desce 0

we get the desired estimates (3.12) and (3.13) from (3.20) to (3.23). We now have
completed the proof of the lemma. O

Lemma 3.3. Suppose that vy € W3, then we have

[ eenng (é)déH < Clloollwn(1 + )", (3.24)
/_ Z e "‘"f"‘(é)déH < Cllwollw (1 + 172, (3.25)
[ iteeteri@yag] < Clulyati + 07 (3.26)
/- iéeif*e—'“f"ﬁo(f)d:H < Clloollg (1417, (327)
[ Z(ié)ze@e""@'ﬁo(é)df < Cllvollws: (1 4 £y, (3.28)
[ a@ree aerae] < Clallye 1+ (3.29)
| 4@ i@ a] < clulpa+ 7 (3.30)

Proof. Making use of the Parseval’s equality and (3.10), we have

o0 |
=/ euﬁe—"“”éo(é)dé“
2n J_

= [le™ S 6y(&)||
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oo 1/2
= { / le"“(‘f)’ﬁo(é)lzdé}
—00

o0 o~2B(E) 172
- . e
_sé:g{(“rlé!)lvo(é)l}{/_m L+ dé}

< Cllvollwri(1 +)~"7,

where we have used the fact

sup{(1 + [<)IBo(E)[}
Zer

< ?ég [ "‘évo(x)dxl + sup /.koo e“b‘ium(x)dx|
< [ lwtigst [ s
= ||vollw- (3.31)

So, we have proved (3.24).
To prove (3.25), using (3.10) and the fact proved similar to (3.31)

2:1;{(1 + E)NBo(E)N} < Nlvollwas, (3.32)

we obtain

[ e

o0
< / e BE 58] dé
—00

—B(.:)t

< sup{(1+¢ )|UO(§)’}/
ceR

< Cllwollwai (1 + 1)~

Here we have proved (3.25).
The Parseval’s equality and (3.11) and (3.32) give us the estimate (3.26) as follows:

H— ite™e N g (£)déE

= Hlée A50(8))

oo 1/2
={ / lice "“)’”(é)lzdé}
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, 00 o—2B(E) 172
< sup{(1 + EN5o(¢) {f < }
fER{ !} —00 1+ 62
~3/4
< Cllvollwar (1 + )™~

Similarly, (3.27) can be proved by (3.11) as follows:

l / " jgeite g (é)dé‘

< / 2o 55(&)] de
|éle“3(f)t

, _ lele™™*
< gg{(l + )1+ Ié‘)lvo(é)l}/w T+

< Clfwollws: (1 + )71,
provided that

5}11;{(1 + &)+ [EDIBo(O} < llvollws, (3.33)
e

which can be easily proved as (3.31) and (3.32).
Similar to above, we can also prove (3.28)-(3.30) by Lemma 3.2 and (3.31)—(3.33).
We omit here the details. [

Lemma 3.4. Suppose that v(x,t) € X;; then we have

/ i~ ~ s)F(Ux)(f S)

1o < CO(1 +5)"2(1 + 1 — 5)~ 4 (3.34)

/ e 2 FEs) %) g <CR+9) (1 +1—5)"12  (335)

T+

o0

< COM1 451 +1—5)",  (3.36)

<. i&x g~ tsF(vx)(ES)
/_ocléeé X )_13;“57”‘15

ife

* iéx -—A(’)(l s)F(Ux)(é S)
[.Oc c 14 & d¢

<CHA+8)U+r-5)"", (337

/oo (16)2 ":x —A(ENe— s)F(Lx)(f S) de

T2 < CE( +5)32(1 41 —5)7%, (3.38)

< CH(1 45721 +1 -5, (3.39)

ixg—A(EX s)F(Ux)(tf s)
/_ A(&)e! e AN e dé
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l

Proof. By the Parseval’s equality and (3.10) we have

__1_/00 eiéxe—A(é)(t—s)F(vx)(é,S) ds
LLV S 14 &2

= ' e
2 12
dé}

o
[
00 o-2BQ)t-s) 12
i

<ot [ ey

/ ™ aeetre - FEEs) o

T+ B < CO*(1 +5)" (1 + 1 —5)72

o0

(3.40)

—aexe—s) F(tx)
1+

i

e—A@yi—s) £(vx)
1+

oo L+

- 0 o-BEN-s) ) M2
S sup IF(UX)(C,S)' {/ }
¢er

< C(1+1—5)" Y sup [F(u (& 9)]. (3.41)
feR

According to the definations of F(v,) and X5, and noting |F| < C|u|?, see (2.6) and
(2.7), and v € X5, we have

/ e ¥R )(x, 5 )dx

—0G

sup |[F(vx)(&,5)| = sup
fER £ER
< / IF(00)] dx < Cla(s)|2 < CO*(1 + )72, (342)

Therefore, substituting (3.42) into (3.41) yields (3.34). Similarly, using the Parse-
val’s equality and (3.12) and (3.13) and (3.42), we can prove (3.36) and (3.39) without
any difficulty. (3.35) and (3.40) can also be easily proved by (3.10) and (3.12) and
(3.42); we omit the details, too.

Now we focus on the proofs of (3.37) and (3.38). Since |[F(v,)| < Clu |2, |6:F(vy)] <
Clvyvl, see (2.7), and v € X5, ie., |[o(2)]] < 8(1+8)34, Jloa(®)| < 8(1+1)754, we
have

sup{(1 + [ENIF(0: )5, )|}

EER

< sup
¢eR

/oo e‘L"fF(vx)(s,x)dx’ + sup

—o0 éeR

/OO e A F (v, )(s,x)dx
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< / T Fo|dx + / 10, (vy)| dx

- 00 -0

< C(”vx(s)uz + ”vx(s)””vxx(s)“)
< CEL(1+5) + (1 +5)~ 41 +5)754
< C(1+5)732, (3.43)

Then, (3.43) and (3.11) imply (3.37) by the following computation:

i/;oc iéelfx —A(E)t— g)f_(TU%(é%_S) dé

|Ele B9 F(u, (¢, ) 4
< /_ ) T

|E[e=BEN=9)

< sup{(l + "ﬂ)IF(Ux)(‘f S)'}/ mmdé

<CU+s) 0 +1t-s5)".

Similarly, using the Parseval’s equality and (3.13) and (3.43), we prove (3.38) as
follows:

iExg~ t—s F(Ux)(s’é)
/ (1@2 ANt —sy L \Tx A5 &) " {2 d¢

14 &2

[ ST P v
e (+2y :

— | g4 2BEN—s) ,}]/2
< 2161[;{(1 + [EDIF (v )(s, &)} {/_m de

(i&)Pe~ =) F (v, )(s, &) ”

< CH( +5) (1 4+t — 5)~ Y4,

We have completed the proof of Lemma 3.4. [

Proof of Theorem 2.1. To prove Theorem 2.1, we need to prove that there exists
the positive constant §; such that the operator S is a contraction mapping from X,
into Xj,.
Step 1. § © X5 — X;. For any vy(x,t) € X3, and denoting v = Sv, we will prove
= Sv € X; for some small 6 > 0. Indeed, using (3.24), (3.34) and (3.9) we
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have
ol = s
[ e e |

i — — ﬁv\,\')(é’s)
iéx o —A(E)(t—s) 2 \VEN B0 )
/; e'“'e T2 dé“ds

1
< —
— 2n

1 t
+§;0

s
< Clloollwn(l + )~ 4 €8 / (1 +)2 +1—s5) s
0

< Cllooflwia(1 + 1) + €8 (1 4 1)~
Similarly, we have due to (3.26), (3.36) and (3.9),

[l (DI = [|0xSv1]]

1 o0 .
<5 / ig’e‘é"e"‘m’ﬁg(é)dfl’
—~—00
L i aceyus F@(E )
_ s ¥ allx - A(E)t—5) X 272 d
+27r | /;oozée € —-————--1+§2 &l ds

t
< Cllvollw2a(1 + £)™>* + C&? / (1+5) Y21 + 1 — 5)"1ds
JO

< Cllvglpaa(1 4 1)~ + €81 + £)~¥4,
By the same way, we can prove that
[S:(llse < Cllvollwai (1 + )™ + C8*(1 + 1)1
from (3.25), (3.35) and (3.9), and
18:8v1(1)]|oo < Cllvollpaa(l +£)~" + C&*(1 + 1)~
from (3.27), (3.37) and (3.9), as well as
105501 (D)loo < Cllvollwai (1 + 1) 4+ C&*(1 + 1)~

from (3.7), (3.9), (3.28) and (3.38).
Before estimating ||3,Sv1(¢)|| and ||8,501(#)||oc, we first note that

I [ o F)6E | || Fo &)
E?E/.we v Ty a

[ e, "
o (487

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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- . 1 1/2
< sup [F(u)(6, )l { /_ _aray df}

< C“Ux(l')”2 < CE + 1),
by the Parseval’s equality, (2.7) and v € X;, as well as note

/oo RS F)(t,9)

—oc 1+ &2 d¢

o 00 1
<swlFEEO! [ =
<swlFe6Ol | 5o

< Cllo®)|? < C8*(1 + )72,

¢

711

(3.49)

(3.50)

Then, from Lemma 3.1 and (3.29), (3.30), (3.39), (3.40) and (3.49) and (3.50), we

have

oIl = ll0rSer |

<
— 2=

1 t
+—2_1I/0
L1

2n

-

[ e |

i —ae - FONES)
/_mA(g)ece A(E)1—s5) 1+£25 d

< Clloollwa (1 4 £)™3* 4+ CO*(1 + 1)~ ?

ds

/oo eig'xF/(.l;c)(taé) de

o 14 &

{
+C52/(1 +8) (0 41 —5)ds
0
< Cllvollpa (1 4+ )~ + C&(1 + 1)~
lod( oo = 110801 [0
i o T .
<5 ” /_ A A‘“‘vo(ﬁ)déH
1 '
+:2;/0

41
27

* i —A(')(r~s)F/("Z)(§,S) .
/_mA(é)e e ¢ e 4

/Oc eing(Ux)(t,é) dé

—o0 1+ &

o0

ds

(3.51)
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< Cllvollwas(1 + £)™32 4 C8*(1 + £)~32

13
+Co* / 1+ +1-5)"¥ds
0

< Clloollwar (1 + £)3% 4+ CO*(1 + £)~32. (3.52)
Thus, combining (3.44)—(3.48) and (3.51) and (3.52) implies that
M(v) < ei(flvollws + 6%). (3.53)

Then there exists some small §; > 0, such that 8, < 1/2¢;. Let ||vg||ps: < 62/2¢;, and
6 < 43, we have proved M(v) < é for some small §, namely, S : X; — X; for some
small 6 < J;.

Step 2. § is a contraction in X;. Suppose that vi(x,t),v2(x,t) € X5 (6 < &), and
noting the facts

sup |[F(v1,) — F(vz,)|
EeER

S/!H%%meﬁ

—o0

< C(JJor(S)| + [z ()N (015 — v2: )(8)||

< CoM(vy — va)(1 + 5)7%2, (3.54)
sup |0, (F(vry) — F(vz))|
¢ER

SflMﬂm%ﬂmmﬁ

— 00

< Clli(o1x = 22 ) o] + o2 (1x = v20 X5
< COM (v, — v2)(1 +5)732, (3.55)
we have by the Parseval’s equality and Lemma 3.1
[1S01(2) — Sea(0)]|

L /OO ei;’xe—A(f)(l—s)F(Ul)C) — F(vy)

<
oo 1+ &

- 2r 0 ds

d¢

sC/kl+z-n‘“mmuﬂﬁn—fﬂanwxnw
0 eRr

{
< CoM(v, — vz)/(l +8) 1+t —s)" V4 ds
¢

< CoM(vy — v2)(1 + 1)~ 14, (3.56)
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Making use of (3.54) and (3.55), we also have in the same way in (3.56),

I(Sv1(2) — Sp2): ()] < CEM(vy — v2)(1 + )™ 4, (3.57)
I(Sv1(2) = Sv2)(D)|oo < CEM (D1 — v2)(1 + 1)1, (3.58)
|(Sv1(t) — Sv2)x ()]0 < CEM () — 02 )(1 + )7, (3.59)
(S1(£) — Sv2)(D)]| < CEM(vy — By)(1 + 1)~ (3.60)
I(So1(2) = Sv2)(D)llow < CIM(v1 — v2)(1 +£)™2, (3.61)
1(Sv1(2) — Sv2)e(1)|| < CEM (7 — v2)(1 + 1)™%4, (3.62)

where the details are omitted. Therefore, from (3.56) to (3.62), we obtain

M(Sv; — Sv;) < 20M(v; — v). (3.63)
Let us choose 6 < §; < 1/cy; we have proved

M(Sv) — Sv;) < M(vy — 1v7),

ie. § : X5 — X is contraction for some small § < J;.

Thanks to Steps 1 and 2, let §; < min{d,d;}, we have proved that the operator S
is contraction from X5, to Xj; . By the Banach’s fixed point theorem, we see that S has
a unique fixed point v(x,?) in Xj;,. This means the integral equation (3.4) has a unique
global solution v(f,x) € X;,. Thus, we have completed the proof of Theorem 2.1. [J
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