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ABSTRACT 
The aim of this paper is to consider the time-decay propertia of the solution for 

the Rosenau-Burgers equation in the form tLt + t~,,,,t - (YU,, + Pu, + ~ ( z L ) ,  = 
0. In particular, we prove some algebraic time decay rates of the solution within some 
spatial Sobolev spaces. The asymptotic stability the solution of the corresponding of linear 
equation is also obtained. To prove all of these, we make using of the method of Fourier 
transform together with the energy method. 
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(Received for Publication August 1996) 

1. Introduction 

We consider the Cauchy problem for the generalized Rosenau-Burgers equation (R- 

B) in the form 

with initial data 

* This work was partly supported by Ministry of Education of Japan GrantAn-Aid under 

Contract P-96196 for JSPS, and Sasakawa Scientific Research Grant No.8-069 from the Japan 

Science Society. 
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316 MING ME1 

where a > 0, p E R1 are the given constants, the nonlinear function $(u) is smooth 

and satisfies 

for some C > 0 a n d p  2 1. 

When a = 0, equation (1.1) is called as Rosenau equation proposed by P. 

Rosenau [Ro] for treating the dynamics of dense discrete systems. Since the KdV 

equation describes a unidimensional propagation of waves, wave-wave and wave 

wall interactions cannot be treated by it. Further, the slope and the behavior of 

high amplitude waves may not be well predicted by the KdV equation, because it 

was modelled under the assumption of weak anharmonicity. In order to overcome 

the shortcomings of the KdV equation, P. Rosenau has developed the model of 

(1.1) with a = 0. This model has been studied by Park [Pa] and by Chung and 

Ha [CHI. Both of them deal with the global existence and the uniqueness of the 

solution for IBVP by using of Galerkin's method. When a > 0, we call equation 

(1.1) as the Rosenau-Burgers equation (R-B) somehow corresponding to the KdV- 

B and the BBM-B equations, but i t  is given neither by Rosenau nor by Burgers. 

The asymptotic properties of the solutions for the KdV-B equations and for the 

BBM-B equations have been studied by many persons (see Bona and Luo [BL], 

Zhang [Zh], and also the references therein). In this paper, we are going to show 

the global existence and the time-decay rates of the solution for (1.1) and (1.2), 

and the stability of the solution to the corresponding linearized equation of (1.1) by 

means of the method of Fourier transforms with the energy method. The method 

we adopt is similar to the skill used by Zhang [Zh], but more technical than Zhang's. 

The nonlinear stability of travelling wave solutions of (1.1) will be discussed by the 

author in another paper [Me]. 

We first state some notations for simplicity. C always denotes some positive 

constant, but never depends on t .  H~ (k 2 0 integer) denotes the usual Sobolev 

space with the norm 1 1  . Ilk, L2 denotes the square integrable space with the norm 

1 1  . / I ,  and LCO is the essentially bounded space with the norm ( 1  . (1,. Suppose that 
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ROSENAU-BURGERS EQUATION 

f (x) E L1 n L ~ ( R ) ,  we define the Fourier transforms of f (x) as  follows: 

Our plan in this paper is the following: after stating our main results and some 

elementary preliminaries in Section 2, we give the proofs of the main theorems in 

Section 3. 

2. Main Results and Preliminaries 

We first state the following two well-known lemmas which can be found in Segal 

[Se] (see also Matsumura [Ma]) and Kreiss and Lorenz [KL] , respectively. 

Lemma 2.1. Suppose that a > 0 and b > 0, then 

l(l+ s)-O(l + t - ~ ) - ~ d s  5 C(l + t)-mm(a*b), for max(a, b) > 1, (2.1) 

l ( l + S ) - a ( l + t - s ) - b d s < C ( l + t ) 1 - a - b 7  for max(a ,b )< l .  (2.2) 

Lemma 2.2. If u(x) E H~(R) ,  then 

1 1 ~ 1 1 ~  I IIuIIIIuxll, lluxkll 5 l l ~ l l l - k ~ l l l ~ x ~ l l k ~ z  (2.3) 

for k E [I, 11, where k and 1 are integers. 

Theorem 2.3 (Existence). Suppose that (1.3) holds. If uo(x) E H4(R), then there 

exists a positive constant 6 such that IIu0114 < 6 ,  then the initial value problem (1.2) 

and (1.2) hhas a unique global solution u(t,x) with 

Moreover, u(t,x) satisfies 

for all t 2 0. 
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3 18 MING ME1 

Proof. By the standard energy method, combining the local existence with the a 

priori estimates somewhat like (2.4), we can prove the global existence. To prove 

(2.4), we multiply (1.1) by 2aiu/dxi (i = 0,1,2,3,4), respectively, and integrate 

over [0, m) x R, those yield (2.4). 

Theorem 2.4 (Decay Rates). When p  > 712, and uo(x) E W4>l n H4, then u(t, x) 

satisfies the following for all t > 0 

When p  > 2, and uo(x) E W331 n H4, then u(t,x) satisfies the followings for all 

t 2 o  

11u(t)ll I C(1 + t)-lI4, Jlux(t)lJ I C(1 + t)-3,/4, (2.6) 

which imply 

Jlu(t)JJ, I C ( l  + t)-'I4. 

Remark. To get the decay rates likes (2.5), Zhang[Zh] needs p  2 5 for the BBM-B 

equation. However, without any difficulty, Zhang's result ( p  > 5) can be improved 

as p > 7/2 by our scheme in this paper. For the details, see below Section 3. 

Let v(t, x) be the solution of the linear equation corresponding to (1.1) by 

dropping the nonlinear term $(u), namely, 

with the same initial data 

ult=o = uo(x), 

we have the asymptotic stability as follows. 

Theorem 2.5 (Asymptotic Stability). When p  > 7/2 and uo(x) E W4>' n H4, then 

we have 
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ROSENAU-BURGERS EQUATION 

When p > 2 and uo(x) E W3?l n H 4 ,  then we have 

3. Proofs of Theorem 2.4 and Theorem 2.5 

Taking the Fourier transform to (1. I), we have 

which means 

where 

Taking the inverse Fourier transform to (3.2) yields 

(3.4) 
Lemma 3.1. There hold 

for all t 2 0. 
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320 MING ME1 

Proof. Since 

and that 

on the other hand, let A = = A, and note that & is positive and 

bounded for J E [2, co), we have 

then we obtain (3.5) from (3.8)-(3.10). 

To prove (3.6), we first note 

by using of (3.5) and abovementioned, we then have 
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ROSENAU-BURGERS EQUATION 

Finally, to prove (3.7)) noting (3.5) and (1.3)) we have 

where we used Ilu(s)ll 5 IIuol14 (see (2.4)). 

From (3.4), by using of (3.6) and (3.7), we immediately get the following 

estimate. 

Lemma 3.2. I t  holds that 

for all t 2 0, 

Now we also have from (3.4) 

h 

ux (t, s)  = - i ~ e ~ ~ ~ e - ~ ( ~ ) ~ ~ ~ ( c ) d t  - Jrn iteitxe-A(t)(t-s) ~ ( u ) x  q d S .  
2~ -00 1 +c4 

The next Lemma 3.3 can be proved by the same scheme to Lemma 3.1, we here 

state it as follows without the detail proof. 

Lemma 3.3. There hold that 
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322  MING ME1 

for all t 2 0. 

Proof. We first prove (3.13). Similar to the proof of (3.5), we have 

and that 

where we used the fact that & is positive and bounded for [ E [2, m), and 

A = i [O, A]. Then, all of these facts imply (3.13). 

Using (3.13) and by the same schemes in the proofs of (3.6) and (3.7), we 

easily prove (3.14) and (3.15). 

Thus, (3.12) and Lemma 3.3 immediately yield the following energy estimate. 

Lemma 3.4. It holds that 

To prove (2.5) in Theorem 2.4, we can use the continuity argument based on 

the local existence with the a priori estimates as follows. Therefore, to prove the 

following lemma is our main purpose. 
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ROSENAU-BURGERS EQUATION 323 

Lemma 3.5. Suppose that p > 7/2, uo(x) E W4J n H4 and u(x, t )  is a local 

solution of (1.1) and (1.2) for t E [0, Tj, where T > 0 i s  a any given constant. Let 

then there exist positive constants C and bl, such that when MI (T)  < 61, then 

for t E [0, TI. 

Proof. Combining Lemmas 3.2 and 3.4, and by Schwartz's inequality, we have 

Let M l ( t )  be small, say Ml(t)  < 61 < 1, and let q := min{2(p - 3), 2) > 1 due to 
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p > 712. Using Lemma 2.1, we obtain from (3.18) 

t 
+ (1 + t ) ~ ~ ( t ) ~  1 (1 + t - s ) - l ( l +  s ) - ( P - ~ ) / ~ ~ s }  

5 CIIuoll~4.1 + CMl(tIq, 

which implies (3.17) for some small Ml (t). So, we complete the proof of this lemma. 

To prove (2.6) in Theorem 2.4, same to above-mentioned, the following energy 

estimates must also be necessary. Like as Lemmas 3.1 and 3.3, we firstly establish 

some estimates as follows. 

Lemma 3.6. 

Proof. Since 

2 
luo(~)l  + luoxx(x)ldt) 5 lluollL2J, 

using the Parseval's equality and (3.5), we can prove (3.19) 
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ROSENAU-BURGERS EQUATION 

Similarly, making use of the Pa r sed ' s  equality and (3.5), we have 

From (1.3) and using Schwartz's inequality and Lemma 2.2 yield 

where we used Lemma 2.2 to get the last term of (3.23). By (3.23) and (3.24), we 

can prove (3.20). 

To prove (3.21) and (3.22), we first see the fact 

Since the approach is also same to the proofs of (3.5) and (3.13)' we here omit the 

proof of (3.25). Then the Pa r sed ' s  equality and (3.25) yield 
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326 MING ME1 

Finally, to prove (3.22), we make use of the Pa r sed ' s  equality, (3.25) and (3.24), 

we then have 

We have finished the proof of this lemma. 

From (3.4) with (3.19) and (3.20), and (3.12) with (3.21) and (3.22), respec- 

tively, we can easily show the following lemma. 

Lemma 3.7. There hold that 

We prove (2.6) in Theorem 2.4 also by means of the continuity argument based 

on the local existence with the following a priori estimates. 

Lemma 3.8. Suppose that p > 2, uo(x) E W3" n H4 and u(x, t )  is a local solution 

of (1.1) and (1.2) for t  E [O,T], where T > 0 is a any given constant. Let 

then there exist positive constants C and 62, such that when M2(T) < 62, then 
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ROSENAU-BURGERS EQUATION 

for  t E [0, T ]  

Proof. By (3.28) and (3.29) in Lemma 3.6, and by Schwartz's inequality and Lemma 

2.1, we have 

We then have (3.30) for some small Mz(t) < b2 < 1. Here, the proof of Lemma 3.8 

is complete. 

Based on the Sobolev's inequality, both of two estimates of (2.6) can reduce 

(2.7). Therefore, up to now, we have proved Theorem 2.4 by above lemmas. The 

next is to prove Theorem 2.5. 
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328 MING ME1 

The Proof of Theorem 2.5. Making Fourier transform to (2.8), we have 

Then the inverse Fourier transform to be applied to (3.32) yields 

Let (3.4) minus (3.32) and (3.12) minus (3.33), we have 

When p > 712 and uo(x) E W411 n H4, using (3.7),(3.15), (2.5) and Lemma 2.1, we 

can prove (2.10) 
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ROSENAU-BURGERS EQUATION 329 

When p > 2 and uo(x) E W3>l n H4, using (3.20),(3.22), (2.6) and Lemma 2.1, we 

can prove (2.11) 

This completes the proof of (2.11). By (2.11), and using the Sobolev's inequality, 

we can get (2.12). 
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