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In this paper, we study the one-dimensional Euler—Poisson equations of bipolar
hydrodynamic model for semiconductor device with time-dependent damping effect
—ﬁ for —1 < A < 1, where the damping effect is time-gradually-degenerate for
A > 0, and time-gradually-enhancing for A < 0. Such a damping effect makes the
hydrodynamic system possess the nonlinear diffusion phenomena time-asymptotic-
weakly or strongly. Based on technical observation, and by using the time-weighted
energy method, where the weights are artfully chosen, we prove that the system
admits a unique global smooth solution, which time-asymptotically converges to
the corresponding diffusion wave, when the initial perturbation around the diffusion
wave %is small enough. The convergence rates are specified in the algebraic forms
Ot~ 1Y and O(t~(1=N) according to different values of X in (—1, %) and (%, 1),
7
point is O(t7% Int). All these convergence rates obtained in different cases are
optimal in the sense when the initial perturbations are L2-integrable. Particularly,
when \ = %, the convergence rate is the fastest, namely, the asymptotic profile of
the original system at the critical point is the best.
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respectively, where A = = is the critical point, and the convergence rate at the critical

1. Introduction

Models and mathematical equations. Proposed first by Baccarani and Wordeman [1] in 1985, the bipolar

hydrodynamic models, generally used in description of the charged fluid particles such as electrons and

holes in bipolar semiconductor devices [18] or positively and negatively charged ions in a plasma [30], are

the Euler—Poisson equations with damping as follows:
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nig + Jiz =0,
J? J
Jit + <—1+P(n1)) :nlE__lv
ni z T
nat + J2z = 0, (1.1)
J2 J:
Jog + <—2 +p(n2)) = —nyE — 2,
no z T
Ew =Ny —nNg — D(.’I})

Here nj(z,t) and ny(z,t) represent the densities of electrons and holes for bipolar semiconductor devices,
Ji(z,t) and Jo(x,t) denote the current densities for electrons and holes, respectively. E(z,t) is the electric
field. D(z) > 0 is the doping profile standing for the density of impurities in the semiconductor device.
p(s) is the pressure function for both of electrons and holes. 7 > 0 is the relaxation-time.

In the system (1.1), the terms —J7 for i = 1,2 are called the damping effects, which play the key role
for the regularity of the solutions as well as the time-asymptotic behavior. In fact, if we differentiate (1.1)y
and (1.1)4 with respect to z, and notice J;; = —ny (i = 1,2) from (1.1); and (1.1)3, respectively, then we
formally have the following damped wave equations:

1 J?
nig + —nig — | — +p(n1) — (M E)q,
T ny o

1 J3
Nt + —nor — | — + p(n2) (noE)y.
T no o

When 7 — o0, the damping effects to the system (1.1) (see also the above damped wave equations) will be
vanishing, and the system becomes the pure Euler—Poisson system. In this case, the solutions will loss their
regularity as we know. While, when 7 — 07, the damping effects to the system will extremely enlarge, and
the solutions are expected to converge to their profiles much faster. It is very interesting but also challenging
to study the asymptotic behavior of the solutions as 7 — co and 7 — 07 respectively. In order to see how
the solutions change time-asymptotically as 7 — oo and 7 — 0T, respectively, let us mathematically take
7 = (1+¢)* for some constant \, where, when ¢ — oo, then 7 = (1+¢)* — oo for A > 0 and 7 = (1+t)* — 0
for A < 0. Thus, the damping effects in Euler—Poisson system (1.1) become time-gradually-degenerate for
A > 0 and time-gradually-enhancing for A < 0. To understand the structure of solutions in these cases
is important and difficult from the mathematical point of view, and it is also the first attempt to the
Euler—Poisson system for bipolar semiconductors as we know.

Therefore, in this paper, we are mainly interested in the following one dimensional Euler—Poisson system
with time-dependent damping

ni¢ + Jigz =0,
J? J1

J 'S - B -

1t + (nl -HU(TM)>z ni TS

nog + Jogz =0, (1.2)
J32 Jo

J 2 e I A

2t + <n2 -1-20(712)>z N2 TS

E; =n1 —na,

subjected to the initial value conditions

(n1,n2,J1, J2)|,_y = (10,120, J10, J20) (€) = (nt, ns, Jis, Jox)  as @ — oo, (1.3)



H. Li et al. / J. Math. Anal. Appl. 478 (2019) 10811121 1083

where ny > 0, Ji4 and Jo4 are constants. Throughout the paper, we assume that
p(s) >0, p'(s) >0fors >0, -1 <A< 1, D(z)=0. (1.4)

The condition p’(s) > 0 is physical, and the example is p(s) = T's” for v > 1, where v = 1 is the isothermal
case, and v > 1 is the isentropic case. The doping profile D(z) = 0 is not a physical case but an important
example in mathematical point of view, and this case has been intensively studied in [5,7,9,10]. While, when
D(zx) > 0, the expected asymptotic profiles (stationary waves) for the system will be totally different from
what we study here. This will be another issue for us to investigate in future.

Expected asymptotic profiles. The target in this paper is to study the large time behaviors of smooth
solutions to (1.2)—(1.3). Notice that, except the hyperbolic properties for the solutions of the hydrodynamical
system (1.2), the damping effects make that the hydrodynamical system possesses diffusion phenomena like
nonlinear diffusion equations, so we are mainly concerned with the nonlinear diffusive phenomena of the
model, in the sense that both the densities of electrons and holes tend time-asymptotically to the same
shifted nonlinear diffusion waves.

In order to see what will be the properly asymptotic profile for (1.2) for —1 < A < 1, let us take the
following variable scalings for arbitrary small € > 0,

t— 140/, z—z/%, ni—n, Ji—e®J, E—E(=0), i=1,2, (1.5)

where 01, 03, 03 are positive constants and will be determined later. We first have from (1.2); and (1.2)3
that

ehng4+ et =0, i=1,2
In order to balance it, let
01 = 02 + 05, (1.6)
then
ng+Jiz =0, i=1,2. (1.7)
On the other hand, it follows from (1.2)y and (1.2)4 that

) 00ty 00 jQ 601)\7024»63@
1=02+03 7 3 v n; F ==, ':1,2. 1.8
c it +¢ (m>m+pm) O +1+0)r (18)

Noting (1.6) also gives 61 — 62 + 63 = 2603, and further
91)\—92+93:293+()\—1)91 <203 for —1< A<,

one can see that the leading order equation of (1.8) is

591)\7924*93 Lf’L

Mmh:f—ﬁiﬁrﬂ i=1,2.

By setting

A —60s+03=0 for —1 <A<, (19)
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we have

_ Ji ,

So, the asymptotic profiles of (n1,ns) for (1.2) are expected to be the solutions of the coupled system of
equations

(z,t) eRx Ry, —-1<A<1, (1.11)

with
(i, J)(x,t) = (ng,0) as x — +oo. (1.12)

Substituting (1.11)2 into (1.11);, we get the following nonlinear diffusion equation with time-dependent
diffusion coefficient

e = (14+1)*p()ze with 2 — ny as z — +oo.

Such a nonlinear diffusion equation with —1 < A < 1 possesses the self-similar solutions in the form of

which are usually called nonlinear diffusion waves.

Under this scaling argument, one may observe that A\ = £1 are the critical cases in which system (1.2)
may exhibit different mathematical structures, and hence the asymptotic behaviors of the system may be
different from what we study here. We will settle this project in a subsequent paper.

Background of relevant research. Regarding the diffusion phenomena, let us first draw a background
picture. For the scalar damped wave equation

e + ur — Au = F(u, uy),
the pioneering work on the optimal decay rates for the solutions affected by the damping was given by

Matsumura [19] in 1977. This result has been then extensively generalized in many different cases. In 2004,
Wirth [35] proposed the wave equation with time-gradually-degenerate damping

Ut + (1 +t)7>‘ut — Au = 0, A>0,
and significantly studied the L? — L? decay rates of the solutions in [36,37]. See also the recent development

in more general cases [26,33].
For the p-system

up +p(v)e = —au, (7,t) ERX Ry,

{”t“I =9 (1.13)
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where o > 0 is a constant, Hsiao and Liu [6] first proved that the solutions (v,u) of damped p-system will
converge to the diffusion waves (v,u) of the system

vy = —%p(ﬁ)m,
p(V)r = —au,
in the sense ||(v — o, u — @) (t)||p~ = O(1)(t~2,t~2). Then Nishihara [23] improved the convergence rates
as ||(v—0,u—)(t)|| g~ = O(1)(t~%,t1) for the initial perturbations in L2. Subsequently, by constructing
an approximate Green function, Wang and Yang [34] further improved the rates as ||(v — v, u — u)(t)|| L~ =
O(1)(t~1,t2) for the initial perturbations in L'. Furthermore, Mei [22] observed that, the best asymptotic
profile is the solution for the corresponding nonlinear diffusion equation with some particularly selected
initial data, and the convergence to the best asymptotic profile is in the form of ||(v — v,u — @)(t)|| L~ =
o(1)((1 +4)72 In(241), (1+¢)2 In(2+¢)), when the initial perturbations are in L*. For other results related
to (1.13) with nonlinear damping or vacuum, we refer to the interesting works [12,8,21,16,17,24,25,27]. See
also the boundary cases studied in [3,4,14-17].

When the damping is time-gradually-degenerate, Pan [28,29] considered the following 1-d isentropic Euler
equations

Op + 9z (pu) =0,

O (pu) + 0z (pu®) + 8, P(p) = — <P, (1.14)

_m
(1+1)
pli=o =1 +epo(z), ult=0 = euo(),

where po(x), up(z) € C§°(R), |x| < R and € > 0 is a sufficiently small constant, and proved that A = 1,
p = 2 is the critical threshold of (1.14) to separate the global existence and finite-time blow up of solutions.
More precisely, when A = 1, p > 2o0or 0 < A < 1, u > 0, (1.14) has global smooth solutions; while, when
A=1,0<p<2o0r A>1, u> 0, the C! solutions of (1.14) will blow up in finite time.

For the p-system with time-gradually-degenerate damping,

Ve — Uy = 0,

> (1.15)
Ut +p(v)l’ - (1 _'_t))\uv

very recently, Li-Li-Mei-Zhang (2017) [13] and Cui-Yin—-Zhang—Zhu (2018) [2] independently studied the
same problem for the time-algebraical convergence to diffusion waves at almost the same time, where the
convergence rates obtained in [2] are better than that in [13]. When A > 1, the solutions of the correspond-
ing initial-boundary-value problem are proved to be bounded, but their derivatives will blow up in finite
time [31].

For bipolar Euler-Poisson equations with regular damping (i.e. A = 0), Gasser, Hsiao and Li [5] first
studied the nonlinear diffusive phenomena, and showed that, the smooth solutions of (1.2)—(1.3) tend to the
diffusion waves with algebraic convergence rate, under the assumptions of

/[nlo(x) — ngg(x)]dz = 0 or equivalently, E(4o00,t) — E(—o00,t) = 0.
R

In physics, this condition represents the switch-off situation of semiconductor device. Later, Huang and
Li [7] generalize the results of [5] to the weak entropy solutions on the base of compensated compactness.
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The more interesting and challenging case of switch-on semiconductor device has been recently studied by
Huang, Mei and Wang [9]. Here the switch-on case means that

/[nlo(:c) —ngg(x)]dx #0 (or Jip # J;— fori=1,2).
R

By artfully constructing correction functions, the authors prove that in this case, the smooth solutions of
(1.2)—(1.3) with A = 0 also converge to the diffusion waves with optimal algebraic convergence rate.

Our main contributions and developed techniques. When the damping is time-dependent for Euler—
Poisson system, the story is totally different. To show the specific diffusion phenomena of the solutions
for (1.2)—(1.3) will be our mission in the present paper. By the time-weighted energy method with artful
selection of time-weight-functions, we shall prove the convergence of the original solutions (n;, J;)(x,t) to
the corresponding diffusion waves (n;, jﬂ(ﬁ) for i = 1,2 as follows:

O(1)(1 + 1) =501+, “1< A<,
(i =) ()L @) < OM) A+~ FIn(2+1), A=1,
O(1)(1 + 1)1, 1<A<],
and
O()(1+ 1)+, —l<Aa<i,
I(Ji = D)l pe@ < SO +8)"Fln(2+1t), A=1,
o)1+, Lod<l

Here, all convergence rates are optimal in the sense when the initial perturbations are in L2. See Remark 2.1
below for details. Particularly, A = % is the critical point for the convergence involving In(2+t), which is the
first result obtained for the studies related to time-dependent damping phenomena. And to our knowledge,
it is also noticed that the case for time-gradually-enhancing damping (i.e. A < 0) is first proposed in this
paper.

Through the analysis of decay rate of solutions to the linearized equations around the diffusion waves
(for the details, see Remark 2.1 below), one can observe that it is necessary to decompose the range of A
into three parts, —1 < A < %, A= % and % < A < 1, to obtain the optimal convergence rate. Similar
decomposition was also used by Cui et al. [2]. However the convergence rate at the critical point A = %
was not clarified in [2], because the energy estimates in that paper relied on Gronwall’s inequalities on two
regions, which may hide some structures of the equations especially in the case of A = % In this paper, we
employ a different strategy to derive the optimal convergence rates for all A € (—1,1). Actually, we take the
time-weight-functions (3 +t)® and then (3 +t)®~! to establish the essential L? estimate, where a, 8 and
v are specific parameters to be technically determined according to different \. There are two advantages of
this approach: (1) One only needs to simply chose § suitably large rather than establishing the finite time
estimates as that in Proposition 3.1 of [2] to close the energy estimates; (2) It avoids the use of Gronwall’s
inequality and hence captures the full dissipative structures of the equations.

The rest of this paper is organized as follows. In Section 2, we shall recall some fundamental properties
of the nonlinear diffusion waves, and present the estimates for correction functions. After such settings, we
state our main results. Section 3 is devoted to the proofs of our main theorems. We leave the details of

construction of correction functions in the Appendix.
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2. Preliminaries and main results

Before proceeding, we clarify some notions used throughout the paper. C' > 0 denotes a generic constant
which may change from line to line. H™(R)(m > 0) is the usual Sobolev space whose norm is abbreviated

as || fllm = 3 95 fI with [|f]| := || fl| z2(w). For convenience, we also write [[(f,9)]|* := [ f]|* + [lg||* and
k=0

§ 1= ns —n|+ [y + [Ji|+ Vo | + o | + | By | (2.1)
2.1. Diffusion waves

We first state some fundamental properties of the nonlinear diffusion waves. The nonlinear diffusion
equation (1.11) is equivalent to

e = (1 +)*p(R)ee, P'(R)>0. (2.2)

Thanks to the works of van Duyn and Peletier [32] (see also [6,9,13]), one can see that (2.2) has a unique
(up to a shift) monotone self-similar solution called nonlinear diffusion waves in the form

T

n(x,t) = ¢ (W) 2 p(2), z€R, with p(+o0) = ny. (2.3)

As in [13], it is easy to prove that o(z) satisfies

4
D 10Fe()] + le(2) = ns] oo+ [9(2) = o] o < Clng = nfem VS (2.4)
k=1

for some constant C' > 0. A direct calculation from (2.4) yields the following estimates for the diffusion
waves.

Lemma 2.1. For the self-similar solution of (2.2), it holds that

k(4N +2L
2

|050in| < Cng —n_|(1+1) E4+1>1, k1>0, (2.5)

2k—1)(14+X
BCIESEESS Iy

/|8§a§ﬁ|2dx§C\n+—n,|2(1+t) T pp> (2.6)
R

2.2. Correction functions

Because we are interested in the physical switch-on situation for the device, that is the initial data satisfy

/ [10(x) — na(@)]dz £0 (o Jyy £ Ji_ for i = 1,2),
R

or, equivalently
E(+00,t) — E(—o00,t) # 0,

there will be a gap between the original solutions and the diffusion waves at far fields because of the
difference of voltage. In order to fill such gap, as in [9,11], we need to construct the correction functions
(ﬁ17']1aﬁ2;J27E)(x7t)'
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As the analysis in the Appendix for the behaviors of the solutions to (1.2)—(1.3) at the far fields z = +o0,

for0<A<1
|n;(£o0,t) — n(£oo,t)| =0, i=1,2,
| Ji(+00,) = J(+00,)| = O(d)e~"" £0, i=1,2,
| Ji(—00,t) — J(—00,t)| = |Ji_|e=Ct" > #£0, i=1,2,
|B(+00,t) — 0] = O(8)e= " £ 0,
E(—o0,t)=E_ =0,

and for —1 <A <0

|n;(£o0,t) — n(£oo,t)| =0, i=1,2,
| Ji(+00,t) — J(+00,t)| = 0(8)e=Ct"" £0, =12,
[ Ji(—00,t) = J(—00,t)| = |J;i_e C"" £0,  i=1,2,
|E(+00,t) — 0] = O(8)e=Ct"" £,

E(—o00,t)=FE_ =0,

(2.8)

one can observe from (2.7) and (2.8) that there are some gaps between J;(d00,t) and J(400,t). In other

words,

Ji(z,t) — J(z,t) ¢ L*(R) and E(z,t) ¢ L*(R).

To overcome such difficulty, as shown in Appendix later, we can construct some correction functions

(fg, Nig, Ji, Ja, E) (z,t), which satisfy

ﬁlt + jlz Oa

Ji
1+ )N J(x,t) = JE(t) as x — +oo,

Ji
ot + Jaz = 0, with E(x,t) =0 as T — —00,
E(x,t) — E*(t) as x — +oo.

>

1t =nk —

Ew = ﬁl - ﬁ’27
Here 7 = i(z), J;(x,0) and E(x,0) are selected such that

w(x) = ne, Ji(z,0) = Jix and E(z,0) = Ef as x — +oo.

(2.9)

We summarize the estimates for (i, g, jl, jz, E) in the following lemma. The detailed construction for

these correction functions can be found in the Appendix of the paper.

Lemma 2.2. For —1 < A < 1, there exist some correction functions (fiq, fla, Ji, jQ,E’)(x,t) satisfying

(71, Pz, Jy, Jo, E)(t)HLOO(R) < C6e= 9" for some constant oo > 0,
| Ji(££00,t) — J(d00,t) — Ji(+o0,t)| =0,

|B(00,t) — E(£00, )| =0,

supp 71 C supp mg, supp fig C Supp my.
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2.3. Main theorems

Next, we consider the perturbation equations of (1.2) with respect to the diffusion waves (1.11). By (1.2),
(1.11) and (2.9), we have

(Jo— Jo— )y =0, (2.14)

Here fo := (1 4+ t)*p(n)at + A(1 + )2 p(7),, and (0, J) = (0, J)(x + x0,t) are the shifted diffusion waves,
where the shift 2o can be determined as follows. Integrating (2.14); and (2.14)3 over R with respect to z,
and noting (2.9), (1.12) and (2.11), we have

pr [ni(z,t) — Ay (x,t) — n(x + zo, t)]dx
R

N —

—[Ji(+00,t) = Ji(+00,t) — J(+00,t)] + [Ji(—00,t) — Ji(—o00,t) — J(—00,1)]
=0, i=1,2

Integrating this equation with respect to ¢ yields

/[nz(m t) — ni(x,t) — n(x + zo, t

R

/nl z,0) — 7;(z,0) — a(xz + 20,0)]dx

R
Ii(xg), 1=1,2.

lI>

Let us determine zy such that I;(zg) = 0 for ¢ = 1, 2. Tt is easy to see that
/ d . _ .
Ii(z0) = e [ni(z,0) — Ai(z,0) — iz + 0,0)]dz ) = —(ny —n_), i=1,2.
0
R

It then follows that

zo
Ii(zo) = I;(0) + [ Ii(y)dy = ;(0) — (n4 —n-)xo
0
Recalling that I;(z¢) = 0, we hence have
o 0i0) = [ [,0) = ,0) — (s, )], § = 1,2
xo_mr—n,z T n;(z, x, n(z, x, i =1,2.

We claim

/[nl(x 0) — n1(z,0) — A(x,0)] / ny(x,0) — ng(z,0) — a(x,0)]dz, (2.15)
R R
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and hence z is well-defined. In fact, integrating (1.2)5 with respect to x over R and taking ¢t = 0, we obtain

/ [n1(2,0) — na(z,0)|de = EL — E_ = E,. (2.16)

On the other hand, integrating (4.24) in the Appendix over R, noting that E(+oo,t) = E., we get

“+o0
1 - 1
/ﬁl(a:, t)dx = §(J1+ —Ji—+ Joy — Jg_) / eﬁ[l_(l—i_s)l A]dS + §E+.
R t
Similarly, integrating (4.25) in the Appendix over R gives
—+o0o
A 1 Prl-(e ™ g L
ng(ac,t)dx = §(J1+ —Ji— + Jop — JQ_) er=x ds — §E+
R t

Thus,

/[nl(az 0) — fz(x,0)] / 1 (x,t) — ho(z,t)|de = B4,
R

R

which, in combination with (2.16), leads to

/[nl(x 0) — na(x,0)] / A1 (2,0) — N (2, 0)]dx.

R R

Hence, (2.15) holds.
Because the shift z( is selected such that I;(xg) = 0, we could use the approach of anti-derivative to
study the long time behavior of the perturbation equation (2.14). In other words, we define

bl t) = / [12(6,1) — A€, 1) — A€ + 20, )] de

e (2.17)
Vi, t) == Ji(x,t) — Ji(x,t) — J(z + xo, 1), i=1,2,

H(z,t) := E(x,t) — E(x,t).

Then ¢;, 1¥; and H satisfy

o1t + 1 =0,
_ J J)2

wlt—i—(( Qf)llrzjr_ﬁiin) +p(¢1x+ﬁ1 —|—’ﬁ)—p(ﬁ)>$
:f0+(¢1w+ﬁ1+ﬁ)H+(¢lz+ﬁ1+ﬁ—ﬁ)E— (1_'(|p_1t)A7

Pot + P2 =0, (2.18)
(_¢2t+j2+j)

1/)2t+< ot Pt T + p(oe + N2 + 1) — >I

H = ¢1 — 2,
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with the initial data

bio(x) = ¢i(,0) = / [1:0(€) — Aul€,0) — A€ + w0, 0)]

oo ) i (2.19)
Yio(x) := ¥i(2,0) = Jio(z) — Ji(x,0) — J(x + 20,0), i=1,2,
Ho(z) := d10(x) — d20(2).

We are now ready to state our main results.

Theorem 2.1 (Case of —1 < A < 1). Let (¢10, $20, %10, ¥20)(z) € H*(R) x H3(R) x H*(R) x H*(R), and
D¢ := ||(¢10, D20) |3 + || (V105 ¥20)||2- Then, there is a 69 > 0 such that if § + ®g < &g, then the IVP (1.2)
and (1.3) admits a unique global smooth solution, which satisfies

2
D> (4 )FEEN 98 (ny — 7, ny — 1) (1))
k=0
2
+ D A+ )OOk (T — T, Ty = D)(®)? < C (5 + ).
k=0

Theorem 2.2 (Case of A = %) Under the same assumptions of Theorem 2.1, there is a §g > 0 such that if
0+ @g < dg, then the IVP (1.2) and (1.3) admits a unique global smooth solution, which satisfies

2
> (417 FEED 122 4 4)[|0% (ny — 71, ng — 1) (1))
k=0
2
+3 (AT M2+ )08 (S — T, Jo — )] < C(6 + 8F).
k=0

Theorem 2.3 (Case of% < A< 1). Under the same assumptions of Theorem 2.1, there is a §g > 0 such that
if 6 + ®g < o, then the IVP (1.2) and (1.3) admits a unique global smooth solution, which satisfies
2
S0+ N ok, — 7, — ) (1)

k=0

2
+ 3 A+ FEENEER 9 (g — T, Ty = D(H)P < C(6 + BR).
k=0

Owing to the cancellation structure of bipolar model, we show that the difference of the densities of
electrons and holes decays faster.

Theorem 2.4. If § + &g < 1 and —1 < XA < 1, then it holds that
[(n1 = n2) DI + 11(J1 = L)@ + (B = E)(#)[5 < O + Bgle ",

for some constant o > 0.
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Using the Sobolev inequality
£l < V2121 fell 2, (2.20)
one can further derive the following estimates.

Corollary 2.1 (Convergence to diffusion waves). Under the assumptions of Theorem 2.1, one has fori = 1,2,

O1)(1 +1)~30+2), —l< A< i,
(i =) ()l L@ < S O (L +8)"Fln(2+1t), =1, (2.21)
O(1)(1+ )21, 1<,
and
O()(1+1)~ %, ~1< A<,
(T = D)l < OM)(A+1)"FIm(2+1),  A=1, (2.22)
O(1)(1+8) "%, o<t

Remark 2.1. We now show that the convergence rates presented in (2.21) and (2.22) are optimal in the
sense of L? initial perturbations, and explain why there appears In(2 + t) in the critical case A\ = % In
view of (3.1), the main working equations with source terms involving diffusion waves 7, let us consider the
following linear nonhomogeneous heat equation

Ut
M e =—F, (x,t) R xR,
(1+¢)* (2.23)
u(z,0) = up(x), z € R,

where F = (1 +t)*p(R) ¢ + A(1 + )2 Ip(7), — (%) . Multiplying (2.23) by (1 +t)*,

ut_(l—’_t)kuzz:_(l—’_t))\Fv (.’E,t) GRXR+7 (2 24)
u(z,0) = ug(x), z € R. .
By the principle of superposition, u = v + w, where v and w satisfy
vy — (1 + ) v, = 0, (z,1) e R xRy, (2.25)
U(l‘,O) ZUO(I‘)’ z €R, .
and
wt_(l—’—t)/\wwm = _(1+t)>\F(xat)7 (Z‘,t) ERXR-H (2 26)
w(z,0) =0, r eR. '
A direct calculation by Fourier transformation for (2.25) yields
_(z—y)?
v(z,t 4A<t> uo(y)dy, 2.27
0= 5 s / o(y)dy (227)
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1+X_
where A(t) := %—Al It is then easy to see that

= O(1)A™* || 2

—O()(1+1)~

14X
Here we have used the fact that A(t) ~ W{fr)/\ as t — 0o. We next estimate |w,(x,t)|. Let w(s;z,t) be

the solution of

Wy — (L +t+ 8) Mgz = 0, (z,t) e R x Ry,
w(s;2,0) = —(14 s) F(x, ), z eR.

It is easy to see that w(z,t) = fot w(s;x,t — s)ds. Similar to (2.27), we have

(@—y)?

e 1B, t) —(L+ ) F(y, s)dy,

osizb) = gm/

where B(s, t) := (1+t+s)1ijr;(1+s)lﬂ. Then,

t

wiet) = / wm R/

e 4B(st s) 1_|_3) ( F(y7s))dyd8.

Thus, by (2.6)

1 w2 —(z—y)
wy| = — [ e e —— % (14 5)*F(y, s)dyds
fws| /2\/7TB(S,t—S) 2B(s t—s)( Sy
0 i
t

(1+S)>\ / __@=p?

< 4B(s,t—s) — Fd d

_/4ﬁ33/2(5,t—5) e x y|| | yas
0 R

t

(]. + S)A 7%
§0(1)/m i
0

R

z —yl? /F2 ds
R

t

< 0(1)/373/4(5,#5)(1“)”4"’(15

t

=0(1) [ B3/4(s,t—s)(1+s) "5 ds+O(1 )/373/4(3,t—s)(1+s)7Tds

o\ o
N+

MRS

L1411



1094 H. Li et al. / J. Math. Anal. Appl. 473 (2019) 1081-1121

A A
When s € (0, %), B(s,t —s) = (1+t)1+1;g\1+s)1+ ~ t1* as t — oo, hence

O(1)(1+ )~ 10+, —1<A<d,
I:O(l)t—%““)/(us)?%sds: O()(1+t) " FIn(2+1t), A=1,
0 O(1)(1+t)*1, T<A<L

When s € (%,t), B(s,t—s) ~ (1+¢)'** = (1+s)!™ as t — co. Then by changing 5 := (1+1)' ™ — (1+5)1™?,

a simple calculation gives

()= (144)1

II=0(1)(1+t)"% A+ 1) — 5™ ds
0
A+ A4 L)HA
=01 +1) 7T (14 )TN / s ids

=0(1)(1+t) L

Noting that A —1 < —2(1+ ) for A< % and A= 1> —3(1+ A) for A > 1, we obtain

O(1)(1 + 1)~ 10+, “1<a< i,
[us| < |va] + we| = 0(1)(1+t)—$ In(2 +t), A= %,
o)1+ )21, i<a<l

This indicates that the convergence rates obtained in (2.21) and (2.22) are optimal.

Remark 2.2. The argument above motivates us to divide the range of A into three parts, —1 < A < %, A= %
and + < A < 1. This decomposition was also adopted in [2], where the diffusive phenomenon of damped
p-system was studied for A € (0,1). However, in this paper, by artful construction of various time-weights,
we show that in the critical case A\ = % the growth factor is exactly In(2 + ¢).

3. Convergence to nonlinear diffusion waves

In this section, we will prove the global existence of smooth solutions to equations (2.18)—(2.19). Sub-
stituting (2.18); into (2.18)9, and (2.18)5 into (2.18)4, respectively, we obtain a system of damped wave

equations
1 _ . _
Pree + W¢lt — (P (M) ¢12), = —F — (¢12 + 11 + 0)H — f1 + g1 + G1a,
3.1)
1 (
Gt + m%t - (p'(ﬁ)fﬁzw)z = —F + (¢pog + N2 + ) H + fo + gou + Gog,

with initial data

#i(7,0) = ¢io(w), @it(w,0) = —io(x). (3.2)
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Here

fi = (¢iz + 15 + 1 — ﬁ)EA’

o (=i + Ji + J)? _ f
gi Giz + N + 10 n’
Gi = p(Piz +1s + 1) —p(n) — p'(R)Piz, 1=1,2.

Equivalently, we only need to study the global existence of smooth solutions to (3.1)—(3.2). As in [20], the
local existence of solutions can be obtained by the iteration method. Thus, we only need to establish the a
priori estimates for the solutions by technical time-weighted energy method.

Let T € (0, +00], we seek for the solution of (3.1)—(3.2) in the following space

X(T) = { il 0|06 € OO, T) B (R)),i = 1,2, j = 0,1,2}

where its norm is defined in the following sense: if —1 < A < =, then

3 2
N(T)? = {Zl+tk““>|8’“¢ DI+ 3@+ )N 9k gy, (12
O<t<T

k=0 k=0
1 (3.3)
IR IR
k=0
if A= %, then
3
N(T)? := su {Z 1+6)7 In~2(2+ )]0 i (t) \|2+Z (L4572 22+ 1) (|05 st (1) ||
0t ST k=0
1 (3.4)
#3200 b ko O}
=0
and if % < A <1, then
3
N(T)?:= su {Z (1 4+ O)FOIT5 9, (1) H2+Z (14 )RS5 9 g (1)
S —
k=0 h=0 (3.5)

1
I e >||2}.

=0
It is easy to see that owing to the Sobolev inequality (2.20), if N(T') < 1, then there exists a constant

c1 such that

1
0<—<ni=¢i+n;+n<cy, =12
C1
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Before the estimation of solutions of (3.1), we first show the decay rate of H, which also proves Theo-
rem 2.4. Subtracting (3.1)2 from (3.1);, we get the following wave equation with time-dependent damping

Htt + Ht - (p/(ﬁ)Hw)$ + 2nH = (gl - 92)1 + (Gl - G2)w - hl - h2, (36)

b
(141t)*
where hi = (¢12 + 20 + 11 + f2)H and ha = [Py + Pop + A1 + Mg + 2( — )] E.
Lemma 3.1. It holds that for —1 < A < 1

(K, Hay Moy Mo, Hat, Her)()]]2 < C(6% 4+ 82)e=CY for some constant o > 0, (3.7)
provided that N(T) + 6 < 1.

Proof. Step 1. Multiplying (3.6) by 2H;, we get

(H7 + 20H? + p/ (A)HZ), + 2(1 + ) HF — 20, H? — p" (R)Rg M2

(3.8)
— 20" (R)YH Mo, = 2Hi[(91 — 92)2 + (G1 — G2)z — h1 — ha).
The right hand side of (3.8) can be estimated as follows. Noting
J? 2J R N R N
(gl - 92)93 = __12Hma: - _1th + O( )(nlm + Nog + Jla: + J23v)
ny (3.9)
+ O(1)($2aw + P20t + Tiw + Jo + Piag + Joz) (Mo + He + i1 + Ra + J1 + J2),
and
J? 2.J;
2Ht (__Qsz - _HIt>
ny
2J% 2.J J J? 2J% 2.J
S (—;Hﬂ-l + —1Ht> + ( 1H2> — (—12) H2+ (—;) HiHa + ( 1) H;,
ny T t ny /¢ ny T n /g
by Young’s inequality and (2.5), we obtain
2.J2 2.J, JE . o “Aq2
2Hi(91 = g2)0 < — ( — 5 HiHa + —’Ht +SpHL ) +CE+NB)(1+ 1) H]
1 T 1 t
CE+NW)L+1) "My + C(L+ )M (A + a5 + 7 + J3)
+ O+ )N, + a3, + JE + J2).
A direct computation yields
(Gl - G2)m
( )(¢1II + nlr + nr) - p/(n2)(¢2£z + ﬁQr + ﬁr) - p//(ﬁ)ﬁIHr - pl(ﬁ)Hrr (3 10)

= [p'(n1) = p'(n2)(b2we + 2w + 1z) + (' (n1) — (7)) Haw + p'(n1) (12 — froa)
_p (ﬁ)ﬁxr}{z
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Then, by Taylor’s formula, we get

2H(G1 — G2)e < [2(p"(m1) — P/ (1)) HeHa], — [P (€1) (610 + Pa)HT],
< > ) MHZ 4+ O+ N()(1+ ) H2
+C(1+ n2,) + C(14t)" 1 (72 4 ).

Similarly,
2/Hihi| < C(6+ N@)(1+1t) H2 +C(6+ N(@)(1+ 1)~ M2,

2|Hiha| < (; + N(t)) (14+t) M2+ CA+t) B2+ C(1 + )M n —n)2E2

Thus, integrating (3.8) over (0,t) x R, by Lemmas 2.1 and 2.2, we have

1

%/ {H? +20H2 + (p’(ﬁ) - i—li +p"(&1) (P12 + ﬁ1)> "Hi}
R
+ (; _cs— C’N(t)> R/(l + 1)

<C@+N(@) /(1 + t)_l(’}-[2 4 Hi) + O§2e=C1°
R

Step 2. If 0 < X < 1, multiplying (3.6) by (1 +¢)~*#, we obtain
A
[(1 + )T MHH + S (1+1)” Al 4 (1 +1)” 2*7{2] — (1 +t)MH?
t

= (' () (1 + ) HaH)o + (1+8) M H](91 = g2)o + (G1 — G2)y — b1 — hal.

N | >

The right-hand side of (3.12) can be estimated as below. By (3.9) and Young’s inequality,

By (3.10),

(1+1) " (G1 — Ga)s

A+DA+) 22N+ )2 1 2n(1 +1)” }’HZ—HD( Y(1+t) " H2

1097

(3.11)

(3.12)
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Similarly,

(1+t)"MH(hy + ha)| < (g +C(6+ N(t))) (1+ ) "H2+CA + 1) E?

+C(1+ )" Mn —n)?E2.

Integrating (3.12) over R, by Lemmas 2.1 and 2.2, we have

d A 1
ﬁ/ [(1 + )T MHH, + S+ HAIH+ (1 + t)—”’HQ] + 2 P R)A+t) M
R

FNI
B

2
A —A-2 —ox-1, 15 2| g2
+ “A+1)(1+1) +A1+1) +—n(l+t)" M H
2 8
R (3.13)
< (1+C6+N©) /(1 +1)MHE + O + N(2)) /(1 F1)TNHE + M)
R R
+ 052",
Adding (3.13) to (3.11), noting that
A =+ S+ T =] = ¢+ 1 — 1+ 1) (R)iia| < C(6+ N(1)),
and for some positive constants Cy and C1,
1
H2 + (1+t) HH, + S+ t) TP H2 > CoHZ + Ci (1 + 1) 2 MH2,
when 0 + N(t) < 1, by Gronwall’s inequality, we get
/[’Hf +H? +H2 < C(8% + B2)e Y for some constant o > 0. (3.14)

R
If —1 < A < 0, multiplying (3.6) by (1+%)*H, and integrating the resulting equation over R, as in (3.13),

we obtain

A 1
{ (14 ) HH, — 5( + )M + 57{2]

+/p )1+ ) H2 + /[%(A—1)(1+t)A_2+2n(1+t)A} H?
R R (3.15)

<(1+C(E+N(@1)) /(1 + ) I+ C(6+ N(1)) /(1 + 1) H?
R R

1 o
+ (Z + O+ N(t))> /(1 + ) 2 4 C52e O
Adding (3.15) to (3.11), when § + N(t) < 1, by Gronwall’s inequality, we get

/[H? +H2 + Hi] < 0(52 + @%)67Cta. (3.16)
R
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Step 3. Differentiating (3.6) in = gives

1

Hare + WHJ:‘, — (' (M) Haa)z + 20 H,

(3.17)
= (p//(ﬁ)ﬁwHﬂi)I - 2777’33% + (gl - gQ):E:E + (Gl - GQ):E:D - hla: - h2z~

Multiplying (3.17) by 2H,:, and integrating the resultant equation on R, noting that by (2.5),

(p,/(ﬁ)ﬁsz)ert = (p///(ﬁ)ﬁi er//(ﬁ)ﬁm)Hert er/l(ﬁ)ﬁerert

3(1 +)Mnd +n2 ) H2 + %(1 + ) 2H2,
<O+ M2, +CO(1+ )2 MHE + CS(1+ ) H2,,

<51+t M+ ¢

as in (3.11), we obtain

Sl

1

+ G _ - czvm) /(1 + M, (3.18)
R

2
[ [z (v - 2+ o o) a2
R

<C(6+ N(t) /(1 ) TANHE FHE A HE A+ HE,) + 0% O
R

On the other hand, if 0 < A < 1, multiplying (3.17) by (1 + t)"*H,, we get

A 1
(1+1) Mo Har + 5(1 + 1) IH2 4 5(1 + )71 4 (R)(1+ 1) HE,
t

— (148 "H2, + %(/\ + DA+ A+ )P 2+ 1)

H (3.19)
= [P (W) A+ ) HaoHo + " ()L + 1) e HE ], = 200(1+ ) HH,
- p”(ﬁ)(l + t)i)\ﬁﬂcle/Hmc + (1 + t)i)\fH:c[(gl - 92)9096 + (Gl - GZ)xx —hiy — th]
Noting that by Young’s inequality and (2.5), we get
" (n)(1 + t)_kﬁmHerzﬂ <o(l+ t>_)\Hiz: +Co(1+ t)_l/Hi7
(148 aHH,| <51+ H2 +C(1 +1)  H2

Then integrating (3.19) on R, we obtain

d Y A A1, L —2Xq,2 /(= —Aq,2

pr (1+t) " HoHaor + 5(1 +1) H + 5(1 +t) T HI + [ p(n) (1 +t) T VHE,

R

R

- /(1 + 1) HE, + / [%(A + DA+ AL+ )P+ 20(1 + t)_A] H (3.20)

< O+ VW) [0+ 070 124+ 7H2,) + 0t
R
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Adding (3.20) to (3.18), when § + N(t) < 1, by Gronwall’s inequality, we get

/m@+%L+Hﬂsa#+¢@f“? (3.21)
R

If —1 < A < 0, multiplying (3.17) by (1 + t)*H.,, adding the resulting equation to (3.18), as in (3.20), we
get

/m@+%ﬂ4@s0W+ﬁw”f (3.22)
R

In view of equation (3.6), it is easy to see that, for —1 < A < 1
[He(t)])* < C (6% + 0F)e . (3.23)
The desired estimate (3.7) follows directly from (3.14), (3.16), (3.21), (3.22) and (3.23). O

Lemma 3.2. Assume that N(T) + 6 < 1, then for -1 <A< %

t

lg: I + (1 + ) (i, die) (O + / [+ )M bia ()17 + (1 + )l pie()]%] ds

/ (3.24)
C (8 + 9);
for A= %
J6: + 1+ 010 0) @1+ [ [+ 1wl + 1L+ 9)0u()]?] ds
) (3.25)
C(6 + ®2)In?(2 + t);
and for <A<l
@i (0% + (L + O [z, 9i0) (1) +/ (L + ) Mpiw(s)I* + (L +5)[[due(s)]%] ds
(3.26)

0

<C(E+D)(1+1)7 2.

Proof. Multiplying (3.1); by 2(5 + t)*¢14, where 8 > 1 and o > 0 are constants to be determined later,
and integrating the resultant equation over R, we get

jt 5+ (@ +p )] + [ 22— als 407 ot
R

—/[wﬂw1%>w+w"u}%m (3.27)

=2/(5+t)a¢1t[—F—(¢1x+ﬁ1 +)H — f1+ g1 + G1a].
R
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The right hand side of (3.27) can be estimated as follows. By (1.11), (2.5) and (2.6),

_/(5+t)a¢1tF§5/(B+t)a—/\ %t+%/[(1+t)a+3>\—2|ﬁm|2_’_(1_’_t)a+3/\|ﬁxt|2]

R R R

(3.28)
) /(ﬂ F OGS, O 41)
By Lemmas 2.2 and 3.1,
- / (B+ ) e (drs + i + R)H
R
C
<5 [Er0m 4 5[40 N6+ e (3.29)
R R
5[5+ 0263, + o0,
R
—/w+w%mﬁ56/W+ww4ﬁf+%/w+w“*[i+ﬁﬁuﬁ—mﬂﬁ2
R R R (3.30)
5[5+ 0263, + e,
R
and
/ (B + ) brugna
R
o (10 — J1 = 20)(p1e — J1) T2 (10 + 11)
- / (B+8) s [ = .
R
< /(5 +t)o¢ <_¢%t¢1tw + 2j¢1t¢1tw + Jz(blw?ltw) + 066—0#’
ni ni nn
K (3.31)

oot (1 J 1d J?
:/(ﬁ‘i‘t) {% <n_1)z_¢%t <n_1) ] id_/ﬁ—’—t ¢1z nn
R R

5 [ e JQ} B+ e

l\')l'—‘

R
<3 [rodan +05/ (B 17768+ (8 + 077 0R] + Coe= ",
R

where we have used the fact that

16120 ( 8) |12 < Clldraa 8)1 22 @1z (5 D72 < CN((1+ )75 for —1<A<1. (3.32)
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By Taylor’s formula,

P (¢10 + 11 + 1) —p'(n) = O1)|¢12 + 7],

3.33
P (12 +fn +7) = p'(2) = p"(A)d1o = p" (A1 + O(1)| b1z + 7 |*. 339
It then follows that,
/(/3 +1)%$1:G1a
R
= /(B + t)a [pl(¢1x + 7éLl + ﬁ)(¢1xac + ﬁlx + ﬁx) - pl(ﬁ)ﬁx
R
- p ( )nw¢lm - p/(ﬁ)(blza:] ¢lt
= /(ﬁ +t)° [ (0 (12 + 11 + 1) = p' (7)) Prae + P (D12 + M1+ 1)M1e (3.3)
R
+ (0 (910 + 71 +7) = (7) = ' (A)612) e | e
C/(ﬁ + )% (612 + Pl|d12a] + ([P1] + [¢12 + P11 Re| + [A12]) |Pre]
C(3+N(0) [(5+0° 6%, + €0+ N [(5+0° 6%, + Coe".
R R
Here we have used (3.32), (2.5) and ||¢14(, )|~ < N(¢). Thus,
d o J? 2 @ _
7 0 (ot (- Yot )| + [ PR - a0
R
(3.35)

< / (ap/(n) + C(0+ N () (B+1)*'¢7, + C(6 + N(t)) / (B+1)* o1,
R

R

F O 4)7 27 4 Coe .

On the other hand, multiplying (3.1); by v(8+t)* !¢y, where v > 0 is another constant to be determined
later, and integrating the resultant equation over R, we have

5 | e oo = a0+ BRI
R
/(ﬂ-F Ho= 1/ (i) i—&-/ {%(a—l)(a—Q)(ﬁ_Ft)a—g_ (%)t] p
. R

:v/(ﬂ+t)”‘ ! ?ﬁv/(ﬂ%)“*lm[—F—(¢1x+ﬁ1+ﬁ)Hff1+glx+G1x].

R R

By Young’s inequality, (2.5) and (2.6),
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/(mt“ 19, F < O(1 /Ht““ 2\ gy, | + O(1 )/<1+t)““*1|¢mt|
R

R R

1/2 1/2
<O 1) ( / qﬁ) ( / n2)
. 1/2]R 1/2
+ C(14t)atA-t ( gb?) ( n§t>
[4)

< C8(1+6) T | o

Thus,

a—1
96+ non — Ja = (84072 + g

o [+ w@et+ [ [Fa-ne-2e+o - (L) |4

R R t (3.36)

<~ / (B+ 0216, + C(6 + N(1) / (6 + 022, + C(6+ N(1)) / 6+ 67162,

R R R

SRS
e

+O5(1+ ) gy || 2 + Coe=CE

Adding (3.36) to (3.35), it then follows that

(?t [(ﬂ+t) ( 2+ (p/(ﬁ) - Til) i) _

+7(6+t)“1¢1¢1t+M¢2] /[Q(BH); —(a+Y)B+) 02,
R

(a—=1)(B+1)* ¢

N2

2(1 +t) (1+1)

b o — 1 — a—3 V(B! 2
+R/[2( Die=2)(F+1) ( 2(1+ )N )j < (3.37)
+(y—a) [(B+) P ()61,

/
SC(6+N(t))/(ﬁ+t)a Lo2, +C(0+ N(t) /B—i—t“ o
R R

FOS14D)T 2 T OS5+ F bl + Coe=CF

When —1 < A <0, taking vy =1, a = 1+ A, =1, and noting by (3.3), ||¢1]|r2 < N(t), we have
4T (@4 (F@ - ) o) + 1 0Ponon - 20+ 00163+ 263
dt 1t p raf 1z 191t~ 5 1T 5%
R
A
+/[ <1+t>—<2+A><1+t>A]¢%t—A/ W, + 50-1) [(1+02 26
R

C(O+N(t /1+t L CE+N®D) [(L+1)¢2, +Co+1) 5 + Coe "
R

%\



1104 H. Li et al. / J. Math. Anal. Appl. 473 (2019) 1081-1121

Thus, integrating this inequality over (0,¢), and noting that for some positive constants Cs, Cs,

1
(1+ )%, + (L + ) pro1e + §¢% > Co(1+ )27, + Cai,

2

I <O+ <1+ )M <062,
nn

and that 2(1 +¢) — (2+ A)(1 +t)* > =\ > 0, when § + N(¢) < 1, we then have

t t
(L+6)" (3, + ¢3,) +¢2 - (1+s)8%, + (1+ ) ¢7, < C5+ &5, (3.38)
/{ 1t 1 0// 5)P1t O/R/ ) 1 0

R

When 0 < A < 1, taking v = 2a and a = 1+ X in (3.37), and integrating the resulting equation over (0, t),
but noting that

(B +t)
(1+6)»

—<1+A>( ) CAQLHNE - DB+ 0,

we get

/ [(ﬂ +4) (aﬁt + 7@@) +2(1+2)(B + 1) 01610 = ML+ A)(B +1)N 1o

R

A ACLD 5] + //[2<5+s>—3<1+A><5+sm¢>i
R

+(1+A) (B+ s)*p' (R)¢1,

/]

<AL =M1+ (B+ ) 27 + C(6 + N(t)) (B+5)¢3,
/1 /1

¢
C(6+N(t /R/(B+s)¢i+050/(1+s)z

t
+C(5/1—|—8 ||¢1||L2+05+(I)2

(3.39)

We next estimate fg Je(B+$)*72¢% with A > 0. To do so, we take v = 2a and o = 2\ > 0 in (3.37) to have

jt [W“)”(% (/<ﬁ> )%)— AN = 1)(8 + )26}

22—1 2)
@+ P oo+ 2O g4 [ 12T o021 o2
R

B+

+2)\/ [(m —DEA=2)(B+1)P P — ( TR
R

H ¢2{+2AR/(/3+t>” o
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C(G+ Nt /mt” 62, 4 O+ Nt )>/<ﬂ+t>*¢i
R

R
FCS(1 417 +C8(L+1) "5 |||z + CoeCF .
Noting
(ﬂ-ﬁ-t)”‘_l - (6+t)2x—2 6+t
_ ( P )t = ( 2)\+1+)\1—+t>

(B+1)**2

> (1- )\)W

Z (1 - )\)(B + t))\727
we have

- nea- 2@+ on - (L)

(1+t)*
> 1=+ ?[1-22 - DB+ ],

Now choosing = 10ﬁ, it holds that

(2A = 1)(2A = 2)(B + )22 — (

2(8 +1)A
(1+t)A

22—-1
%) %(1— N(B+ 1)

6AB+ )21 > (B+t)N

Hence, integrating (3.40) over (0,t), it follows that when § + N(t) <« 1,

t
//B—&-s)‘ 2<;§1<C’5/1-i-s +C<5/1+s ||<;§1HL2+C(5+<I>O.
0 R

Substituting (3.41) into (3.39) and noting that

2(845) —3(L+AN)(B+5)" > (B+s),

we obtain

[l (6 + 6t + 6] + /t [+ 56t + /t [e+spat,
0 R 0 R

R

t t
<C(5/1+s Pt +C<5/1+s +05/(1+s)7*+5\|¢>1llw
0

+05/1+s Nl + C6 + B2

1105

(3.40)

(3.41)

(3.42)
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When 0 < A < 1, by (3.3), [[¢1]l2 < N(¢), then it is easy to see that

t t t
/(1+s)”T*3+/ +/1+s \|L2+/(1+s>1“4’9 Ize < C.
0 0 0 0
It then follows from (3.42) that when § + N(¢) < 1,
t t
/[(1+t)1+’\( +¢2 +//(1+s) ?ﬁ—//(l—ks)’\ 1. < C6+ @F.
R 0 R 0 R
When A = 1, by (3.4), [|¢1][2 < N(t)In(2 +t), it is easy to see that
t t ¢ t
Jaro™ 1 [a+9™ + [049"F il + [0+ 6l
0 0 0 0

7
<2In*(2+t) +In(2+ 1) + 5

It then follows from (3.42) that

t
(1+)7 (63, + ¢3,) +¢2 + (14 s)¢3, + (1+8)7¢2, < C6In*(2+t) + 2.
/{ 1t 1 /R/ 5)P1¢ O/R/ s 1 n 0

R

When 1 < X < 1, by (3.5), |l¢1]l2 < N(t)(1 +)

t
/(1 n S) 723
0

It hence follows from (3.42) that

t t

t
112—9
+/1+s T +/1+s ||¢1\|Lz+/(1+s) T
0

0 0

Iz <COL+ 1)

/[(1+t)1“(¢1t+¢u + ¢7 +//1+s¢>1t //1+s @2, < C(L+t) 7 + 2.

R

Calculating similarly to ¢ = 2, we also have the desired estimates when N(T)+d < 1. O

Lemma 3.3. When N(T) + 6 < 1, then for -1 <A < %

t

(L + 6> |(Pizas Pt (D1 + / [(L+8) M| piaa (8)II7 + (1 + 8)24 [ i (5) 7] ds

0
< C((S-l—@%);

forAz%

(3.43)
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t

(14 ) 7 |Gtz Siat) ()2 + / (14 9)F 9100 () 2+ (1 + ) 7| giae ()]

J (3.44)
< O(6 + ®2)In?(2 + 1);
and for % <A<l
¢
(140222 (Dis Piae) (DI +/ (14 8) 2 i ()P + (1 + 5)2 A |di0e (5)[1%] ds
; (3.45)
<SCE+D2)(1+1)7 2.
Proof. Differentiating (3.1); in x yields
Grote + s bran — (0 (1))
latt (1+t))‘ lat — lzzx ), (346)

= (p/ (ﬁ)ﬁqulm)a: - F:L’ - [(¢1x + 7¢L1 + ’FL)H]:L’ - fl:r + Jizz + Glzr~

Multiplying (3.46) by 2(8 + )72 ¢, with § = 107 and integrating the resultant equation over R gives

242X
g [0+ 07 @ pmot)) + [ PO e
R
—/[(2+2A)(ﬁ+t)1+2*p’( )+ (B+ 22" ()] 61, (3.47)
R

=2 /(ﬂ + t)2+2>\¢1a:t {(pl/(ﬁ)ﬁ$¢lw)w - Fw - [((Z)l:v + ﬁl + ﬁ)H + fl]z + Glzx + Gla:x:| .
R

We estimate the right hand side of (3.47) as follows. By Young’s inequality and (2.6),

-2 / (B+1) 2214 Fy <6 / (B+1)2 42, + C5(1+1) "7, (3.48)
R R

-2 /(ﬁ + )22 10 (D10 + 1 + )H + fi]e <6 /(B + )22, + Coe . (3.49)

R R

As in (3.31),
2/(6 + t>2+2)\¢lxtglwz
di/[ﬁ+t2+2*¢1mmJ2}+Cé+N /6+t2“¢m

R R (3.50)

C(6+ N(1)) / B+, 1 C / (B+ 182+ C / 6+ 0782,

R R R

® 4 05O

+C5(1+1)"7
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1 1
where we have used ||¢1u| e < Clldrul 22l @1auellfe < CN@E)(L+t)~" for =1 < XA < 1, and J; =
—¢1s + J1 + J. As in (3.34),

2 / (B4 2 brat (0" (W) wbra)s + Goa)

/
=2 / (B+ 0> [P (10 + 1 + 1) (G120 + g +710) = 0/ (Ditg — P (Wb1a), 10 5D
/
21+ 1y,
where
B =2 [(5+ 0P (0 01+ i+ ) = 5 (1) 1], 1
!
<=2 16+ 072 0010+ +7) - (1) ..
L
C [(6+0M P01+ iuldhe + € [(5402 P ol + 1l + oo (352
/ 4
<=5 (1640 @/ (on i +7) - (1)) 6]
HCE+NW) [(B+0 .
L
and

I, <C(6+ N(t) /ﬂ+t2“¢m+06+N /ﬂ+t1+2’\¢1m
R R

(3.53)
+C /(5 + )22, 4+ Coe™ 1,
Hence, by (3.48)—(3.53), we obtain
& 640742 (60 + () + 06 + N ), )]
242\
; (3.54)

S/[(2+2A)p’(ﬁ)+C(6+N(t))}(ﬁ+t>1*”¢m+C (6+N(t //3+ )21,
R

R

c /(ﬂ +1)¢2 + C/(ﬁ F 0 G2, + C(L+1) 7 + Coe O

R R

On the other hand, multiplying (3.46) by 4(3 + )1 722 ¢, with g = 107% and integrating the resultant
equation over R, by Young’s inequality and Lemma 2.1, we get
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2(5 + t)1+2’\

2
(1+1t)* €t

&|Q‘

/ |: 5 + t 1+2)\¢1m¢1zt - 2(1 + 2>\)(ﬂ + t)2)\ %T +
R
4 / (B + )2 (1),

/ B4 )G, + O+ N(1) / [(B+ )22, + (B + 02, ]
R

R

/(ﬂ T 2+ Co(1+8) 7 + Coe .

R

Adding (3.55) to (3.54) gives

jt / [(B+ O (0 + (0/(0) + O + N(1) ) +4(8+ ) 6100101
2(ﬂ+t)1+2)‘

2A 12
=2(1+20) (B +t)" 7, + EE

¢?4

242X
+/ [% (3+A)(/3+t)””} Gar +2(1— A /p )(B+ ) P2
R R

< C@+N(D) / (B + 162, + C(6+ N(1)) / (B+ )22, 4 C / B+ 1)2,
R

R R

+ C/(ﬁ )22, + CS(L+1) "2 + Coe O

Integrating (3.56) over (0,t), by Lemma 3.2 and noting that

2(ﬁ + t)2+2/\ L

9 20 5 24\
T —2ABENE+0M 2 (34,
we have the desired estimates (3.43)—(3.45) provided N(T)+d < 1. O

Lemma 3.4. Assume that N(T) + 6 < 1, then for -1 <A< %

t

(1 + 0> (Pizwa, dizat) (]1* + / [(1+ 8)* M| izwa ()17 + (L + 8)* X[ dizae () ]1%] ds

0
< C(0+ f),

for)\z%

t

(14 )% |(Sizaes Sizat) ()2 + / [+ ) F [ Giaa()I? + (14 ) [ izt (s) |

0
<C6 4 ) In*(2+1),

andfor%<)\<1

1109

(3.55)

(3.56)
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t

(1 + > (Giawa, dizat) (O + / [(1+ 9> bivaa ()2 + (1 + 87 |Giat (5)[%] ds

0
<CE+D)(1+1)7 2.

Proof. Differentiating (3.46) in x leads to

1 P
Praatt + méblxxt - (p (n)éblxx:c)z (3.57)
=l — [(¢1I +hy + Tl) ] — fize + J1eze + Glazs + K,

where K = p"(A)n2p1e + P (M) ez iz + 20" (R)NgP1ae. Multiplying (3.57) by 2(8 + )3T 140 with
8= 1075 x and integrating it over R yields

d

dt [(ﬂ + t)3+3A ( lxxt +p( ) %xrz)]

R

(3 + 3A) (B + t)2+3)\ la:a:t

343X
N {2(/3%) +

(1+t)*
(3.58)

(B4 3N (B + 1> (1) + (B4 6)°T2p" ()] ¢7,0

\%\

=2 (5 + t)3+3)\¢1:czt [ - [(¢1z + ﬁl + ﬁ)H}zm - flxac + Jlzza — an: + Glxmx + Kx] .

%\%

We next estimate the right hand side of (3.58). As in (3.48) and (3.49),

-2 /(ﬂ + 1?2 10t (P10 +n + )H + f1 + F]

N (3.59)
< Cé/(ﬁ FPRG L Cs1 407 + 5/(5 + )22+ Coe O
R R

As in (3.50),

2 /(ﬂ + t)3+3k¢1zxt [glrz$ + Kx + Glmrx]

=

< % [(ﬁ + 1), ﬂ i / [(B+ D7 (0 (d1a + 1 +7) = (7)) D]
R

+ 0(6 + N(t)) / [(ﬁ + t)3+2>\¢1mzt + (B + )2+3/\¢1mxm] (360)

R

+C / (B4 ¢l + B+l ] +C / [(B+1)e1, + (B+ 1)1,
R

+CO5(1+1)"7 + Coe O,

1 1
where we have used [|¢1y]lre < CllgrullellPrarelli < CN(@)(1 +)~" for —1 < X < 1, and J; =
— 1y + Ji + J. Substituting (3.59)(3.60) to (3.58),
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/

[(8+ 074 (62 + (7' (7) + O (6 + N(8) 1 ) |
+ [ Htw 3+ 33+ 07

&I&

< / [(3+3X)p () + C(0+ N()] (B + )¢, + C(0+ N(2)) / B+ tprgz, (B0
R R

e / [(B+ 626+ (B + )G, + (B + 06+ (B + 1) 6]
+05(1 +1)77 4 Coe O

On the other hand, multiplying (3.57) by 6(8+t)?*3*¢1 .., integrating it over R, similar to (3.59)-(3.60),
and noting that

36+ t)2+3A 3\ 142X
(B0 a0 < ol 0,
we get
d ﬁ + ¢ 243X
G [ 60+ 07000 - 30430+ R+ AT 0,
R
6 [(B+t )2+3,\ ,( )¢1xa:x
/
<6 [(B+1)2T32 ., +CO+N(t (B + 1P+ ¢2, »
(3.62)
® R

+ 0(6 + N(t)) /(ﬂ + t)2+3k¢1xmx + C/ 5 + t 2+A¢1mt + C/ ﬁ +t 1+2A¢1xm

R

+C/(B+t)¢%t+0/(ﬁ+tﬁ¢§w+C<5(1+t)”27
R R

* 4 0se 0,

Adding (3.62) to (3.61), integrating the resultant equation over (0,t), by Lemmas 3.2, 3.3 and

2(/8 + t)3+3)\

L 33+ N (B+1)2T3A > (B+1)3 for B = 10ﬁ7

we get Lemma 3.4. 0O
Lemma 3.5. When N(T) + 6 < 1, then for =1 <A < %

t

(L4 Ga ()1 + (14 )*M[(Biat, dire) D) + / (14 5)%|gire (s)[Pds < C(6 + @), (3.63)

0

forAz%
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t

(1+ %[ (ON + (A +6) 7 [[(Diat, biee) ()] + /(1 +5)%[|Gise (3)[|*ds

0
< O(6 + ®2)In?(2 + 1),

cmdfor <A<l

t

1+ 8)%da N + (1 + 6> (it diee) (0)* + /(1 + 8)3|dire ()| ds

0
KON
2

1
2-

<CO+ )1 +1)

Proof. Differentiating (3.1); in ¢ yields

G — ANL+) oy + ! <0100 — (P (M) d1at),

(1+1¢)
= " (M)d1a)s — Fr — [(¢12 + A1 + 0)H]e — fre + g1at + Grar.

Multiplying (3.66) by 2(8 + t)*¢14+ and integrating it over R to obtain

[ﬂ+t (0T + 1 (0)¢7 ) — (ﬁ;ﬁwu} /F(ﬂﬂ)j —a(ﬁ+t)“‘1] Plu
R

(1+1¢)
oz / o I )\ +t @
/ (B+t)>t + (B4 1)p" (7)) %xtJr/[(l(f—t)l‘)"/\Lﬁt
R R
2/ (B+1) ¢1tt (R)ud1z)e — Fr — [(912 + 71 + ) H]e — fie + grae + Glmt]
R

By Young’s inequality and (2.5),

(B+)Y P16t [F + (d12 + 1 +10)H + fu]e]

e

2a452—-9
2

<5 / B+ 12262, + Co(1+ 1) L Cge—Ct

R

As in (3.50),
2(8+1t)” / D11t (912t + (P (R)eh12) 2 + Giad]

SR/V” ¢§x/ﬂ ;tR/[(mt) (0 (b1 + 7 + 1) = p'(7)) 6]

+C(0+N()) /(ﬁ + 1) T + C/ [(B+1)* i, + (B+1) 21, ]

R

+C/(6+ta A p2 +C’/,6+t°‘ 892 4+ CH(1+1)
R

a+5X—9
2

Thus,

+ Cde 1,

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)
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d a . AR+ 1)°
p R/ [(ﬁ + )% (6% + (/) + O() (6 + N (1)) 62t ) ﬁ ¢>i]
4_

JF5 e o b [ | 1] o

- / / 8 / (3.69)
SC@+N®) [ B+l +C [(B+) 108, +C [ (B+) e,
R R

R
2045X—9

+C /(6 +1)072 A, + C/(ﬂ 1) 392 4 C5(1+1) T 4+ C5e .
R

R

Taking a =2+ 2\, 8 = 1075 in (3.69), integrating it over (0,¢), and noting that

2(5 4 t)2+2A

T (2420 (B + )12 > (B +1)*T,

by Lemmas 3.2 and 3.3, we have,

t t
//(5 4822, < 05/(1 455 08+ 82, (3.70)
0 R 0

Taking « =3+ XA and 8 =1 in (3.69) yields

%/ [<1+t)s+x(¢§tt+ (v/(R) + O(1)(3 + N (1)) 3. _>\(1+t)2¢%t} +2/(1+t>3¢%n

R

<CE+NO) [ +0P6h+C [P, + 0 [a P,
R R R (3.71)

+ C/(l + )22 4 C/(l +t)¢2, + C/(l + )22,
R R R
+C5(141)"7 + Coe 1,

On the other hand, multiplying (3.66) by 2(1 + )27*¢$1; and integrating the resultant equation over R,
we obtain

%/ [2(1 + )2 i — (24+ N1+ )22, + (1 + tfd)%t}
R
=2 / (1+) 2%, + C(6 + N(t) / L+l +C / (14072, .
R R

TA—38

R
+C/(1+t) %t+0/(1+t)’\¢fm+06(1+t) B
R R

+ e C,

Combining (3.72) and (3.71), and integrating the equation over (0,t), by Lemmas 3.2, 3.3 and (3.70), we
get the desired inequalities if N(T) +J < 1. O
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Lemma 3.6. When N(T) + 6 < 1, then for -1 < A < %

t

(1 4+ 0)* [ (Digats biaee) (B)]* + /(1 +8) | pizur (s)[|Pds < C(6 + @7),
0

_1
for X= =<

t

(1487 || (Ginats biaee) ()% + / (14 8) 7 || prare(s)|2ds < C(6 + ®2) In?(2 + 1),
0

andfor%<)\<1

t

(1+ 02X (Bizats dizee) ()| + /(1 +8) M| dione(5)||Pds < C(6 + @F)(L + 1)
0

A_1
2 T2,

Proof. Differentiating (3.66) in x yields

1
m(bla:tt — (P (R)P1raat) ,

= —Lgpt — [((bl:v + 'ﬁfl + ﬁ)H}rt - fl:z:t + Jlzat + Glzzt + W:Ev

Gratee — A1+ )" gy + (3.73)

where W = p" () nzd10t + (P (7)Nih12)e. Multiplying (3.73) by 2(8 + t)*+22 ¢y, with B = 10ﬁ, and
applying similar argument as above, we obtain the desired estimates. O
Theorem 2.1-Theorem 2.3 are direct consequences of Lemmas 2.2, 3.2-3.6, and the transformation (2.17).
4. Appendix
This section is devoted to the construction of correction functions (7, Ji,fa, Jo, E)(m,t) satisfying the
equations (2.9). First of all, let us investigate the behaviors of the solutions to (1.2)—(1.3) at the far fields
x = £00. Set
nE(t) == ni(+oo,t), JE(t) = Ji(£oo,t), EX(t) := E(£oo,t), i=1,2. (4.1)
From (1.2); and (1.2)3, since 0y J;|g=+00 = 0 for ¢ = 1,2, we have
nE(t) = ni(£oo,t) = ns. (4.2)
Differentiating (1.2)5 with respect to ¢ and by (1.2); and (1.2)3, we get

Eu = (n1 —n2)e = —(J1 — J2)a.

Integrating this equation with respect to x over R yields

— BT (t) — — B () = —[Jy" (t) = T3 ()] + [Ty () = Jy (1)), (4.3)
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In view of (1.2)3, (1.2)4, and (4.2) we obtain

d:l: +
- —n.  E —
STE) = na B (1)

+

J5 (1)
1+t

(4.4)

Noting that there are six unknown functions Jii(t) (i = 1,2) and E*(t), to determine these six functions,
we need one more boundary condition at far field

E(—o0,t)=E_. (4.5)
Without loss of generality, we assume that
E_=0 (4.6)
Then, by (4.4), we get
%Ji_(t) = —(J:_(;))\, 1=1,2
Hence it is easy to compute that
J(t) = J_emx 1m0 o) (4.7)

We next study the behaviors of J;7(¢), i = 1,2 and ET(¢). Notice that J;" () satisfy

d . Ji ()
—JF@t) =n BT (t) — 2
dtJl() n4 () (1+t)>\7
i, ) (45)
et ) = — E+ t) — 2 .
JH0) = Jiy, i=1,2.
Because E~(t) = E(—o00,t) = E_ =0, we get from (4.3) and (4.7) that
iE-i- — _[Jt() — gt _ -1+
o (1) [J7(t) = J5 ()] + (Ji— — J2—)e . (4.9)
By (1.2)5, the initial data of E*(t) can be determined by
E*(0) = /(nlo(y) —n20(y))dy = Ey.
R
Adding the two equations of (4.8) gives
LLIHE) + T ()] =~ [T () + T (1),
dt (14+1t)» (4.10)

TF )+ JE 0]y = s + o
from which, we get

JF() + J5 (1) = (Jig + Jop )ex =0+ (4.11)
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Similarly, subtracting (4.8)2 from (4.8)1, we obtain

d. . . 1
el _ -9 E-‘r = It _ gt
G0 =7 @) =20 B @)~ s [ 0 = 7 0) i
[ (1) = TS (O] |,y = J14+ = S+,
which, in combination with (4.9), leads to
d*E*(t) 1 dE*(t)
. 2n Et(t) =
a2 i @ =0 (4.13)
dET '
|y = 2+ = J2-) = (14 = 1), E*(0) = E,.

It is easy to see that (4.13) is locally well-posed. To have a global solution for (4.13) we only need to derive
proper decay estimates when —1 < A < 1. To achieve this, we divide the estimates into two cases.
Case 1: 0 < X\ < 1. Multiplying (4.13) by 2E;" + (1 4+ )" ET, we get

(B +(1+) " BYES + %(1 +8) T THET) + %(1 +8) B+ 2n+(E*>2]

+ (1 4+t)"MNE? + %(/\ + DA+ 2N+ on, (14 t)*} (ET)?2 =0.

Set Fy := (B )2+ (L+ ) *EYE + 3(1+ )" 1(BT)? 4+ (1 + )" (E')? + 2n4 (ET)2. Noting

+ 2

1 1 E 1
(BN + Q4+t ETEf + (14t NET? = (L + —=(1+t)ET) >0 4.14
B+ (L BV ES ¢ () P E = (o ) >0, (1)
we have
dFy(t
c;t( ) +o(1+t)" Fi(t) <0, for some constant o > 0.

It then follows from Gronwall’s inequality that
Fi(t) < CoerZx -0+

where ¢ is given by (2.1). Thus, owing to (4.14), we have

\Ef(t)] + |ET(t)] < Coer™=11-0+0"" < o5e=Ct" (4.15)
Notice that (4.9) also gives
d .
E(t) = I (1) = = Z B (8) 4 (T = Jom)ers (07,

This identity, together with (4.11), implies
+ Lo 1 -+
Ji (t) = _QEt + §(J1+ + Jog + J1- — Jo)eT> .
Thus, by (4.15),

J () < Coerx 1=+ < 05Ot (4.16)
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Similarly,
JF(t) < Coemx1=HD"] < 0e=Ct' (4.17)
In summary, it follows from (4.2), (4.6), (4.7), (4.15)—(4.17) that
n;(+oo,t) = ny, 1=1,2,

|Ji (400, )| = 0(5)670’514, Ji(—o0,t) = Ji_efCt“*
|E(+00,t)| = 0(8)e=Ct' ", |E(—00,t)| = E_ = 0.

-

I

—
~N

Because the diffusion waves (7, J) satisfy (7, J)(d00,t) = (n+,0), it holds that for 0 < A < 1

|ni(£o0,t) — n(£oo,t)| =0, i=1,2,
[Ji(+00,1) = J (00, 1) = O(8)e=" " £ 0, =1z (4.18)
[Ji(=00,8) = J(~00,1)| = |i-|e™€ et £, i=12, '
|E(+00,t) — 0] = 0(8)e=t"" #£0, E(—o0,t) = E_ =0.
Case 2: —1 < X\ < 0. Multiplying (4.13) by 2E;" + (1 + ) E*, we get
(BFP 40U+ 0 BT BS = S0 (B2 4 (B9 + 20,(B7)?]
t
A
+ 20+ = (1 +)N(EH? + A =10+ H 2 20, (1 + t)’\] (EY)2=0.
As in (4.15)—(4.17), we have
|Bf |+ |EY| < CoeTx1-0+0"] < gge=Ct'™
T @)+ T3 ()] < Coerixl-0H+0"] < Ce=Ct
1 2
And then, as in (4.18), we derive for —1 < A < 0
|n;(£o0,t) — n(£oo,t)| =0, i=1,2,
| Ji(+00,t) — J(+00,1)| = O(8)e= """ £, i=12, (419)
| Ji(—00,t) — J(—00,t)| = |Ji_ e~ £, i=1,2, '
|E(+00,t) — 0] = 0(8)e=t"" #£0, E(—oo,t) = E_ =0.

Thus, one can observe from (4.18) and (4.19) that there are some gaps between J;(£00,t) and J(+o0,t).
In other words,

Ji(x,t) — J(z,t) ¢ L*(R) and E(x,t) ¢ L*(R).

To overcome such difficulty, inspired by the works of [9], we have to construct some correction functions
(’fbl, fLQ, j1, jz, E‘)(x, t), which satisfy
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f1t + J1z = 0,
Y ;
1t (14N Ji(z,t) = JE(t) as x — Foo0,
fiot + Jow = 0, with ¢ E(z,t) =0 as T — —00, (4.20)
Jj S E(x,t) » EtY(t) as x — +oo.
2 1+0)N
E, = fn —fa,

Here 7 = (), Ji(x,0) and E(x,0) are selected such that
w(x) = ne, Ji(z,0) = Jix and FE(z,0) = Ef as z — +oo.

In fact, we choose

n(x) =n_ + (ny —n_ /mo Ydy, E(x,0) = E+/m0 )dy,
(4.21)

jz(xvo):sz"_ Z+_ ] /mO dyv 7’_]— 2

where mg(x) is chosen as mo(z) > 0, mo(x) € C§°(R), [, mo(y)dy = 1. Clearly, 7 lies between n_ and n.
Differentiating (4.20)5 with respect to ¢, by (4.20); and (4.20)3, we get

Etz = *(jl - jQ)m
Integrating this equation over (—oo, ), using (4.7), we have

7(j1 o jZ) + (Jl— o JQ_)eﬁ[lf(lth)l—A]'

Adding (4.20)3 to (4.20)4, by (4.21)3, we get

d 1 R A
dt [Jl + JQ] = —m [e]] + JQ],

i Ja]l g = (e o) [ = )+ (e = Joc)] [ molu)dy,

which can be solved as

jl(mvt) + jZ(xat)

RPN (4.22)
= eﬁ[l (+6) =7 (J17 + sz) + (J1+ —Ji— + Joq — sz) / mo(y)dy

On the other hand, subtracting (4.20)4 from (4.20)5 gives

d .- 7 — [ — ﬁ [jl(t) - JQ(t)]’

[I(t) = a®)] |,y = (i — o)+ [y — i) — (Jay — Ja)] / mo(y)dy,
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which, in combination with (4.21), as in (4.13), yields

2E 1 dE ~

= T i opf =

E(2,0) = B, / mo(y)dy, (4.23)
dE f

ELO = [(Joy — Jo-) = (Jiy — J1)] / mo(y)dy.

We next establish the decay estimates for E.
Case 1: 0 < A < 1. Multiplying (4.23) by 2F, + (14 t)_AE, and applying the same argument as that for
E*(t), by Gronwall’s inequality, we get

‘E| + |Et| <Cé / mo(y)dyeﬁ[l_(lﬂ)lﬂ] for some constant o > 0.

Similarly, differentiating (4.23) in 2 and multiplying it by 2E,; + (1 +¢)"*E,, we get
|E,| < Comg(z)er=x1=0+0" ],

By (4.22) and (4.21), we have

~

xr
1~ 1 1o 1-x
Ji(t) = —§Et + | Ji- + §(J1+ —Ji—+ Joy — Jo) / mo(y)dy erx 1=+

1—/\]

< Ofer=x1-0+1)

)

A 1~ 1 ’ 1 1-
Jo(t) = §Et + [ Jom + §(J1+ —Jio+Jop —Jo) / mo(y)dy | e x =140

< Cfersx -0,

And then

A 1. 1 -
Jio(t) = 7§Ezt + §(J1+ — i+ Jay — Jo_)mo(z)e TR - AHDT

Owing to (4.20)1,
N 1 1 =x-+0)'
nlt(t) = §Emt — E(JlJr —Ji_+ J2+ — Jg,)mo(x)elﬂ .

Thus

+o00
1 o
ﬁl(t> = §<J1+ —Ji—+ Joyp — J27>m0(.’)’;) / eﬁ[l_(l_;'_é)l A]ds N
t

1.
—E,
2 (4.24)

< C’(Smo(a:)eﬁ[l_(lﬁ)lﬂ].
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Similarly,
; lp 1 ESNIEICERI
Jou(t) = iEmt =+ §(J1+ —Jio + Jay — Jo)mg(w)eTx )
and
1 i 1
fa(t) = 5 (Jiy — Ji— + Joy — Jo—)mo(x) / el s - S B,
2 / 2 (4.25)

< Cé‘mo(m)eﬁ[lf(lth)l—)\].

Case 2: —1 < XA < 0. Multiplying (4.23) by 2E; + (1 + t)*E, as in the case 1, we have

x
|E| + |Ey| < C6 / mo(y)dyeli*[l_(lﬁ)l“] for some constant v > 0,
—0o0

|Ez| + |f1(t)| + |j2(t)| < 0561%}[17(1“)1“],

(1) < COmo(x)em =BT 40 (1) < Comg(a)emx -+

From the construction of the correction functions (71,7, jl,jg,E) as shown above, we immediately
obtain Lemma 2.2.
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