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1. Introduction and main results

We study the p-system of hyperbolic conservation laws with nonlinear damping

{
vt − ux = 0,

ut + p(v)x = −αu − β|u|q−1u,
(x, t) ∈ R × R+, (1.1)

with the initial value condition

(v, u)(x, t)|t=0 = (v0, u0)(x) → (v±, u±) as x → ±∞, (1.2)

which models the compressible flow through porous media with nonlinear dissipative external force
field in Lagrangian coordinates. Here, v = v(x, t) > 0 is the specific volume, u = u(x, t) is the velocity,
the pressure p(v) is a smooth function of v such that p(v) > 0, p′(v) < 0. A typical example, in the
case of a polytropic gas, is p(v) = v−γ with γ � 1. The external term −αu − β|u|q−1u, called the
nonlinear damping, appears in the momentum equation, where α > 0 is a constant, β �= 0 is another
constant but can be negative or positive, q > 1 is a given number, and −β|u|q−1u is regarded as a
nonlinear perturbation to the linear damping −αu. v± > 0 and u± are constant states.

According to Darcy’s law, the solutions (v, u)(x, t) of (1.1) and (1.2) are expected to behave time-
asymptotically as the self-similar solutions (v̄, ū)(x, t) = (v̄, ū)(x/

√
1 + t) of the following (parabolic)

porous media equation

{
v̄t − ūx = 0,

p(v̄)x = −αū,
or

⎧⎨
⎩ v̄t = − 1

α
p(v̄)xx,

p(v̄)x = −αū,

(x, t) ∈ R × R+, (1.3)

with

(v̄, ū)(x, t) → (v±,0) as x → ±∞. (1.4)

Such self-similar solutions (v̄, ū)(x/
√

1 + t) are usually called nonlinear diffusion waves of the p-
system (1.1). The existence of the self-similar solutions was proved by C.T. Duyn and L.A. van Peletier
in [2]. To prove the convergence of the solutions (v, u) to the diffusion waves (v̄, ū) with small |u±|
is one of our main purposes in this present paper. The other target is to show that the solutions
(v, u)(x, t) will blow up when |u±| is large.

When β = 0, the system (1.1) is linear damping. In this case, Hsiao and Liu [3] first showed
the convergence to the diffusion waves in the form of ‖(v − v̄, u − ū)(t)‖L∞ = O (1)(t−1/2, t−1/2),
then Nishihara [15] succeeded in improving the convergence rates as ‖(v − v̄, u − ū)(t)‖L∞ =
O (1)(t−3/4, t−5/4). Furthermore, by constructing an approximating Green function, Nishihara, Wang
and Yang [19] and Wang and Yang [21] improved the rates as ‖(v − v̄, u − ū)(t)‖L∞ = O (1)(t−1, t−3/2),
which is optimal in the sense comparing with the heat equation. For other studies related to this
topic, we refer to [1,4–6,8–10,16–19,22–25] and the references therein. In [8], Li and Saxton consid-
ered a more general (quasilinear) system

{
vt − (

h(v)u
)

x = 0,

ut + σ(v)x = f (v)u,

where σ ′(v) < 0, h(v) > 0 and f (v) < 0, and obtained the convergence of the solutions to the cor-
responding diffusion waves. Although the damping term f (v)u is nonlinear, the nonlinearity f (v) is
only for v but not for u. Regarding the damping effect which is essentially governed by u for the
second equation, the damping term f (v)u is still linear with respect to u. So, the convergence to the
diffusion waves obtained in [8] is still regarded as the case of linear damping.
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When β �= 0, the damping effect is nonlinear. The study in this case is very limited as we know.
The convergence to the nonlinear diffusion waves has been recently investigated by Zhu and Jiang
in [26] under the stiff condition u+ = u− = 0 for q � 3 with the less sufficient convergence rates
as ‖(v − v̄, u − ū)(t)‖L∞ = O (1)(t−3/4, t−5/4), see also the boundary case by them in [7]. The main
difficulty as they mentioned is hard to construct a pair of correction functions to eliminate a gap be-
tween (v, u)(x, t) and (v̄, ū)(x, t) at x = ±∞, so then they needed to assume u+ = u− = 0. However,
by a deep observation, we succeed in this paper in constructing such a pair of correction functions
such that we can obtain the convergence to the nonlinear diffusion waves without the restriction
u+ = u− = 0, and also we can release q � 5/2. Furthermore, as showed in [21], by the technique
of constructing a minimizing Green function, we can improve the convergence rate to be optimal:
‖(v − v̄, u − ū)(t)‖L∞ = O (1)(t−1, t−3/2). In what follows, we introduce how to construct the correc-
tion functions and how to set up properly the working equations.

For a given diffusion wave (v̄, ū)(x, t), we consider its shifted diffusion wave (v̄, ū)(x + x0, t) with
some shift constant x0, which will be determined later. First of all, we are interested in the perturba-
tion of (v, u)(x, t) − (v̄, ū)(x + x0, t). From the first equation of (1.1) and the first equation of (1.3), we
have

(v − v̄)t − (u − ū)x = 0. (1.5)

Integrating (1.5) over (−∞,∞) with respect to x, and noting (1.4), we obtain

d

dt

∞∫
−∞

[
v(x, t) − v̄(x + x0, t)

]
dx = [

u(+∞, t) − ū(+∞, t)
] − [

u(−∞, t) − ū(−∞, t)
]

= u(+∞, t) − u(−∞, t). (1.6)

In order to get u(+∞, t) − u(−∞, t) = 0, Zhu and Jiang [26] had to assume u− = u+ = 0. Because
this yields u(+∞, t) = u(−∞, t) = 0. However, for any given constant state u± , it usually holds
u(+∞, t) − u(−∞, t) �= 0. To overcome this difficulty, we need technically to construct a couple of
correction functions (v̂, û)(x, t) so that we can eliminate the gap of u(+∞, t) − u(−∞, t).

First of all, we investigate u(±∞, t). Let

u±(t) := u(±∞, t) = lim
x→±∞ u(x, t). (1.7)

Taking the limits to the second equation of (1.1) as x → ±∞, and noting that p(v)x will be vanishing,
then we find that u±(t) satisfy formally the following modified Bernoulli’s ODEs:⎧⎨

⎩
d

dt
u±(t) = −αu±(t) − β

∣∣u±(t)
∣∣q−1

u±(t), t > 0,

u±(0) = u(±∞,0) = u0(±∞) = u±.

(1.8)

Using the method of separation of variables, by a straightforward but tedious calculation, we can
exactly solve (1.8) as (for the details, see Appendix A in the last section)

u±(t) = C±e−αt

(1 − β
α (|C±|e−αt)q−1)

1
q−1

, (1.9)

where C± are the integration constants. In order to avoid the solution to blow up at a finite time, we
need to restrict C± in (1.9) to be 1 >

|β|
α |C±|q−1, namely,

|C±| <
(

α

|β|
) 1

q−1

. (1.10)
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Determining by the initial conditions in (1.8),

u± = C±
(1 − β

α |C±|q−1)
1

q−1

,

which implies that C± and u± both have the same signs, i.e., sign(C±) = sign(u±), then we further
specify

C± = u±
(1 + β

α |u±|q−1)
1

q−1

. (1.11)

From (1.11), the restriction (1.10) is equivalent to

|β|
α

|u±|q−1 <

∣∣∣∣1 + β

α
|u±|q−1

∣∣∣∣. (1.12)

Note that, when β > 0, the condition (1.12) automatically holds. While, when β < 0, (1.12) is also true
if we ask

|u±| <
(

α

2|β|
)1/(q−1)

,

which implies that |u±| needs to be suitably small. Thus, if |u±| 
 1, then (1.12) is always true, and
there is no blowing-up for u±(t).

Substituting (1.11) to (1.9), we obtain

u±(t) = u±e−αt

(1 + β
α |u±|q−1[1 − e−α(q−1)t]) 1

q−1

. (1.13)

Obviously, it holds

∣∣u(±∞, t)
∣∣ = ∣∣u±(t)

∣∣ ∼ O (1)|u±|e−αt as t → ∞. (1.14)

Next is to construct the correction functions such that we can eliminate the gap of u(+∞, t) −
u(−∞, t) in (1.6). Let us consider the function û(x, t) such that

⎧⎨
⎩

dû

dt
= −αû − β|û|q−1û, x ∈ R, t ∈ R+,

û(x, t) → u±(t) as x → ±∞.

(1.15)

As shown in (1.9), we can similarly solve (1.15) as

û(x, t) = m(x)e−αt

(1 − β
α [|m(x)|e−αt]q−1)

1
q−1

, (1.16)

where m(x) is an integration constant (with respect to t). Note that û(x, t) → u±(t) as x → ±∞, we
further confirm

m(x) → C± as x → ±∞. (1.17)
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Let m0(x) > 0, m0(x) ∈ C∞
0 (R) and

∫ ∞
−∞ m0(x)dx = 1, then we construct the desired function m(x) as

m(x) := C− + (C+ − C−)

x∫
−∞

m0(y)dy. (1.18)

It can be verified that m(x) is sufficiently smooth and satisfies (1.17) as well as

∣∣m(x)
∣∣ � min

{|C+|, |C−|} <

(
α

|β|
) 1

q−1

, (1.19)

which ensures no blowing-up for û(x, t).
Now we are going to construct another correction function v̂(x, t). Let

ŵ(x, t) : =
t∫

0

ûx(x, τ )dτ =
{ t∫

0

û(x, τ )dτ

}
x

=
{ t∫

0

m(x)e−ατ

(1 − β
α [|m(x)|e−ατ ]q−1)

1
q−1

dτ

}
x

=
{ t∫

0

m(x)e−ατ

(1 − β
α [√[m(x)]2 e−ατ ]q−1)

1
q−1

dτ

}
x

=
{ t∫

0

m(x) e−ατ

(1 − β
α [√[m(x)e−ατ ]2]q−1)

1
q−1

dτ

}
x

[
change of variables: s = m(x)e−ατ

]

=
{

− 1

α

m(x)e−αt∫
m(x)

1

(1 − β
α |s|q−1)

1
q−1

ds

}
x

= m′(x)

α(1 − β
α |m(x)|q−1)

1
q−1

− m′(x)e−αt

α(1 − β
α [|m(x)|e−αt]q−1)

1
q−1

. (1.20)

Define

v̂(x, t) := − m′(x)e−αt

α(1 − β
α [|m(x)|e−αt]q−1)

1
q−1

, n(x) := m′(x)

α(1 − β
α |m(x)|q−1)

1
q−1

, (1.21)

we then have ŵ(x, t) = n(x)+ v̂(x, t) and v̂t = ŵt . From (1.20), i.e., ŵt = ûx , we further obtain v̂t = ûx .
Thus, the constructed correction functions (v̂, û)(x, t) satisfy

{
v̂t − ûx = 0,

ût = −αû − βûq.
(1.22)

Therefore, from (1.1), (1.3) and (1.22), we get

{
(v − v̄ − v̂)t − (u − ū − û)x = 0,

(u − ū − û)t + [
p(v) − p(v̄)

]
x = −α(u − ū − û) − β

(|u|q−1u − |û|q−1û
) − ūt ,

(1.23)
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where (v̄, ū) is the shifted diffusion wave (v̄, ū)(x + x0, t) with the shift x0, which will be specified
below.

To determine the shift x0, let us integrate the first equation of (1.23) over (−∞,∞) with respect
to x,

d

dt

∞∫
−∞

[
v(x, t) − v̄(x + x0, t) − v̂(x, t)

]
dx

= [
u(+∞, t) − ū(+∞, t) − û(+∞, t)

] − [
u(−∞, t) − ū(−∞, t) − û(−∞, t)

]
= [

u+(t) − 0 − u+(t)
] − [

u−(t) − 0 − u−(t)
]

= 0,

and integrate the above equation with respect to t to have

∞∫
−∞

[
v(x, t) − v̄(x + x0, t) − v̂(x, t)

]
dx =

∞∫
−∞

[
v0(x) − v̄(x + x0,0) − v̂(x,0)

]
dx =: I(x0). (1.24)

Now we are going to determine x0 such that I(x0) = 0. Since

I ′(x0) = ∂

∂x0

( ∞∫
−∞

[
v0(x) − v̄(x + x0,0) − v̂(x,0)

]
dx

)

= −
∞∫

−∞
v̄ ′(x + x0,0)dx = −[

v̄(∞,0) − v̄(−∞,0)
]

= −(v+ − v−), (1.25)

we have

I(x0) − I(0) =
x0∫

0

I ′(y)dy = −(v+ − v−)x0,

which gives, with I(x0) = 0, that

x0 := 1

v+ − v−
I(0) = 1

v+ − v−

∞∫
−∞

[
v0(x) − v̄(x,0) − v̂(x,0)

]
dx. (1.26)

Define

⎧⎪⎪⎨
⎪⎪⎩

V (x, t) :=
x∫

−∞

[
v(y, t) − v̄(y + x0, t) − v̂(y, t)

]
dy,

z(x, t) := u(x, t) − ū(x + x0, t) − û(x, t),

(1.27)
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and

⎧⎪⎪⎨
⎪⎪⎩

V 0(x) :=
x∫

−∞

[
v0(y) − v̄(y + x0,0) − v̂(y,0)

]
dy,

z0(x) := u0(x) − ū(x + x0,0) − û(x,0),

(1.28)

we deduce (1.23) into

⎧⎨
⎩

Vt − z = 0,

zt + (
p′(v̄)V x

)
x = −αz − F1 − F2,

(V , z)|t=0 = (V 0, z0)(x),

(1.29)

where

F1 := − 1

α
p(v̄)xt + {

p(V x + v̄ + v̂) − p(v̄) − p′(v̄)V x
}

x, (1.30)

F2 := g(z + ū + û) − g(û) = g(Vt + ū + û) − g(û), (1.31)

g(u) := β|u|q−1u. (1.32)

Instead of (1.1) and (1.2), we study the initial value problem (1.29).

Notations. Before stating our main results, we give some notations as follows. Throughout the paper,
C > 0 denotes a generic constant, while Ci > 0 (i = 0,1,2, . . .) represents a specific constant. L2(R) is
the space of square integrable functions, and Hk(R) (k � 0) is the Sobolev space of L2-functions f (x)

whose derivatives di

dxi f , i = 1, . . . ,k, also belong to L2(R). The norms of L2(R) and Hk(R) are denoted

as ‖ f ‖L2(R) and ‖ f ‖Hk(R) , respectively. For the sake of simplicity, we also denote ‖( f , g,h)‖2
L2(R)

=
‖ f ‖2

L2(R)
+ ‖g‖2

L2(R)
+ ‖h‖2

L2(R)
. Let T > 0 and let B be a Banach space. We denote by C0([0, T ];B)

the space of B-valued continuous functions on [0, T ], and L2([0, T ];B) as the space of B-valued L2-
functions on [0, T ]. The corresponding spaces of B-valued functions on [0,∞) are defined similarly.

Our first result is as follows.

Theorem 1.1 (Convergence). Let q > 5
2 , (V 0, z0)(x) be in H3(R) × H2(R), and u± satisfy

|u±| <
(

α

2|β|
)1/(q−1)

. (1.33)

There exists a number ε1 > 0, when the initial perturbation and

δ := |v+ − v−| + |u+| + |u−|

are suitably small such that

δ + ‖V 0‖H3(R) + ‖z0‖H2(R) � ε1, (1.34)

then the global solution (V , z)(x, t) of (1.29) uniquely exists and satisfies

V (x, t) ∈ Ck(0,∞; H3−k(R)
)
, k = 0,1,2,3, z(x, t) ∈ Ck(0,∞; H2−k(R)

)
, k = 0,1,2,
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and

3∑
k=0

(1 + t)k
∥∥∂k

x V (t)
∥∥2

L2(R)
+

2∑
k=0

(1 + t)k+2
∥∥∂k

x z(t)
∥∥2

L2(R)

+
t∫

0

[
3∑

k=0

(1 + s)k−1
∥∥∂k

x V (s)
∥∥2

L2(R)
+

2∑
k=0

(1 + s)k+1
∥∥∂k

x z(s)
∥∥2

L2(R)

]
ds

� C
(‖V 0‖2

H3(R)
+ ‖z0‖2

H2(R)
+ δ

)
. (1.35)

Furthermore, (1.35) can be improved as the following optimal convergence rates

∥∥∂k
x V (t)

∥∥
L2(R)

� C
(‖V 0‖2

3 + ‖z0‖2
2 + δ

)
(1 + t)−

1
4 − k

2 , k = 0,1,2,3, (1.36)

∥∥∂k
x z(t)

∥∥
L2(R)

� C
(‖V 0‖2

3 + ‖z0‖2
2 + δ

)
(1 + t)−

5
4 − k

2 , k = 0,1,2. (1.37)

Notice that V x = v − v̄ − v̂ , z = u− ū− û, and use (1.16) and (1.21), i.e., |v̂(x, t)|, |û(x, t)| ∼ O (1)e−αt ,
and Sobolev’s embedding inequalities ‖ f ‖L∞(R) �

√
2‖ f ‖1/2

L2(R)
‖ fx‖1/2

L2(R)
, we immediately obtain the

following decay rates.

Corollary 1.2 (Convergence to diffusion waves). Under the conditions in Theorem 1.1, the system (1.1) and (1.2)
possesses a uniquely global solution (v, u)(x, t), which converges to its nonlinear diffusion wave (v̄, ū)(x +
x0, t) in the form of

∥∥(v − v̄)(t)
∥∥

L∞(R)
= O (1)(1 + t)−1, (1.38)∥∥(u − ū)(t)

∥∥
L∞(R)

= O (1)(1 + t)−3/2. (1.39)

The rates showed in (1.38) and (1.39) are optimal.

If β < 0 and |u±| > ( α
|β| )

1/(q−1) , then, from (1.13), u(±∞, t) will blow up at the finite time t∗∗ :=
1

α(q−1)
ln |β||u±|q−1

|β||u±|q−1−α
. Since ‖u(t)‖L∞(R) � |u(±∞, t)|, we immediately recognize that (v, u)(x, t) will

blow up at a finite time.

Remark 1.3. When β < 0 and

|u±| >
(

α

|β|
)1/(q−1)

, (1.40)

then the solution (v, u)(x, t) of (1.1) and (1.2) does not globally exist, and

lim
t→t−∗

∥∥(v, u)(t)
∥∥

L∞ = +∞, (1.41)

where

0 < t∗ � 1

α(q − 1)
ln

|β||u±|q−1

|β||u±|q−1 − α
. (1.42)
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The paper is organized as follows. In Section 2, we prepare some preliminaries, which are useful in
the proof of theorems. Section 3 is devoted to the proof of the convergence of the solution (v, u)(x, t)
to the nonlinear diffusion waves (v̄, ū)((x + x0)/

√
1 + t) (i.e., Theorem 1.1). The adopted approach is

the elementary energy method together with the technique of approximating Green function.

2. Preliminaries

In this section, we are going to introduce some well-known results, i.e., the decay rates of the
nonlinear diffusion waves (v̂, û)(x, t), the decay rates of the correction functions (v̂, û)(x, t), and the
fundamental properties of the linear damped wave equation.

Let (v̄, ū)(x, t) = (v̄, ū)(x/
√

1 + t) be the self-similar solution of (1.3) satisfying the “boundary”
condition (1.4). It has been proved in [2] (see also, for example, [3,26], etc.) that the so-called nonlin-
ear diffusion wave (v̄, ū)(x, t) exists and behaves as follows.

Lemma 2.1. For each p ∈ [1,∞], it holds

∥∥∂k
x v̄(t)

∥∥
Lp(R)

= O (1)|v+ − v−|(1 + t)−( k
2 − 1

2p )
, k = 1,2,3, . . . , (2.1)

∥∥∂k
x ū(t)

∥∥
Lp(R)

= O (1)|v+ − v−|(1 + t)−( k+1
2 − 1

2p )
, k = 0,1,2,3, . . . , (2.2)

∥∥∂k
x v̄t(t)

∥∥
Lp(R)

= O (1)|v+ − v−|(1 + t)−( k+2
2 − 1

2p )
, k = 0,1,2,3, . . . , (2.3)

∥∥∂k
x ūt(t)

∥∥
Lp(R)

= O (1)|v+ − v−|(1 + t)−( k+3
2 − 1

2p )
, k = 0,1,2,3, . . . . (2.4)

As shown in (1.16) and (1.21), where m(x) and C± , defined in (1.11) and (1.18), respectively, are
bounded, the correction function (v̂, û)(x, t) can be immediately confirmed to satisfy

Lemma 2.2. It holds

∥∥v̂(t)
∥∥

L∞(R)
= O (1)|v+ − v−|e−αt, (2.5)∥∥û(t)

∥∥
L∞(R)

= O (1)max
{|u+|, |u−|}e−αt . (2.6)

Furthermore, we introduce the following famous lemma, which can be founded, for example, in
[10,11,13,20].

Lemma 2.3. Let a > 0, b > 0. If max(a,b) > 1, then

t∫
0

(1 + t − s)−a(1 + s)−b ds = O (1)(1 + t)−min(a,b). (2.7)

If max(a,b) = 1, then

t∫
0

(1 + t − s)−a(1 + s)−b ds = O (1)(1 + t)−min(a,b) ln(2 + t). (2.8)

If max(a,b) < 1, then

t∫
0

(1 + t − s)−a(1 + s)−b ds = O (1)(1 + t)1−a−b. (2.9)
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3. Proof of Theorem 1.1

Substituting the first equation of (1.29) into the second equation of (1.29), we obtain

{
Vtt + αVt + (

p′(v̄)V x
)

x = −F1 − F2, (x, t) ∈ R × R+,

(V , Vt)|t=0 = (V 0, z0)(x), x ∈ R.
(3.1)

It is known that Theorem 1.1 can be proved by the classical continuation method based on the local
existence and the a priori estimates. The local existence of the solution for (3.1) can be obtained by the
standard iteration method (cf. [12,14]), so we will omit its details. To establish the a priori estimates
for the solution usually is technical, which will be the main effort in this section.

Let T ∈ [0,∞], we define

N(T )2 := sup
0�t�T

{
3∑

k=0

(1 + t)k
∥∥∂k

x V (t)
∥∥2

L2(R)
+

2∑
k=0

(1 + t)k+2
∥∥∂k

x Vt(t)
∥∥2

L2(R)

}
. (3.2)

We first establish the following basic energy estimate.

Lemma 3.1 (Basic energy estimates). It follows that

∥∥(V , V x, Vt)(t)
∥∥2

L2(R)
+

t∫
0

∥∥(V x, Vt)(s)
∥∥2

L2(R)
ds � C

(‖V 0‖2
H1(R)

+ ‖z0‖2
L2(R)

+ δ
)

(3.3)

provided N(T ) + δ 
 1.

Proof. Multiplying (3.1) by λV + Vt with small constant 0 < λ 
 1, we have

{
E1(V , V x, Vt)

}
t + E2(V x, Vt) + {

E3(x, t)
}

x = −(F1 + F2)(λV + Vt), (3.4)

where

E1(V , V x, Vt) := 1

2
V 2

t + λV Vt + αλ

2
V 2 − 1

2
p′(v̄)V 2

x , (3.5)

E2(V x, Vt) := (α − λ)V 2
t +

[
−λp′(v̄) + 1

2
p′′(v̄)v̄t

]
V 2

x , (3.6)

E3(x, t) := p′(v̄)V x(λV + Vt). (3.7)

Notice that p′(v̄) < 0. When λ 
 1, |v+ − v−| 
 1, the following estimates hold

C1
(

V 2 + V 2
x + V 2

t

)
� E1(V , V x, Vt) � C2

(
V 2 + V 2

x + V 2
t

)
, (3.8)

C3
(

V 2
x + V 2

t

)
� E2(V x, Vt), (3.9)

for some positive constants Ci (i = 1,2,3). Integrating (3.4) over R×[0, t] with respect to x and t , we
have
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∥∥(V , V x, Vt)(t)
∥∥2

L2(R)
+

t∫
0

∥∥(V x, Vt)(s)
∥∥2

L2(R)
ds

� C
(‖V 0‖2

H1(R)
+ ‖z0‖2

L2(R)
+ δ

) + C

t∫
0

∫
R

(|F1| + |F2|
)(

λ|V | + |Vt |
)

dx ds. (3.10)

As shown in [9,15,26], we can estimate

t∫
0

∫
R

|F1|
(
λ|V | + |Vt |

)
dx ds � C N(t)

∥∥V x(t)
∥∥2 + C

[
δ + N(t)

] t∫
0

∥∥V x(s)
∥∥2

L2(R)
ds

+ C‖V 0‖2
H1(R)

+ C
[
1 + N(t)

]
δ. (3.11)

Now we are going to estimate the second part of the last term in (3.10). Notice that

|F2| =
∣∣g(Vt + ū + û) − g(û)

∣∣
� C |Vt + ū|(|Vt + ū|q−1 + |û|q−1)
� C

(|Vt |q + |ū|q + |û|q−1|Vt | + |û|q−1|ū|), (3.12)

we have

t∫
0

∫
R

|F2|
(
λ|V | + |Vt |

)
dx ds

� C

t∫
0

∫
R

(|Vt |q + |ū|q + |û|q−1|Vt | + |û|q−1|ū|)(λ|V | + |Vt |
)

dx ds. (3.13)

From (3.2), we can first estimate

t∫
0

∫
R

|Vt |q
(
λ|V | + |Vt |

)
dx ds � λ sup

0�s�t

[∥∥Vt(s)
∥∥q−2

L∞(R)

∥∥V (s)
∥∥

L∞(R)

] t∫
0

∥∥Vt(s)
∥∥2

L2(R)
ds

+ sup
0�s�t

∥∥Vt(s)
∥∥q−1

L∞(R)

t∫
0

∥∥Vt(s)
∥∥2

L2(R)
ds

� C N(t)q−1

t∫
0

∥∥Vt(s)
∥∥2

L2(R)
ds. (3.14)

Notice from (3.2) that

∥∥V (s)
∥∥

L∞(R)
�

√
2
∥∥V (s)

∥∥ 1
2
L2(R)

∥∥V x(s)
∥∥ 1

2
L2(R)

� C N(t)(1 + s)−
1
4 , (3.15)

∥∥Vt(s)
∥∥

L∞(R)
�

√
2
∥∥Vt(s)

∥∥ 1
2
L2(R)

∥∥V xt(s)
∥∥ 1

2
L2(R)

� C N(t)(1 + s)−
5
4 , (3.16)
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and (2.2), we then obtain

t∫
0

∫
R

|ū|q(λ|V | + |Vt |
)

dx ds �
t∫

0

[
λ
∥∥V (s)

∥∥
L∞(R)

+ ∥∥Vt(s)
∥∥

L∞(R)

]∥∥ū(s)
∥∥q

Lq(R)
ds

� C N(t)|v+ − v−|q
t∫

0

[
(1 + s)−

1
4 + (1 + s)−

3
4
]
(1 + s)−

q−1
2 ds

� C |v+ − v−|q N(t), for q >
5

2
. (3.17)

Furthermore, notice (2.6), we can similarly prove

t∫
0

∫
R

|û|q−1|Vt |
(
λ|V | + |Vt |

)
dx ds �

t∫
0

∥∥û(s)
∥∥q−1

L∞(R)

∫
R

|Vt |
(
λ|V | + |Vt |

)
dx ds

� C
(|u+| + |u−|)q−1

t∫
0

e−α(q−1)s[∥∥V (s)
∥∥2

L2(R)
+ ∥∥Vt(s)

∥∥2
L2(R)

]
ds

� C
(|u+| + |u−|)q−1

N(t)2, (3.18)

and

t∫
0

∫
R

|û|q−1|ū|(λ|V | + |Vt |
)

dx ds

�
t∫

0

∥∥û(s)
∥∥q−1

L∞(R)

∫
R

|ū|(λ|V | + |Vt |
)

dx ds

� C
(|u+| + |u−|)q−1

t∫
0

e−α(q−1)s
∥∥ū(s)

∥∥
L2(R)

[∥∥V (s)
∥∥

L2(R)
+ ∥∥Vt(s)

∥∥
L2(R)

]
ds

� C
(|u+| + |u−|)q−1|v+ − v−|N(t). (3.19)

Substituting (3.14), (3.17), (3.18) and (3.19) into (3.13), we obtain

t∫
0

∫
R

|F2|
(
λ|V | + |Vt |

)
dx ds

� C N(t)q−1

t∫
0

∥∥Vt(s)
∥∥2

L2(R)
+ C |v+ − v−|q N(t)

+ C
(|u+| + |u−|)q−1

N(t)2 + C
(|u+| + |u−|)q−1|v+ − v−|N(t). (3.20)

Substituting (3.11) and (3.20) into (3.10), and taking N(t) + δ 
 1, where δ = |v+ − v−| + |u+| + |u−|,
we finally prove (3.3). The proof is completed. �
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Lemma 3.2 (Higher order energy estimates). It holds that

∥∥(V x, V xx, V xt)(t)
∥∥2

L2(R)
+

t∫
0

∥∥(V xx, V xt)(s)
∥∥2

L2(R)
ds � C

(‖V 0‖2
H2(R)

+ ‖z0‖2
H1(R)

+ δ
)

(3.21)

provided N(T ) + δ 
 1.

Proof. Similarly, let us differentiate (3.1) with respect to x and multiply it by V xt , then integrate the
resultant equation over R×[0, t] with respect to x and t . Applying the basic energy estimate (3.3), we
can further prove the higher order energy estimate (3.21). Here we omit the details of the proof. �
Lemma 3.3 (Decay rate for V x). It holds that

(1 + t)
∥∥(V x, Vt)(t)

∥∥2
L2(R)

+
t∫

0

(1 + s)
∥∥Vt(s)

∥∥2
L2(R)

ds � C
(‖V 0‖2

H1(R)
+ ‖z0‖2

L2(R)
+ δ

)
(3.22)

provided N(T ) + δ 
 1.

Proof. Multiplying (3.1) by (1 + t)Vt and integrating it over R×[0, t] with respect to x ant t , we have

(1 + t)

∫
R

[
V 2

t − p′(v̄)V 2
x

]
dx + 2α

t∫
0

(1 + s)
∥∥Vt(s)

∥∥2
L2(R)

ds

=
∫
R

[
z2

0 − p′(v̄(x,0)
)

V 2
0,x

]
dx +

t∫
0

∫
R

[
V 2

t − p′(v̄)V 2
x

]
dx ds

−
t∫

0

(1 + s)

∫
R

p′′(v̄)v̄t V 2
x dx ds − 2

t∫
0

(1 + s)

∫
R

(F1 + F2)Vt dx ds. (3.23)

From (3.3), we can estimate

t∫
0

∫
R

[
V 2

t − p′(v̄)V 2
x

]
dx ds � C

t∫
0

∥∥(V x, Vt)(s)
∥∥2

L2(R)
ds � C

(‖V 0‖2
H1(R)

+ ‖z0‖2
L2(R)

+ δ
)
, (3.24)

and notice |v̄t | ∼ O (1)(1 + t)−3/2, we further have

t∫
0

(1 + s)

∫
R

p′′(v̄)v̄t V 2
x dx ds � C

t∫
0

(1 + s)−1/2
∥∥V x(s)

∥∥2
L2(R)

ds

� C

t∫
0

∥∥V x(s)
∥∥2

L2(R)
ds � C

(‖V 0‖2
H1(R)

+ ‖z0‖2
L2(R)

+ δ
)
. (3.25)

For the last term of (3.23), as exactly shown in [15], the first part on F1 can be estimated as
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t∫
0

(1 + s)

∫
R

F1 Vt dx ds

� C N(t)(1 + t)
∥∥V x(t)

∥∥2
L2(R)

+ α

2

t∫
0

(1 + s)
∥∥Vt(s)

∥∥2
L2(R)

ds

+ CδN(t)

t∫
0

(1 + s)
∥∥V x(s)

∥∥2
L2(R)

ds + C
(‖V 0‖2

H1(R)
+ δ

)
. (3.26)

While, the second part on F2 in the last term of (3.23) is estimated as

t∫
0

(1 + s)

∫
R

F2 Vt dx ds � C

t∫
0

(1 + s)

∫
R

[|Vt |q + |ū|q + |û|q−1|Vt | + |û|q−1|ū|]|Vt |dx ds

� C

t∫
0

(1 + s)
∥∥Vt(s)

∥∥q−1
L∞(R)

∫
R

|Vt |2 dx ds + C

t∫
0

(1 + s)
∥∥Vt(s)

∥∥
L∞(R)

∫
R

|ū|q dx ds

+ C

t∫
0

(1 + s)
∥∥û(s)

∥∥q−1
L∞(R)

∫
R

|Vt |2 dx ds + C

t∫
0

(1 + s)
∥∥û(s)

∥∥q−1
L∞(R)

∫
R

|ûVt |dx ds

=: I1 + I2 + I3 + I4. (3.27)

Thanks to (3.16), we first have

I1 � C N(t)q−1

t∫
0

(1 + s)(1 + s)−
5(q−1)

4
∥∥Vt(s)

∥∥2
L2(R)

ds

� C N(t)q−1

t∫
0

(1 + s)
∥∥Vt(s)

∥∥2
L2(R)

ds. (3.28)

Notice also from Lemma 2.1 that ‖ū(s)‖Lq(R) � C |v+ − v−|(1 + s)−( 1
2 − 1

2q ) , and notice q > 5/2, we then
estimate

I2 � C N(t)

t∫
0

(1 + s)(1 + s)−
5
4
∥∥ū(s)

∥∥q
Lq(R)

ds

� C |v+ − v−|q N(t)

t∫
0

(1 + s)−
2q−1

4 ds

� C |v+ − v−|q N(t)

� Cδq, for N(t) 
 1. (3.29)

Applying Lemma 2.2, we further estimate I3 and I4 as
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I3 � C
[
max

{|u+|, |u−|}]q−1
t∫

0

e−α(q−1)s(1 + s)
∥∥Vt(s)

∥∥2
L2(R)

ds

� Cδq−1

t∫
0

(1 + s)
∥∥Vt(s)

∥∥2
L2(R)

ds, (3.30)

and

I4 � C
[
max

{|u+|, |u−|}]q−1
t∫

0

e−α(q−1)s(1 + s)
[∥∥ū(s)

∥∥2
L2(R)

+ ∥∥Vt(s)
∥∥2

L2(R)

]
ds

� Cδq−1 + Cδq−1

t∫
0

(1 + s)
∥∥Vt(s)

∥∥2
L2(R)

ds. (3.31)

Substituting (3.28)–(3.31) into (3.27), we obtain

t∫
0

(1 + s)

∫
R

F2 Vt dx ds � C
(
δq + δq−1) + C

[
N(t)q−1 + δq−1] t∫

0

(1 + s)
∥∥Vt(s)

∥∥2
L2(R)

ds. (3.32)

Applying (3.24)–(3.26) and (3.32) into (3.23), we finally prove (3.22) by providing N(T ) + δ 
 1. �
For the following estimates, since the proofs are similar to the previous three lemmas, we give

only the outline of the proofs, and omit their details.

Lemma 3.4 (Decay rate for V xx). It holds that

(1 + t)2
∥∥(V xx, V xt)(t)

∥∥2
L2(R)

+
t∫

0

[
(1 + s)

∥∥V xx(s)
∥∥2

L2(R)
+ (1 + s)2

∥∥V xt(s)
∥∥2

L2(R)

]
ds

� C
(‖V 0‖2

H2(R)
+ ‖z0‖2

H1(R)
+ δ

)
(3.33)

provided N(T ) + δ 
 1.

Proof. Differentiating (3.1) with respect to x, and multiplying it by (1 + t)V xt , then integrating the
resultant equation over R × [0, t] with respect to x and t , as shown in Lemma 3.3, we can similarly
prove that

(1 + t)
∥∥(V x, V xx, V xt)(t)

∥∥2
L2(R)

+
t∫

0

(1 + s)
∥∥(V xt , V xx)(s)

∥∥2
L2(R)

ds

� C
(‖V 0‖2

H2(R)
+ ‖z0‖2

H1(R)
+ δ

)
(3.34)

provided N(T ) + δ 
 1. Furthermore, by taking ∂x(3.1) × (1 + t)2 V xt and integrating it over R × [0, t]
with respect to x and t , and applying (3.34), we then obtain
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(1 + t)2
∥∥(V xx, V xt)(t)

∥∥2
L2(R)

+
t∫

0

(1 + s)2
∥∥V xt(s)

∥∥2
L2(R)

ds

� C
(‖V 0‖2

H2(R)
+ ‖z0‖2

H1(R)
+ δ

)
(3.35)

provided N(T ) + δ 
 1. Thus, combining (3.34) and (3.35) gives (3.33). The proof is completed. �
Lemma 3.5 (Decay rate for V xxx). It holds that

(1 + t)3
∥∥(V xxx, V xxt)(t)

∥∥2
L2(R)

+
t∫

0

[
(1 + s)2

∥∥V xxx(s)
∥∥2

L2(R)
+ (1 + s)3

∥∥V xxt(s)
∥∥2

L2(R)

]
ds

� C
(‖V 0‖2

H3(R)
+ ‖z0‖2

H2(R)
+ δ

)
(3.36)

provided N(T ) + δ 
 1.

Proof. In the same manner of Lemma 3.4, by calculating
∫ t

0

∫
R

∂2
x (3.1) × (1 + t)2 V xxt dx dt , we first

have

(1 + t)2
∥∥(V xx, V xxx, V xxt)(t)

∥∥2
L2(R)

+
t∫

0

(1 + s)2
∥∥(V xxt , V xxx)(s)

∥∥2
L2(R)

ds

� C
(‖V 0‖2

H3(R)
+ ‖z0‖2

H2(R)
+ δ

)
(3.37)

provided N(T ) + δ 
 1, and by calculating
∫ t

0

∫
R

∂2
x (3.1) × (1 + t)3 V xxt dx dt , we further have

(1 + t)3
∥∥(V xxx, V xxt)(t)

∥∥2
L2(R)

+
t∫

0

(1 + s)3
∥∥V xxt(s)

∥∥2
L2(R)

ds

� C
(‖V 0‖2

H2(R)
+ ‖z0‖2

H1(R)
+ δ

)
(3.38)

provided N(T ) + δ 
 1. Combining (3.37) and (3.38) deduces (3.36). �
Lemma 3.6 (Decay rate for Vt ). It holds that

(1 + t)2
∥∥(Vt , V xt , Vtt)(t)

∥∥2
L2(R)

+
t∫

0

(1 + s)2
∥∥(V xt , Vtt)(s)

∥∥2
L2(R)

ds

� C
(‖V 0‖2

H2(R)
+ ‖z0‖2

H1(R)
+ δ

)
(3.39)

provided N(T ) + δ 
 1.

Proof. Differentiating (3.1) with respect to t to have

Vttt + αVtt + (
p′(v̄)V x

)
xt = −F1t − F2t , (3.40)

and multiplying (3.40) by λVt + Vtt (λ 
 1), then integrating it over R×[0, t] with respect to x and t ,
and using Lemma 3.2, we first have
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∥∥(Vt , V xt , Vtt)(t)
∥∥2

L2(R)
+

t∫
0

∥∥(V xt , Vtt)(s)
∥∥2

L2(R)
ds

� C
(‖V 0‖2

H2(R)
+ ‖z0‖2

H1(R)
+ δ

)
(3.41)

with small N(T ) + δ.
Secondly, multiplying (3.40) by (1 + t)(λVt + Vtt) (λ 
 1), and integrating it over R × [0, t], and

using the above estimate (3.41), we obtain

(1 + t)
∥∥(Vt , V xt , Vtt)(t)

∥∥2
L2(R)

+
t∫

0

(1 + s)
∥∥(V xt , Vtt)(s)

∥∥2
L2(R)

ds

� C
(‖V 0‖2

H2(R)
+ ‖z0‖2

H1(R)
+ δ

)
(3.42)

with small N(T ) + δ.
Finally, multiplying (3.40) by (1 + t)2(λVt + Vtt) (0 < λ 
 1), and integrating it over R ×[0, t], and

using the above two estimates (3.41) and (3.5), we obtain

(1 + t)2
∥∥(Vt , V xt , Vtt)(t)

∥∥2
L2(R)

+
t∫

0

(1 + s)2
∥∥(V xt , Vtt)(s)

∥∥2
L2(R)

ds

� C
(‖V 0‖2

H2(R)
+ ‖z0‖2

H1(R)
+ δ

)
(3.43)

with small N(T ) + δ. The proof is completed. �
Lemma 3.7 (Decay rate for V xt ). It holds that

(1 + t)3
∥∥(V xt , Vtt)(t)

∥∥2
L2(R)

+
t∫

0

(1 + s)3
∥∥Vtt(s)

∥∥2
L2(R)

ds

� C
(‖V 0‖2

H2(R)
+ ‖z0‖2

H1(R)
+ δ

)
(3.44)

provided N(T ) + δ 
 1.

Proof. Multiplying (3.40) by (1 + t)3 Vtt and integrating it over R × [0, t], then using Lemma 3.6, we
can obtain (3.44). �
Lemma 3.8 (Decay rate for V xxt ). It holds that

(1 + t)4
∥∥(V xxt , V xtt)(t)

∥∥2
L2(R)

+
t∫

0

[
(1 + s)3

∥∥V xxt(s)
∥∥2

L2(R)
+ (1 + s)4

∥∥V xtt(s)
∥∥2

L2(R)

]
ds

� C
(‖V 0‖2

H3(R)
+ ‖z0‖2

H2(R)
+ δ

)
(3.45)

provided N(T ) + δ 
 1.
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Proof. In a similar way as before, differentiating (3.40) with respect to x, and multiplying it by
(1 + t)4 V xtt , and then integrating the resultant equation over R × [0, t] with respect to x and t , also
using Lemmas 3.2–3.7, we can prove (3.45) provided N(T ) + δ 
 1. �

Based on Lemmas 3.1–3.8, we have proved (1.35) in Theorem 1.1. Next, we are going to adopt the
technique of approximating Green function to obtain the optimal decay rates (1.36) and (1.37).

As in [19], we rewrite Eq. (3.1) as

αVt − (
a(x, t)V x

)
x = −F1 − F2 − Vtt, (3.46)

where a(x, t) = −p′(v̄(x, t)) > C0 > 0, and construct a minimizing Green function as

G(x, t; y, s) =
(

α

4πa(x, t)(t − s)

)1/2

exp

( −α(x − y)2

4A(y, s, t)(t − s)

)
, (3.47)

where A(y, s, t) = −p′(v̄(η)), v̄ = v̄(
y√
1+t

) is the diffusion wave in the form of self-similar solution,

and η is defined as

η =
{

y/
√

1 + s, s > t/2,

y/
√

1 + t/2, s � t/2.

Then the solution of (3.46) can be written in the integral form

V (x, t) =
∞∫

−∞
G(x, t; y,0)V 0(y)dy

+ α−1

t∫
0

∞∫
−∞

G(x, t; y, s)
[−F1(y, s) − F2(y, s) − V ss(y, s)

]
dy ds

+
t∫

0

∞∫
−∞

RG(x, t; y, s)V (y, s)dy ds, (3.48)

where

RG(x, t; y, s) := Gs(x, t; y, s) + α−1{a(y, s)G y(x, t; y, s)
}

y .

Differentiating (3.48) with respect to x and t , we have, for l � 1, k + l � 3,

∂ l
t∂

k
x V (x, t) = ∂ l

t∂
k
x

∞∫
−∞

G(x, t; y,0)V 0(y)dy

− α−1∂ l
t∂

k
x

t∫
0

∞∫
−∞

G(x, t; y, s)F1(y, s)dy ds

− α−1∂ l
t∂

k
x

t∫
0

∞∫
−∞

G(x, t; y, s)F2(y, s)dy ds
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− α−1∂ l
t∂

k
x

t∫
0

∞∫
−∞

G(x, t; y, s)V ss(y, s)dy ds

+ ∂ l
t∂

k
x

t∫
0

∞∫
−∞

RG(x, t; y, s)V (y, s)dy ds

=: Il,k
1 + Il,k

2 + Il,k
3 + Il,k

4 + Il,k
5 . (3.49)

Based on the estimates obtained in (1.35), and by applying the decay of the approximating Green
function G(x, t; y, s), as exactly showed in [19], we can further prove, for l � 1, k + l � 3,

∥∥Il,k
1

∥∥
L2(R)

= O (1)(1 + t)−
1
4 −l− k

2 , (3.50)

∥∥Il,k
2

∥∥
L2(R)

= O (1)(1 + t)−
1
4 −l− k

2 , (3.51)

∥∥Il,k
3

∥∥
L2(R)

= O (1)(1 + t)−
1
4 −l− k

2 , (3.52)

∥∥Il,k
4

∥∥
L2(R)

= O (1)(1 + t)−
1
4 −l− k

2 , (3.53)

∥∥Il,k
5

∥∥
L2(R)

= O (1)(1 + t)−
1
4 −l− k

2 . (3.54)

The details are omitted.
Combing (3.49)–(3.54), we then obtain the optimal rates (1.36) and (1.37), namely,

Lemma 3.9 (Optimal decay rates). It holds that

∥∥∂k
x V (t)

∥∥
L2(R)

= O (1)(1 + t)−
1
4 − k

2 , k = 0,1,2,3,

∥∥∂k
x Vt(t)

∥∥
L2(R)

= O (1)(1 + t)−
5
4 − k

2 , k = 0,1,2.
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Appendix A

In this appendix, we give the detailed proof for finding the solution (1.9) to the ODE (1.8). The
approach adopted is the standard method of separation of variables.

Let us consider the following modified Bernoulli’s differential equation

d

dt
f (t) = −α f (t) − β

∣∣ f (t)
∣∣q−1

f (t). (A.1)

It can be separated as

df

f (1 + β
α | f |q−1)

= −α dt,
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and can be reduced to the form of partial fractions

(
1

f
−

β
α | f |q−2 | f |

f

1 + β
α | f |q−1

)
df = −α dt.

After integration, it yields

ln| f | −
∫ β

α | f |q−2 | f |
f

1 + β
α | f |q−1

df = −αt + C1, (A.2)

where C1 is an integration constant. Let us define

sign( f ) =
{

1, if f (t) � 0,

−1, if f (t) < 0.
(A.3)

Then it holds

| f | = sign( f ) f and f = sign( f )| f | (A.4)

and formally

d| f |
dt

= sign( f )
df

dt
. (A.5)

We may also treat | f | by taking

| f | =
√

f 2 and
d| f |
dt

= f√
f 2

df

dt
= sign( f )

df

dt
. (A.6)

Now let

h = 1 + β

α
| f |q−1,

then, from (A.6), it can be verified that

dh = d

df

(
1 + β

α
| f |q−1

)
df = d

df

(
1 + β

α

[√
f 2

]q−1
)

df

= β

α
(q − 1)

[√
f 2

]q−2 d

df

(√
f 2

)
df = β

α
(q − 1)

[√
f 2

]q−2 1

2
√

f 2

d

df

(
f 2)df

= β

α
(q − 1)

[√
f 2

]q−2 f√
f 2

df = β

α
(q − 1)| f |q−2 f

| f | df

= β

α
(q − 1)| f |q−2 | f |

f
df ,

where the last step we used f
| f | = | f |

f = sign( f ). So, we can integrate

∫ β
α | f |q−2 | f |

f

1 + β
α | f |q−1

df = 1

q − 1

∫
dh

h
= 1

q − 1
ln|h| = ln|h| 1

q−1 = ln

∣∣∣∣1 + β

α
| f |q−1

∣∣∣∣
1

q−1

. (A.7)
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Substituting (A.7) into (A.2), we obtain

ln| f | − ln

∣∣∣∣1 + β

α
| f |q−1

∣∣∣∣
1

q−1

= −αt + C1,

which gives

| f |
|1 + β

α | f |q−1| 1
q−1

= e−αteC1 ,

namely,

| f |q−1

|1 + β
α | f |q−1| = e−(q−1)αte(q−1)C1 . (A.8)

In order to avoid the solution to blow up at a finite time t , we need to look for a small solution f (t)
such that

1 + β

α
| f |q−1 > 0.

Thus, (A.8) is reduced to

| f |q−1 =
(

1 + β

α
| f |q−1

)
e−(q−1)αte(q−1)C1 ,

which can be solved as

| f | = eC1 e−αt

(1 − β
α [eC1 e−αt]q−1)

1
q−1

,

namely,

f = ±eC1 e−αt

(1 − β
α [eC1 e−αt]q−1)

1
q−1

.

Let

C2 = ±eC1 ,

and note that |C2| = eC1 , we finally obtain

f (t) = C2e−αt

(1 − β
α [|C2|e−αt]q−1)

1
q−1

.

This proves (1.9).
Furthermore, when |C2| 
 1, we can easily confirm | f (t)| 
 1, which ensures 1 + β

α | f |q−1 > 0 as
we required before.
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