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Abstract

This study focuses on the Rosenau–Burgers equation ut + uxxxxt − αuxx + f (u)x = 0 with a periodic initial boundary
condition. It is proved that with smooth initial value the global solution uniquely exists. Furthermore, for α > 0, the global solution
converges time asymptotically to the average of the initial value in an exponential form, and the convergence rate is optimal; while
for α = 0, the unique solution oscillates around the initial average all the time. Finally, the numerical simulations are reported to
confirm the theoretical results.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and main results

In the study of the dynamics of dense discrete systems, the cases of wave–wave and wave–wall interactions cannot
be treated using the well-known KdV equations. To overcome this shortcoming, Rosenau [17] proposed the so-called
Rosenau equation

ut + uxxxxt + ux + uux = 0.

Since then, much work has been done on the solution existence and uniqueness, as well as numerical schemes by the
Galerkin method; cf. [3–6,8,13–16], and the references therein. On the other hand, for the further consideration of the
dissipation in space for the dynamic system, such as the phenomenon of bore propagation and the water waves, the
viscous term −αuxx needs to be included:

ut + uxxxxt − αuxx + ux + uux = 0,
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with α > 0. This equation is usually called the Rosenau–Burgers equation, because its dissipative effect is the same
as that in the Burgers equation

ut − αuxx + ux + uux = 0.

The asymptotic behavior of the solution for the Cauchy problem to the Rosenau–Burgers equation, in particular, the
stability of traveling waves and diffusion waves, have been well studied in [7,10,11].

Subsequently, this study focuses on the periodic initial–boundary value problem for the generalized
Rosenau–Burgers equation:ut + uxxxxt − αuxx + f (u)x = 0, x ∈ R, t ∈ R+,

u|t=0 = u0(x) x ∈ R,
u0(x) = u0(x + 2L), x ∈ R,

(1.1)

where f (u) is a smooth function of u, L > 0, and 2L is the period of the initial value u0(x). The main purpose is to
investigate the asymptotic behavior of the solution u(x, t) to the periodic IBVP (1.1).

On the basis of the 2L-periodicity, the solution u(x, t) on the whole number line, −∞ < x < ∞, can be regarded
as a 2L-periodic extension of u(t, x) on [0, 2L]. Therefore, the investigation concentrates on Eq. (1.1) on the bounded
interval [0, 2L]. Integrating (1.1) with respect to x over the interval [0, 2L], and noticing the periodicity of u(x, t), we
have

d
dt

∫ 2L

0
u(t, x)dx = 0,

which gives∫ 2L

0
u(t, x)dx =

∫ 2L

0
u0(x)dx . (1.2)

Let m0 be the average of the initial value u0(x) over the interval [0, 2L]

m0 :=
1

2L

∫ 2L

0
u0(x)dx . (1.3)

Then (1.2) with (1.3) implies∫ 2L

0
[u(t, x)− m0]dx = 0. (1.4)

For the asymptotic profile of the solution u(t, x), Eq. (1.1) is linearized around m0:

Ut + Uxxxxt − αUxx + f ′(m0)Ux = 0, (1.5)

where U (t, x) := u(t, x)− m0. It is known that (1.5) admits a solution in the form

U (t, x) = Aeλt+iωx , (1.6)

where A is a constant, λ is the wave frequency (which may be complex), and ω is the wavenumber satisfying the
periodic condition

eiωx
= eiω(x+2L).

Substituting (1.6) into (1.5) yields

λ+ (iω)4λ− α(iω)2 + f ′(m0)iω = 0,

which is solved as

λ =
−αω2

− i f ′(m0)ω

1 + ω4 .
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The real part of λ is

Re(λ) = −
αω2

1 + ω4 . (1.7)

When α > 0, Re(λ) < 0, then U (t, x) converges to zero as time t approaches infinity:

|U (t, x)| ∼ O(1)eRe(λ)t
= O(1)e

−
αω2

1+ω4 t
. (1.8)

When α = 0, Re(λ) = 0, then

U (t, x) ∼ O(1) sin(Im(λ)t + ωx)+ O(1) cos(Im(λ)t + ωx),

where Im(λ) = f ′(m0)ω/(1 + ω4). Therefore, U (t, x) oscillates around zero all the time.
This study, as shown later, concludes that similar results hold for the nonlinear case. Before the main results, some

useful notation is introduced.

Notations. Let L2
per(R) denote the space of square integrable 2L-periodic functions on R

L2
per(R) = {v(x)|v(x) = v(x + 2L) for all x ∈ R, and v(x) ∈ L2(0, 2L) for x ∈ [0, 2L]}

with the norm

‖v‖L2
per

=

(∫ 2L

0
v2(x)dx

)1/2

.

The inner product of L2
per(R) is defined as

〈φ,ψ〉 =

∫ 2L

0
φ(x)ψ(x)dx .

H k
per(R) (k ≥ 0) is the periodic Sobolev space of L2

per-functions v(x) defined on R whose derivatives ∂ i
xv (i =

1, . . . , k) also belong to L2
per(R), with the norm

‖v‖H k
per

=

(
k∑

i=0

∫ 2L

0
|∂ i

xv(x)|
2dx

)1/2

.

For T > 0 and a Banach space B, Ck(0, T ;B) denotes the space of B-valued k-times-continuously differentiable
functions on [0, T ]. The corresponding spaces of B-valued functions on [0,∞) are defined similarly.

Now we are ready to state the main results.

Theorem 1.1 (Exponential Convergence). Let α > 0 and u0(x) ∈ H2
per(R). For the periodic IBVP (1.1) there exists a

unique and global solution satisfying

u(t, x)− m0 ∈ C(0,∞; H2
per(R))

and

‖(u − m0)(t)‖H2
per

≤

√
π2 + L2

π
‖(u0 − m0)‖H2

per
, (1.9)

sup
x∈[0,2L]

|u(t, x)− m0| = O(1)e−γ t , (1.10)

for all t ∈ [0,∞), where

γ =
αω2

1

1 + ω4
1

=
απ2L2

π4 + L4 , (1.11)

and ω1 =
π2

L2 is the smallest wavenumber (eigenvalue) which satisfies eiωx
= eiω(x+2L) and

∫ 2L
0 eiωx dx = 0.
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Theorem 1.2 (Oscillatory Divergence). Let α = 0 and u0(x) ∈ H2
per(R). For the periodic IBVP (1.1) there exists a

unique and global solution satisfying

u(t, x)− m0 ∈ C(0,∞; H2
per(R))

and

‖(u − m0)(t)‖2
L2

per
+ ‖(u − m0)xx (t)‖2

L2
per

= ‖(u0 − m0)‖
2
L2

per
+ ‖(u0 − m0)xx‖

2
L2

per
(1.12)

for all t ∈ [0,∞). In particular, if u0(x) 6≡ m0, then the solution u(t, x) oscillates around m0 all the time.

Remark 1.3. 1. By Sobolev’s embedding theorem H2
per ↪→ C1

per, the solution u(t, x) in C(0,∞; H2
per(R)) is

continuous in time t and differentiable in space x , i.e., u(t, x) ∈ C(0,∞; C1
per(R)), but it is not a classical solution to

Eq. (1.1). Such a solution is called a strong solution.
2. We show the global existence of the strong solution in Theorems 1.1 and 1.2 without the smallness assumption

on the initial value, namely, we obtain the global existence of the solution for any “large” initial data.
3. Compared to the decay rate (1.8) of the linear case, the rate (1.10) obtained for the nonlinear case in Theorem 1.1

is optimal, which also matches the optimal convergence rate for the periodic initial–boundary value problem of the
2 × 2 system of the BBM–Burgers equations given by Bisognin et al. [2].

4. Although the solution u(t, x) in the case α = 0 has been recognized to be oscillatory at all time around m0, this
does not mean that the solution is not stable. In fact, as shown in Section 4 numerically, we conjecture that u(t, x)
converges to its periodic traveling wave φ(x −ct). For such a wave-stability problem, this is still open at this moment.

2. Proof of Theorem 1.1

Let

v(t, x) = u(t, x)− m0. (2.1)

With (1.4), periodic IBVP (1.1) is reduced to
vt + vxxxxt − αvxx + F(v)x = 0, x ∈ R, t ∈ R+,

v|t=0 = u0(x)− m0 =: v0(x), x ∈ R,
v0(x) = v0(x + 2L), x ∈ R,∫ 2L

0
v0(x)dx = 0,

(2.2)

where

F(v) = f (v + m0)− f (m0). (2.3)

Corresponding to Theorem 1.1, the equivalent result for the new periodic IBVP (2.2) is as follows.

Theorem 2.1. Let α > 0 and v0(x) ∈ H2
per(R). For the periodic IBVP (2.2) there exists a unique and global solution

satisfying

v(t, x) ∈ C(0,∞; H2
per(R))

and

‖v(t)‖H2
per

≤

√
L2 + π2

π
‖v0‖H2

per
, (2.4)

sup
x∈[0,2L]

|v(t, x)| = O(1)e−γ t (2.5)

for all t ≥ 0, where γ is given in (1.11).
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When Theorem 2.1 is proved, Theorem 1.1 is obtained automatically. Therefore, the main objective in this section
is to prove Theorem 2.1. The method of continuity extension with the L2-energy estimates is adopted. The solution
space is defined as

X M (t1, t2) =

{
v(t, x)|v(t, x) ∈ C(t1, t2; H2

per(R)), sup
t∈[t1,t2]

‖v(t)‖H2
per

≤ M

}
,

where M > 0 and t2 ≥ t1 ≥ 0 are constants.

Proposition 2.2 (Local Existence). For α ≥ 0, consider the periodic IBVP at the initial time τ ≥ 0
vt + vxxxxt − αvxx + F(v)x = 0, x ∈ R, t ∈ [τ,∞),

v|t=τ = vτ (x), x ∈ R,
vτ (x) = vτ (x + 2L), x ∈ R,∫ 2L

0
vτ (x)dx = 0.

(2.6)

Let vτ (x) ∈ H2
per(R) and M > 0 be such that ‖vτ‖H2

per
≤ M. Then there exists a number t0 = t0(M) > 0 such that

the periodic IBVP (2.6) has a unique solution v(t, x) in X2M (τ, τ + t0).

This proposition can be proved by a standard iteration method; cf. [9,12]. Therefore the detail is omitted here.
The following Poincaré inequality is needed in the a priori estimates for the solution.

Lemma 2.3 (Poincaré Inequality). Consider (2.2) with α ≥ 0. Let T > 0 and v(t, x) ∈ C(0, T ; H2
per(R)) be a

solution of (2.2). Then

π

L
‖∂k

x v(t)‖L2
per

≤ ‖∂k+1
x v(t)‖L2

per
, k = 0, 1. (2.7)

Proof. First, an orthonormal basis is constructed for the space whose functions satisfy the periodic condition

Φ =

{
φ|φ(x) = φ(x + 2L),

∫ 2L

0
φ(x)dx = 0

}
. (2.8)

Consider the eigenvalue problem
−φ′′

= ω2φ,

φ(x) = φ(x + 2L),∫ 2L

0
φ(x)dx = 0.

(2.9)

The eigenvalues and the corresponding normalized eigenfunctions are solved in the form
eigenvalues: ωk =

kπ
L
,

eigenfunctions:


φ1,k =

1
√

L
cosωk x,

φ2,k =
1

√
L

sinωk x,

k = 1, 2, . . . , (2.10)

with inner products

〈φi,k, φ j,l〉 =

∫ 2L

0
φi,k(x)φ j,l(x)dx =

{
1, for i = j, k = l,
0, otherwise. (2.11)

Thus, the sequence {φi,k} (i = 1, 2 and k = 1, 2, 3, . . .) forms the orthonormal basis of the space Φ defined in (2.8).
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Notice that the solution v(t, x) ∈ C(0, T ; H2
per) satisfies v(t, x) = v(t, x + 2L) and

∫ 2L
0 v(t, x)dx = 0. Therefore,

v(t, x) ∈ Φ, and can be expressed in the form

v(t, x) =

∞∑
k=1

[a1,k(t)φ1,k(x)+ a2,k(t)φ2,k(x)], (2.12)

where ai,k(t) (i = 1, 2 and k = 1, 2, 3, . . .) are the so-called Fourier coefficients determined as

ai,k(t) = 〈v(t, x), φi,k(x)〉 =

∫ 2L

0
v(t, x)φi,k(x)dx, i = 1, 2, k = 1, 2, . . . . (2.13)

Differentiating both sides of (2.12) with respect to x yields

vx (t, x) =

∞∑
k=1

ωk[−a1,k(t)φ2,k(x)+ a2,k(t)φ1,k(x)]. (2.14)

Now, taking the inner product of v(t, x) with itself and using (2.11), we then have

‖v(t)‖2
L2

per
= 〈v(t, x), v(t, x)〉

=

〈
∞∑

k=1

[a1,k(t)φ1,k(x)+ a2,k(t)φ2,k(x)],
∞∑

l=1

[a1,l(t)φ1,l(x)+ a2,l(t)φ2,l(x)]

〉

=

∞∑
k=1

∞∑
l=1

[a1,k(t)a1,l(t)〈φ1,k, φ1,l〉 + a1,k(t)a2,l(t)〈φ1,k, φ2,l〉

+ a2,k(t)a1,l(t)〈φ2,k, φ1,l〉 + a2,k(t)a2,l(t)〈φ2,k, φ2,l〉]

=

∞∑
k=1

[(a1,k(t))2 + (a2,k(t))2]. (2.15)

Similarly, from (2.14) we obtain

‖vx (t)‖2
L2

per
=

∞∑
k=1

ω2
k [(a1,k(t))2 + (a2,k(t))2]. (2.16)

Since ωk > ω1 =
π
L for k = 2, 3, . . ., (2.15) and (2.16) imply

‖vx (t)‖2
L2

per
=

∞∑
k=1

ω2
k [(a1,k(t))2 + (a2,k(t))2]

≥ ω2
1

∞∑
k=1

[(a1,k(t))2 + (a2,k(t))2]

=
π2

L2 ‖v(t)‖2
L2 . (2.17)

Similarly, we can prove

‖vxx (t)‖2
L2

per
≥
π2

L2 ‖vx (t)‖2
L2

per
. (2.18)

Hence (2.7) is proved. �

Proposition 2.4 (A Priori Estimate). Let T > 0 and M > 0 be arbitrary fixed constants, and v(t, x) ∈ X M (0, T ) be
a solution of (2.2). Then

‖v(t)‖H2
per

≤

√
L2 + π2

π
‖v0‖H2

per
, t ∈ [0, T ], (2.19)
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sup
x∈[0,2L]

|v(t, x)| = O(1)e−γ t , t ∈ [0, T ]. (2.20)

Proof. Let v(t, x) ∈ C(0, T ; H2
per(R)) be a solution of (2.2). The a priori estimates (2.19) and (2.20) will be proved

by the L2-energy method. Since the strong solution v(t, x) lacks the regularity for vxxxxt since v0(x) ∈ H2
per, v(t, x)

cannot be treated directly in the form of differential equation (2.2). In order to overcome this shortcoming, the periodic
IBVP (2.2) is first investigated with a smooth enough initial value. The regularity of the solution v(t, x) depends on
the smoothness of its initial value v0(x). That is to say: the smoother the initial value, the smoother the solution.

Smooth the initial value v0(x) as

vε0(x) =

∫
∞

−∞

Jε(x − y)v0(y)dy,

where ε > 0 is a constant, Jε(x) ∈ C∞

0 (R) is the mollifier satisfying Jε(x) = 0 for |x | ≥ ε and
∫

∞

−∞
Jε(x)dx = 1. It

is known that vε0(x) ∈ C∞(R) and

lim
ε→0+

vε0(x) = v0(x) (2.21)

for all x ∈ R; cf. [1]. The periodic conditions still hold:

vε0(x + 2L) =

∫
∞

−∞

Jε(x + 2L − y)v0(y)dy [by change of variables: z = y − 2L]

=

∫
∞

−∞

Jε(x − z)v0(z + 2L)dz [by periodicity: v0(x + 2L) = v0(z)]

=

∫
∞

−∞

Jε(x − z)v0(z)dz

= vε0(x), (2.22)

and ∫ 2L

0
vε0(x)dx =

∫ 2L

0

(∫
∞

−∞

Jε(x − y)v0(y)dy
)

dx

=

∫ 2L

0

(∫
∞

−∞

Jε(y)v0(x − y)dy
)

dx

=

∫
∞

−∞

Jε(y)

(∫ 2L

0
v0(x − y)dx

)
dy

=

∫
∞

−∞

Jε(y)

(∫ 2L+y

y
v0(z)dz

)
dy

[
by periodicity:

∫ 2L+y

y
v0(z)dz = 0

]

=

∫
∞

−∞

Jε(y) · 0 dy = 0. (2.23)

Let vε(t, x) be the local solution of the periodic IBVP
vεt + vεxxxxt − αvεxx + F(vε)x = 0, x ∈ R, t ∈ [0, T ],

vε|t=0 = vε0(x), x ∈ R,
vε0(x) = vε0(x + 2L), x ∈ R,∫ 2L

0
vε0(x)dx = 0.

(2.24)

Since the initial value vε0(x) ∈ C∞
per(R), the solution vε(t, x) has good enough regularities in x and t , and

lim
ε→0+

vε(t, x) = v(t, x) (2.25)

for all (t, x) ∈ [0, T ] × R. The convergence (2.25) can be proved like in [9,12], and the details are omitted here.
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We now prove the estimates (2.19) and (2.20) for vε(t, x). Multiplying the first equation of (2.24) by vε(x, t), we
obtain

1
2
{(vε)2 + (vεxx )

2
}t + α(vεx )

2
+ {vεvεxxxt − vεxv

ε
xxt − αvεvεx + G(vε)}x = 0, (2.26)

where G(vε) is an antiderivative of F ′(vε)vε, i.e., G ′(vε) = F ′(vε)vε. Integrating (2.26) over [0, 2L] × [0, t] with
respect to x and t , and using the periodicity of vε such that the last term of the left-hand side of (2.26) disappears after
integration with respect to x , we then have

‖vε(t)‖2
L2

per
+ ‖vεxx (t)‖

2
L2

per
+ 2α

∫ t

0
‖vεx (τ )‖

2
L2

per
dτ = ‖vε0‖

2
L2

per
+ ‖vε0,xx‖

2
L2

per
, t ∈ [0, T ]. (2.27)

Applying the Poincaré inequalities (2.7), we obtain

‖vε(t)‖2
L2

per
+ ‖vεxx (t)‖

2
L2

per
= ‖vε(t)‖2

L2
per

+
L2

π2 + L2 ‖vεxx (t)‖
2
L2

per
+

π2

π2 + L2 ‖vεxx (t)‖
2
L2

per

≥ ‖vε(t)‖2
L2

per
+

L2

π2 + L2 ·
π2

L2 ‖vεx (t)‖
2
L2

per
+

π2

π2 + L2 ‖vεxx (t)‖
2
L2

per

= ‖vε(t)‖2
L2

per
+

π2

π2 + L2 ‖vεx (t)‖
2
L2

per
+

π2

π2 + L2 ‖vεxx (t)‖
2
L2

per

≥
π2

π2 + L2 ‖vε(t)‖2
H2

per
, t ∈ [0, T ]. (2.28)

Substituting (2.28) into (2.27) and dropping the positive term 2α
∫ t

0 ‖vεx (τ )‖
2
L2

per
dτ implies (2.19) for the smooth

solution vε(x, t), i.e.,

‖vε(t)‖2
H2

per
≤
π2

+ L2

π2 ‖vε0‖
2
H2

per
, t ∈ [0, T ]. (2.29)

On the other hand, again, applying the Poincaré inequality (2.7), we have

‖vεxx (t)‖
2
L2

per
≥
π2

L2 ‖vεx (t)‖
2
L2

per
(2.30)

and

2α
∫ t

0
‖vεx (τ )‖

2
L2

per
dτ = 2α

∫ t

0

{
π4

π4 + L4 ‖vεx (τ )‖
2
L2

per
+

L4

π4 + L4 ‖vεx (τ )‖
2
L2

per

}
dτ

≥ 2α
∫ t

0

{
π4

π4 + L4 ‖vεx (τ )‖
2
L2

per
+

L4

π4 + L4 ·
π2

L2 ‖vε(τ )‖2
L2

per

}
dτ

=
2απ2L2

π4 + L4

∫ t

0

{
π2

L2 ‖vεx (τ )‖
2
L2

per
+ ‖vε(τ )‖2

L2
per

}
dτ

= 2γ
∫ t

0

{
‖vε(τ )‖2

L2
per

+
π2

L2 ‖vεx (τ )‖
2
L2

per

}
dτ, (2.31)

where γ =
απ2 L2

π4+L4 . Substituting (2.30) and (2.31) into (2.27) yields

‖vε(t)‖2
L2

per
+
π2

L2 ‖vεx (t)‖
2
L2

per
+ 2γ

∫ t

0

{
‖vε(τ )‖2

L2
per

+
π2

L2 ‖vεx (τ )‖
2
L2

per

}
dτ ≤ ‖vε0‖

2
H2

per
, t ∈ [0, T ]. (2.32)

Applying Gronwall’s inequality to (2.32), we have

‖vε(t)‖2
L2

per
+
π2

L2 ‖vεx (t)‖
2
L2

per
≤ ‖vε0‖

2
H2

per
e−2γ t , t ∈ [0, T ],
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which implies

‖vε(t)‖2
H1

per
≤ C1‖v

ε
0‖

2
H2

per
e−2γ t , t ∈ [0, T ], (2.33)

where C1 = 1/min{1, π2/L2
}. Using Sobolev’s embedding inequality H1 ↪→ C0, we have

sup
x∈[0,2L]

|vε(x, t)| ≤ C‖vε0‖H2
per

e−γ t , t ∈ [0, T ], (2.34)

which proves (2.20) for vε(t, x).
With (2.25), i.e., limε→0+ vε(t, x) = v(t, x), (2.29) and (2.34) imply (2.19) and (2.20) for the strong solution

v(t, x). The proof is complete. �

Proof of Theorem 2.1. For any given 2L-periodic initial value v0(x) ∈ H2
per(R), we choose M such that

‖v0‖H2
per

≤
Mπ

√
π2 + L2

≤ M, i.e.,
π2

+ L2

π2 ‖v0‖
2
H2

per
≤ M2. (2.35)

By Proposition 2.2 with τ = 0, for the periodic IBVP (2.2) there exists a unique local solution v(t, x) in X2M (0, t0)
for the time determined, t0 = t0(M) > 0. For such a local solution, applying Proposition 2.4, from (2.35) we have

‖v(t)‖2
H2

per
≤
π2

+ L2

π2 ‖v0‖
2
H2

per
≤ M2, t ∈ [0, t0] (2.36)

and

sup
x∈[0,2L]

|v(t, x)| = O(1)e−γ t , t ∈ [0, t0].

Therefore, v(t, x) ∈ X M (0, t0). Since ‖v(t0)‖H2
per

≤ M (see (2.36)), we apply Proposition 2.2 with τ = t0 to obtain
the solution v in X2M (t0, 2t0), namely, we extend the existence interval of the solution v(t, x) from [0, t0] to [0, 2t0].
For v(t, x) ∈ X2M (0, 2t0), again we use Proposition 2.4 to obtain

‖v(t)‖2
H2 ≤

π2
+ L2

π2 ‖v0‖
2
H2

per
≤ M2, t ∈ [0, 2t0]

and

sup
x∈[0,2L]

|v(t, x)| = O(1)e−γ t , t ∈ [0, 2t0].

We prove v(t, x) ∈ X M (0, 2t0).
Repeating the above procedure, we prove that v(t, x) ∈ X M (0,+∞) and

‖v(t)‖2
H2

per
≤
π2

+ L2

π2 ‖v0‖
2
H2

per
≤ M2, t ∈ [0,+∞)

and

sup
x∈[0,2L]

|v(t, x)| = O(1)e−γ t , t ∈ [0,+∞).

The proof of Theorem 2.1 is complete. �

3. Proof of Theorem 1.2

With v(t, x) = u(t, x)− m0, the periodic IBVP (1.1) with α = 0 is reduced to
vt + vxxxxt + F(v)x = 0, x ∈ R, t ∈ R+,

v|t=0 = u0(x)− m0 =: v0(x), x ∈ R,
v0(x) = v0(x + 2L), x ∈ R,∫ 2L

0
v0(x)dx = 0,

(3.1)
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where F(v) = f (v + m0)− f (m0) as in (2.3).
The corresponding oscillatory divergence around zero of the solution v(t, x) to (3.1) is as follows.

Theorem 3.1. Let α = 0 and v0(x) ∈ H2
per(R). For the periodic IBVP (3.1) there exists a unique and global solution

satisfying

v(t, x) ∈ C(0,∞; H2
per(R))

and

‖v(t)‖2
L2

per
+ ‖vxx (t)‖2

L2
per

= ‖v0‖
2
L2

per
+ ‖v0,xx‖

2
L2

per
(3.2)

for all t ∈ [0,∞). In particular, if v0(x) 6≡ 0, then the solution v(t, x) oscillates around zero at all time.

Once Theorem 3.1 is proved, Theorem 1.2 can be easily obtained. As shown in the previous section, the local
existence of the solution has been given in Proposition 2.2 for the case α = 0, Theorem 3.1 can then be proved
similarly by using the energy method based on the local existence and the following a priori estimates.

Proposition 3.2 (A Priori Estimate). Let T > 0 and M > 0 be arbitrary fixed constants, and v(t, x) ∈ X M (0, T ) be
a solution of (3.1), where the solution space X M (0, T ) is defined as in the previous section. Then

‖v(t)‖2
L2

per
+ ‖vxx (t)‖2

L2
per

= ‖v0‖
2
L2

per
+ ‖v0,xx‖

2
L2

per
, t ∈ [0, T ], (3.3)

‖v(t)‖H2
per

≤

√
L2 + π2

π
‖v0‖H2

per
, t ∈ [0, T ]. (3.4)

Proof. As shown in Propositions 2.4 and 3.2 can be treated similarly. Let v(t, x) ∈ X M (0, T ) be a solution of
(3.1). Although it lacks regularity, a mollifier may be introduced to smooth the equation as shown in the proof of
Proposition 2.4. For the sake of simplicity, the regularity of v is neglected. Multiplying Eq. (3.1) by v yields

1
2
(v2

+ vxx )t + {vxxxtv − vxxtvx + G(v)}x = 0,

where G ′(v) = F ′(v)v. Integrating the above equation over [0, 2L] × [0, t] with respect to x and t implies (3.3)

‖v(t)‖2
L2

per
+ ‖vxx (t)‖2

L2
per

= ‖v0‖
2
L2

per
+ ‖v0,xx‖

2
L2

per
, t ∈ [0, T ].

Like for (2.28), using the Poincaré inequality (2.7) one deduces (3.4) from (3.3). �

Proof of Theorem 3.1. As shown in the previous section, the global existence of the solution to the periodic IBVP
(3.1) can be similarly proved by the continuity argument. Its detail is omitted here.

Now, let us show the oscillatory divergence of v(t, x). If v0(x) 6≡ 0, by the periodicity of v(t, x)

v(t, x) = v(t, x + 2L),
∫ 2L

0
v(t, x)dx = 0,

we know that v(t, x) 6≡ 0 and v(t, x) is oscillatory. To see the divergence, if the assertion is not true, i.e., v(t, x) is
convergent to 0 as t → ∞, then we have

‖v(t)‖2
L2

per
→ 0 and ‖vxx (t)‖2

L2
per

→ 0 as t → ∞,

which implies from (3.2)

‖v0‖L2
per

+ ‖v0,xx‖L2
per

→ 0 as t → ∞.

This is a contradiction! Therefore, v(t, x) has oscillatory divergence. �
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Fig. 4.1. (a) u(t, x) with α = 1, u0(x) = sin x ; (b)
supx∈[0,2π ] |u(t,x)−m0|

e−t/2 , with u(t, x) from (a).

Fig. 4.2. u(t, x) with α = 1 and u0(x) = 10 sin x .

4. Numerical simulations

In this section, the numerical simulations are reported to confirm the theoretical results: Theorems 1.1 and 1.2.
Here, the nonlinear function is f (u) = u3/3 and the period 2L = 2π .

Case A. α > 0. Without loss of generality, let α = 1. The small initial value is chosen to be u0(x) = sin x , and its
average over [0, 2π ] is m0 =

∫ 2π
0 sin xdx = 0. The numerical results in Fig. 4.1(a) and (b) show convergence of the

solution u(t, x) to its initial average m0 = 0. In particular, Fig. 4.1(b) shows

sup
x∈[0,2π ]

|u(t, x)− m0|

e−t/2 ≈ 1,

which indicates that u(t, x) converges to m0 at the optimal rate e−γ t
= e−t/2 (see (1.11)), namely, γ =

απ2 L2

π4+L4 =

1·π2
·π2

π4+π4 =
1
2 . This confirms Theorem 1.1.

The large initial value is chosen to be u0(x) = 10 sin x . The initial average is still m0 = 0, but the perturbation
of u0(x) around the initial average m0 is large, sup |u0(x) − m0| = 10. For this case, convergence is also obtained;
see Fig. 4.2, which confirms the convergence of Theorem 1.1 in the case of the “large” initial value. Unlike the case
with small initial perturbation around its average m0 shown in Fig. 4.1 in which the solution u(t, x) decays smoothly
to m0 = 0, Fig. 4.2 exhibits a lot of irregular and sharp oscillations within the initial short time from 0 to 2.5, then
converging smoothly to the initial average m0.
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Fig. 4.3. (a) u(t, x) with α = 0 and u0(x) = sin x ; (b) u(t, 0) with α = 0 and u0(x) = sin x .

Fig. 4.4. u(t, x) with α = 0 and u0(x) = 10 sin x .

Case B. α = 0. Like for Case A, the small initial value is set as u0(x) = sin x , whose average over [0, 2π ] is m0 = 0.
The numerical results in Fig. 4.3 (a) and (b) show the oscillatory divergence of the solution u(t, x) around its initial
average m0 = 0 at all time. The numerical experiment presented here validates Theorem 1.2.

A similar numerical result for the large initial value is presented in Fig. 4.4, in which the initial value is
u0(x) = 10 sin x .
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