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In this paper, we first derive a new chemotaxis‐haptotaxis model of cancer

invasion of tissue with density‐dependent jump probability and quorum‐sensing

mechanisms, which is with degeneracy in diffusion. In the presence of generic

logistic damping, we then prove the global existence of weak solutions. The

approach adopted is the compactness analysis withMoser‐type iteration and arti-

ficial viscosity‐vanishing technique.
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1 | INTRODUCTION

Cancer invasion consists of several important steps involving different biological mechanisms, and a variety of mathe-
matical models have been developed for various aspects of cancer invasion. Tao and Winkler1 first derived the chemo-
taxis‐haptotaxis model:

∂u
∂t

¼ ∇ · ðDðuÞ∇uÞ− χ∇ · ðu∇vÞ− ξ∇ · ðu∇wÞ þ μuð1−u−wÞ;
∂v
∂t

¼ Δv−vþ u;

∂w
∂t

¼ −wv; x∈Ω; t > 0;
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in a bounded smooth domain Ω ⊂ Rn, where u, v, and w denote the relative density of cells, the concentration of
matrix degrading enzymes (MDE), and the density of extracellular matrix (ECM), respectively, and the diffusivity is
D(u) = δ( u + 1)m−1. They showed the global existence of a unique classical solution to the above‐mentioned model (1)
by developing some Lp‐estimate techniques. The conclusion is that large values ofm seem to enhance the tendency towards
the global solvability. Whenm > 2 − 2/n, Wang2 further obtained the existence of global‐in‐time solutions for the system
(1). It is worthy of mentioning that the diffusion coefficient in their studies was nonlinear but eventually assumed to be
nondegenerate. However, biological experiments suggest that no cell migration (in particular no diffusivity) occurs in
regions where the tissue is absent.3 To account for this biological feature, various taxis models with degenerate diffusion
have been paid more attention during the last decades. They describe the model for chemosensitive movement,4,10 moving
towards the gradient of nondiffusible signals (haptotaxis),11,12 or incorporating both chemotaxis and haptotaxis effect.13-16

Particularly, in Li and Lankeit,14 it is proved that, for sufficiently regular initial data, the bounded solutions of (1) time glob-
ally exist for the cases of nondegenerate diffusion and degenerate diffusion wheneverm > 2−2/n with n = 2, 3, 4. Further-
more, the existence of a unique global classical solution for the nondegenerate diffusion of (1) and a global weak solution for
degenerate case in the 2 space dimensions were investigated in Zheng et al,16 recently.

On the other hand, Painter and Hillen17 proposed the transition probability method to model the movement of cell
population. They introduced volume filling approach combining neighbour‐ and gradient‐based rules; that is, particles
have a finite volume and that cells cannot move into regions that are already filled by other cells. In general, the jump
probabilities depend on a variety of environmental factors (eg, other cell populations18 or chemicals). Painter and
Sherratt19 further presented 4 different sensing strategies. Cell movement involves the processing of multiple signals,
each of them may act on the cell in different ways. Inspired by the idea of Painter et al,17,19 recently in Xu et al,20 we
derived the new chemotaxis model with density‐dependent jump probability and quorum‐sensing mechanisms combin-
ing the strictly local and gradient‐based strategies.

Subsequent to Xu et al,20 in this paper, we first derive the new chemotaxis‐haptotaxis model of cancer invasion with
density‐dependent jump probability and quorum‐sensing mechanisms (for details of how to derive the new model, we
refer to the next section):

∂u
∂t

¼ DuΔðqðuÞuÞ− �χv∇ ·ðϕvðuÞqðuÞu∇vÞ− �χw∇ ·ðϕwðuÞqðuÞu∇wÞ þ ruσð1− μu−wÞ;
∂v
∂t

¼ DvΔv− γvþ ξu;

∂w
∂t

¼ −λwv; x∈Ω; t > 0;

8>>>>>><
>>>>>>:

(2)

where, as mentioned before, u, v, and w denote the relative density of cells, the concentration of MDE, and the density
of ECM, respectively, and γ, ξ, and λ represent the decay rate of MDE, the production rate of MDE, the decay rate of
ECM causing by MDE, respectively; �χv and �χw measure the chemotactic and haptotactic sensitivity, respectively. Param-
eters Du, Dv, r, and μ are the cell diffusion coefficient, the chemical diffusion coefficient, the proliferation rate, and recip-
rocal of carrying capacity, respectively, and whereΩ⊂Rn with n ⩾ 1 denotes the physical domain under consideration.
q(u) denotes the jump probability of a cell depending on the population pressure at its present location, which is
increasing with respect to u with the following properties:

qð0Þ ¼ 0; qð1Þ ¼ 1;

namely, the jump probability is 1 when the cell density exceeds maximum and it is zero when the cell density is zero. ϕv(u)
and ϕw(u) are the density‐dependent chemotactic and haptotactic functions responding to quorum‐sensing mechanisms,
respectively, while ϕv(u) can be sign‐changing representing the phenomenon that some chemicals have been shown to
elicit both attractive and repellent responses.21,22 Moreover, some reasonable structure conditions on ϕv(s), ϕw(s), and
q(s) are also required in discussing the existence of solutions, which we leave in Section 2 after the formulation of this
model. Without loss of generality, throughout the paper, we assume the following positive coefficients as

γ ¼ ξ ¼ λ ¼ r ¼ �χv ¼ �χw ¼ Du ¼ Dv ¼ 1

for simplification. The second purpose of the paper is to establish the global existence of weak solutions to the system (2) by
the energy estimates with artificial viscosity, Moser‐type iteration, and the compactness analysis with viscosity‐vanishing
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technique. The main difficulty is the degeneracy of diffusion for the system (2), which causes the solutions lack the basic
regularities, and we have to treat it carefully by the viscosity‐vanishing method.

The rest of the paper is organized as follows. In Section 2, we derive the new chemotaxis‐haptotaxis model and state
the main theorem. Section 3 is devoted to the proof of global existence of weak solutions to the corresponding chemo-
taxis system.
2 | FORMULATIONS AND MAIN RESULTS

In this section, we first derive a new chemotaxis‐haptotaxis model with degenerate diffusion and density‐dependent che-
motactic and haptotaxis sensitivity; then we state our main results on the global existence of the weak solution to the
new model.

Chaplain and Lolas23 introduced a model for tumor invasion mechanism, which describes tumor invasion phenom-
enon in accounting for the role of a diffusive chemical substance, the so‐called MDE, which decays nondiffusive static
healthy tissue (ECM). In this model, both the enzyme and the healthy tissue can attract the cancer cells in the sense that
the cancer cells bias their movement along the gradients of the concentrations of both ECM and MDE, where these pro-
cesses, namely, taxis toward nondiffusible and diffusible quantity, are usually referred as haptotaxis and chemotaxis.
Using the similar modeling approach mentioned in Xu et al,20 we extend the Chaplain and Lolas model to a new
one, incorporating haptotaxis and chemotaxis effect on the cell movement, ie, the transitional‐probabilities

T±
i ¼ qðuiÞðαþ βvðziÞðτvðvi±1Þ− τvðviÞÞ þ βwðziÞðτwðwi±1Þ− τwðwiÞÞÞ;

where βv(z) and βw(z) are chemotactic and haptotactic functions responding to quorum‐sensing mechanisms, respec-
tively. By the similar process in Xu et al,20 following the approach of Stevens and Othmer24 (see also25,26), we get the
following model:

∂u
∂t

¼ Du
∂2ðqðuÞuÞ

∂x2
−

∂
∂x

χvðvÞβvðzÞqðuÞu
∂v
∂x

� �
−

∂
∂x

χwðwÞβwðzÞqðuÞu
∂w
∂x

� �
;

where χvðvÞ ¼ 2k
dτðvÞ
dv

and χwðwÞ ¼ 2k
dτðwÞ
dw

are the functions of chemotaxis and haptotaxis sensitivities, respectively.

Furthermore, we assume that there is a linear dependence for τ on signal concentration, ie, χvðvÞ ¼ �χv and χwðwÞ ¼ �χw,
where �χv and �χw are constants. Apart from that, we consider a modification of the Verhulst logistic growth term
to model organ size evolution introduced by Blumberg27 and Turner et al,28 which is called hyperlogistic function, accordingly

f ðuÞ ¼ ruσð1 − μu−wÞ:

In the special case where the quorum sensing molecule z not diffusing and a monotone increasing function of the cell density, z
= z(u). Denote βv(z) = βv(z(u)) := ϕv(u), βw(z) = βv(z(u)) := ϕw(u). Assume that the attractive effect of haptotaxis concentration w
is weaken with the increasing concentration of z; namely, βw is a nonnegative and nonincreasing function. And z switches the
response to chemotaxis concentration v from attractant at low concentrations of v to repellent at high concentrations; namely,
βv is a sign‐changing and nonincreasing function, eg, βv(z) = 1 − z/z∗. 17,29 Including cell kinetics and signal dynamics, we
derive the resulting model for the cell movement:

∂u
∂t

¼ DuΔðqðuÞuÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
dispersion

− �χv∇ · ðϕvðuÞqðuÞu∇vÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
chemotaxis

− �χw∇ · ðϕwðuÞqðuÞu∇wÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
haptotaxis

þ ruσð1− μu−wÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
proliferation

:

Incorporating the kinetic equation of ECM and MDE, we arrive at a modified Chaplain and Lolas' chemotaxis‐haptotaxis
model (2).

Since degenerate diffusion equation may not have classical solutions in general, we need to formulate the following
definition of weak solutions.
Definition 2.1. Let T ∈ (0, ∞). A triple (u, v, w) is said to be a weak solution to the problem (2) in
QT = Ω × (0, T) if
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(i) u ∈ L∞(QT), ∇(q(u)u) ∈ L2((0,T); L2(Ω)), and q(u)ut ∈ L2((0,T); L2(Ω));
(ii) v∈ L∞ðQTÞ ∩ L2ðð0;TÞ ;W 2;2ðΩÞÞ∩W 1;2ðð0;TÞ;L2 ðΩÞÞ;
(iii) w∈L∞(QT), wt ∈L2((0,T); L2(Ω));
(iv) The identities

∫T

0
∫
Ω
uφtdxdt þ ∫

Ω
u0φðx; 0Þdx

¼ ∫T

0
∫
Ω
∇ðqðuÞuÞ ·∇φdxdt − ∫T

0
∫
Ω
ϕvðuÞqðuÞu∇v ·∇φdxdt

−∫T

0
∫
Ω
ϕwðuÞqðuÞu∇w ·∇φdxdt −∫T

0
∫
Ω
μuσð1− u−wÞφdxdt;

and

∫T

0
∫
Ω
vtψdxdt þ ∫T

0
∫
Ω
∇v ·∇ψdxdt ¼ ∫T

0
∫
Ω
ðu− vÞψdxdt;

and

∫T

0
∫
Ω
wtψdxdt ¼ −∫T

0
∫
Ω
wzψdxdt

hold for all φ;ψ∈ L2ðð0;TÞ;W 1;2ðΩÞÞ ∩W 1;2ðð0;TÞ;L2ðΩÞÞ with φ(x, T) = 0, x ∈ Ω;
(v) (v,w) takes the value (v0,w0) in the sense of trace at t = 0.

If (u, v, w) is a weak solution of (2) in QT for any T ∈ (0,∞), then we call it a global weak solution.

Throughout this paper, we assume that
(H1)
 q(u) = um−1, m > 1, σ > m, μ > 0;

(H2)
 u0,v0, and w0 are nonnegative functions, u0 ∈ C0ð�ΩÞ, v0 ∈ W2,∞(Ω), w0 ∈ C2þθð�ΩÞ with θ ∈ (0,1), and

∂w0

∂ν
¼ 0

on ∂Ω;

(H3)
 ϕv(s) and ϕw(s) are continuously differentiable with

jϕvðsÞj≤ 1; jϕ′vðsÞj≤ 1; 0≤ ϕwðsÞ≤ 1; jϕ′vðsÞj≤ 1:
Theorem 2.1. Under the above assumptions (H1)‐(H3), the problem (2) admits a global weak solution (u,v,
w), satisfying that there exists a constant C such that

sup
t∈Rþ

‖u‖L∞ðΩÞ þ ‖v‖W1;∞ðΩÞ þ ‖w‖W 1;∞ðΩÞ
n o

≤ C;

and v ∈L2((0,T); W2,2(Ω)), um ∈ L2((0, T);W1,2(Ω)), u
mþ1
2 ∈W 1;2ðð0;TÞ; L2ðΩÞÞ for any T ∈ (0,∞).
Remark 2.1. If σ = m and μ is sufficiently large, then the same result in the theorem is also valid.
3 | PROOF OF THE MAIN RESULTS

We prove the existence of a global weak solution in this section. We first use the artificial viscosity method to get smooth
approximate solutions. Despite the absence of comparison principle, we can prove a special case compared with a lower
solution, which is helpful for establishing the regularity estimates. By making use of the special structure of dispersion,
we carry on the estimates on um in W1,2(QT), instead of u. These energy estimates ensure the global existence of weak
solution.

Consider the following corresponding regularized problem:

ut ¼ ∇ · ðmðaεðuÞÞm−1∇uÞ−∇ · ðumϕvðuÞ∇vÞ−∇·ðumϕwðuÞ∇wÞ þ μjujσ−1uð1− u−wÞ þ ε;

vt ¼ Δv− vþ u;

wt ¼ −wv; x ∈Ω; t > 0;
∂u
∂ν

¼ ∂v
∂ν

¼ 0; x ∈ ∂Ω; t > 0;

uðx; 0Þ ¼ u0εðxÞ; vðx; 0Þ ¼ v0εðxÞ; wðx; 0Þ ¼ w0εðxÞ; x ∈Ω;

8>>>>>>>><
>>>>>>>>:

(3)
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where ε ∈ (0,1), aε ∈ C∞ðRÞ, aε(s) = s+ε for s ≥ 0, aε(s) = ε/2 for s < − ε, aε is monotone increasing with 0≤ a′ε ⩽ 1, and
u0ε,v0ε, and w0ε are smooth approximation functions of u0,v0, and w0, respectively, with

ε ≤ u0ε ≤ u0 þ ε; 0 ≤ v0ε ≤ v0 þ ε; 0 ≤ w0ε ≤ w0 þ ε;

j∇u0εj≤ 2j∇u0j; j∇v0εj≤ 2j∇v0j; j∇w0εj≤ 2j∇w0j; jΔw0εj≤ 2jΔw0j;

and
∂w0ε

∂ν
¼ 0 on ∂Ω. Without loss of generality, we may assume that ϕv and ϕw are smooth enough. The local existence

and uniqueness of the solution to the regularized problem (3) are trivial, and we denote the unique solution by (uε,vε,wε).
Let ð0;TmaxÞ be its maximal existence interval.

Generally, there is no comparison principle for the coupled parabolic system. However, we prove the following
assertion compared with some special lower solutions.
Lemma 3.1. There holds uε≥ 0, vε≥ 0 and wε≥ 0 for all x ∈ Ω and t ∈ ð0;TmaxÞ.
Proof. We denote uε,vε,wε by u,v,w in this proof for the sake of simplicity. We argue by contradictions. Since
u0ε≥ ε>0, there exists t0 ∈ ð0;TmaxÞ such that u>0 for all x∈Ω and t∈ (0,t0), u(x0,t0)= 0 for some x0 ∈ �Ω
and u(x,t0)≥ 0 for all x∈Ω.
Now, we divide this proof into 2 parts. If x0∈Ω, then ∇u(x0,t0)=0, and at this point, we have

∇ · ðmðaεðuÞÞm−1∇uÞ ¼ mðaεðuÞÞm−1Δuþmðm− 1Þa′εðuÞj∇uj2 ⩾ 0;

∇ · ðumϕvðuÞ∇vÞ ¼ umϕvðuÞΔvþ ðmum−1ϕvðuÞ þ umϕ′

vðuÞÞ∇u·∇v ¼ 0;

∇ · ðumϕwðuÞ∇wÞ ¼ umϕwðuÞΔwþ ðmum−1ϕwðuÞ þ umϕ′

wðuÞÞ∇u·∇w ¼ 0;

μjujσ−1uð1− u−wÞ ¼ 0;

which contradict to
∂u
∂t
ðx0; t0Þ⩽ 0.

If x0∈∂Ω, then
∂u
∂τ

ðx0; t0Þ ¼ 0,
∂2u
∂τ2

ðx0; t0Þ≥ 0 for any tangent vector τ, and the boundary condition shows

that
∂ν
∂u

ðx0; t0Þ ¼ 0. We assert that
∂2u
∂ν2

ðx0; t0Þ≥ 0. In fact, if it were not true, Taylor expansion at (x0,t0) shows

that there would exist a point x′ ∈ Ω such that u(x′,t0) < 0. Therefore, we also have ∇u(x0,t0) = 0 and the
above equalities. Those contradictions imply that u ≥ 0. The nonnegative property of v and w is trivial.
Since uε≥ 0, the first equation of (3) is equivalent to

∂u
∂t

¼ Δðuþ εÞm −∇ · ðumϕvðuÞ∇vÞ−∇ ·ðumϕwðuÞ∇wÞ þ μuσð1− u−wÞ þ ε; u≥ 0:

Now we present some energy estimates independent of time t and the parameter ε.
Lemma 3.2. It holds

∫
Ω
uεð·; tÞdx ≤max ∫

Ω
u0dx þ jΩj; 2ðC1 þ jΩjÞ

μC2

� �1=ðσþ1Þ( )
;

for all t ∈ ð0;TmaxÞ, where C1 = μ2σ|Ω| and C2 ¼ 1=jΩjσ .
Proof. We denote uε, vε, wε by u, v, w in this proof for the sake of simplicity. From the third equation of (3),
we see that

wðx; tÞ ¼ w0εðxÞe−∫
t

0
vðx;τÞdτ :

Since u is nonnegative and
∂u
∂ν

¼ ∂v
∂ν

¼ ∂w0

∂ν
¼ 0 on ∂Ω, integration of the first equation of (3) over Ω yields

d
dt
∫
Ω
udx ≤ μ∫

Ω
uσdx−μ∫

Ω
uσþ1dx þ jΩj;
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for all t ∈ ð0;TmaxÞ. We note that

μ∫
Ω
uσdx ≤

1
2
μ∫

Ω
uσþ1dx þ C1;

and

∫
Ω
uσþ1dx ≥ C2 ∫

Ω
udx

� �σþ1

;

where C1 = μ2σ|Ω| and C2 ¼ 1=jΩjσ . Let yðtÞ ¼ ∫
Ω
uð·; tÞdx for t ∈ ½0;TmaxÞ. We find

y′ðtÞ≤ C1 þ jΩj− μC2

2
ðyðtÞÞσþ1:

By an ODE comparison, this shows that

yðtÞ≤max yð0Þ; 2ðC1 þ jΩjÞ
μC2

� �1=ðσþ1Þ( )

for all t ∈ ð0;TmaxÞ.

Here, we recall some lemmas about the Lp‐Lq type estimates for the components of the solution.

Lemma 3.3. Let (u , v , w ) be the solution of (3) in Ω × ð0;T Þ, p≥ 1,
ε ε ε max

q∈ ½1; np
n−2p

Þ; p≤
n
2
;

q∈ ½1;∞�; p>
n
2
;

8><
>:

and

s∈ ½1; np
n−p

Þ; p≤ n;

s∈ ½1;∞�; p> n:

8<
:

Then, there exist C(p,q)> 0, C(p,s)> 0 and C(p)> 0, such that for any T ∈ ð0;Tmax�, we have
sup

t∈ð0;TÞ
‖vεð·; tÞ‖LqðΩÞ ≤ Cðp; qÞð sup

t∈ð0;TÞ
‖uεð·; tÞ‖LpðΩÞ þ ‖v0‖LqðΩÞÞ;

sup
t∈ð0;TÞ

‖∇vεð·; tÞ‖LsðΩÞ ≤ Cðp; sÞð sup
t∈ð0;TÞ

‖uεð·; tÞ‖LpðΩÞ þ ‖∇v0‖LsðΩÞÞ;

and

∫T

0
∫
Ω
e

1
2ps jvεðx; sÞjp þ j∇vεðx; sÞjp þ jΔvεðx; sÞjp þ ∂

∂s
vεðx; sÞ

����
����p

� �
dxdt

≤ CðpÞ∫T

0
∫
Ω
e
1
2psjuεðx; sÞjpdxdt þ CðpÞ‖v0‖pLpðΩÞ þ CðpÞ‖Δv0‖pLpðΩÞ:
p q
Proof. This follows from the standard L ‐L type estimates for the Neumann heat semigroup, and we refer
the readers to Fujie et al30 and Cao31 for details.
Lemma 3.4. Let (uε, vε, wε ) be the solution of (3) in Ω × ð0;TmaxÞ. Then, we have

‖uεð·; tÞ‖L1ðΩÞ ≤ C; ‖∇vεð·; tÞ‖LsðΩÞ ≤ C; t ∈ ð0;TmaxÞ;

where s∈ ½1; n
n−1

Þ; C is a constant independent of ε and t.
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Proof. This is a simple conclusion of Lemmas 3.2 and 3.3.
The following Gagliardo‐Nirenberg inequality (see Wang2 and Winkler and Djie32) will be used in deriving the Lp

estimates of uε and |∇vε|.

Lemma 3.5. Let 0 < s≤ p≤
2n

. There exists a positive constant C such that for all u∈W 1;2ðΩÞ ∩ LsðΩÞ,
ðn−2Þþ
‖u‖LpðΩÞ≤Cð‖∇u‖aL2ðΩÞ‖u‖

1−a
LsðΩÞ þ ‖u‖LsðΩÞÞ

is valid with a ¼ n=s−n=p
1−n=2þ n=s

∈ ð0; 1Þ.
Lemma 3.6. Let (uε, vε, wε) be the solution of (3) in Ω×ð0;TmaxÞ. Then, for any r>1,

−∫
Ω
urε∇·ðumε ϕwðuεÞ∇wεÞdx

≤C ∫
Ω
umþr
ε dx þ ∫

Ω
umþr
ε vεdx þ r∫

Ω
umþr−1
ε j∇uεjdx

� �
; t∈ð0;TmaxÞ;

with constant C being independent of t, ε, and r.
Proof. We denote uε,vε,wε by u,v,w in this proof for the sake of simplicity. From the third equation of (3),
we have

wðx; tÞ ¼ w0εðxÞe−∫
t

0
vðx;τÞdτ ;

∇wðx; tÞ ¼ ∇w0εðxÞe−∫
t

0
vðx;τÞdτ−w0εðxÞe−∫

t

0
vðx;τÞdτ∫t

0
∇vðx; τÞdτ;

Δwðx; tÞ ≥Δw0εðxÞe−∫
t

0
vðx;τÞdτ−2e−∫

t

0
vðx;τÞdτ∇w0εðxÞ·∫

t

0
∇vðx; τÞdτ

−w0εðxÞe−∫
t

0
vðx;τÞdτ∫t

0
Δvðx; τÞdτ:

According to the fact
∂v
∂ν

¼ ∂w0ε

∂ν
¼ 0, we see that

∂w
∂ν

¼ 0. For any r>1, we define

ΦðsÞ ¼ ∫s

0
τmþr−1ϕwðτÞdτ:

Clearly, 0≤ΦðsÞ≤ 1
mþ r

smþr . Integrating by parts yields

−∫
Ω
ur∇·ðumϕwðuÞ∇wÞdx

¼ ∫
Ω
umϕwðuÞ∇w ·∇urdx ¼ r∫

Ω
umþr−1ϕwðuÞ∇w ·∇udx

¼ r∫
Ω
∇w ·∇ΦðuÞdx ¼ −r∫

Ω
ΦðuÞΔwdx

≤−r∫
Ω
ΦðuÞ· Δw0εðxÞe−∫

t

0
vðx;τÞdτ−2e−∫

t

0
vðx;τÞdτ∇w0εðxÞ·∫

t

0
∇vðx; τÞdτ −w0εðxÞe−∫

t

0
vðx;τÞdτ∫t

0
Δvðx; τÞdτ

� �
dx

¼ : J1 þ J2 þ J3:

Now, we have the following estimates:

J1 ¼ −r∫
Ω
ΦðuÞΔw0εðxÞe−∫

t

0
vðx;τÞdτdx

≤
r

mþ r
‖Δw0ε‖L∞ðΩÞ∫Ω

umþrdx≤2‖Δw0‖L∞ðΩÞ∫Ω
umþrdx;
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and

J2 ¼ 2r∫
Ω
ΦðuÞe−∫

t

0
vðx;τÞdτ∇w0εðxÞ·∫

t

0
∇vðx; τÞdτdx

¼ 2r∫
Ω
ΦðuÞ∇w0εðxÞ·∇e−∫t

0vðx;τÞdτdx

¼ −2r∫
Ω
ΦðuÞe−∫t

0vðx;τÞdτΔw0εðxÞdx−2r∫Ω
umþr−1ϕwðuÞe−∫

t
0vðx;τÞdτ∇w0εðxÞ·∇udx

≤
2r

mþ r
‖Δw0ε‖L∞ðΩÞ∫Ω

umþrdx þ 2r‖∇w0ε‖L∞ðΩÞ∫Ω
umþr−1j∇ujdx

≤ 4‖Δw0‖L∞ðΩÞ∫Ω
umþrdx þ 4r‖∇w0‖L∞ðΩÞ∫Ω

umþr−1j∇ujdx;

and

J3 ¼ r∫
Ω
ΦðuÞw0εðxÞe−∫t

0vðx;τÞdτ∫t

0
Δvðx; τÞdτdx

¼ r∫
Ω
ΦðuÞw0εðxÞe−∫t

0vðx;τÞdτ∫t

0
vt þ v−uð Þdτdx

≤ r∫
Ω
ΦðuÞw0εðxÞe−∫t

0vðx;τÞdτvðx; tÞdx þ r∫
Ω
ΦðuÞw0εðxÞe−∫t

0vðx;τÞdτ∫t
0vðx; τÞdτdx

≤
r

mþ r
‖w0ε‖L∞ðΩÞ∫Ω

umþrvdx þ r
mþ r

‖w0ε‖L∞ðΩÞ∫Ω
umþrdx

≤ ð‖w0‖L∞ðΩÞ þ 1Þ∫
Ω
umþrvdx þ ð‖w0‖L∞ðΩÞ þ 1Þ∫

Ω
umþrdx:

These complete the proof.
Lemma 3.7. Let (uε, vε, wε ) be the solution of (3) inΩ × ð0;TmaxÞ. If σ=m, then for any given r≥1, there exists
a constant κ>0, such that if μ≥ κ, then we have

‖uε‖LrðΩÞ ≤ C; t ∈ ð0;TmaxÞ;

where C>0 is a constant independent of t and ε.
Proof. We denote uε,vε,wε by u,v,w in this proof for the sake of simplicity. It is evidently sufficient to prove
that for any r0>1, we can find some r>r0 and C>0 such that

‖u‖Lrþ1ðΩÞ ≤ C; t ∈ ð0;TmaxÞ:

Without loss of generality, we may assume that μ≥ κ≥ 1. By a straightforward computation, testing the first
equation in (3) by ur for r>1 and integrating by parts, we find that

1
r þ 1

d
dt
∫
Ω
urþ1dx þ ∫

Ω
∇ðuþ εÞm ·∇urdx

≤∫
Ω
umϕvðuÞ∇v ·∇urdx þ ∫

Ω
umϕwðuÞ∇w ·∇urdx

þ μ∫
Ω
umþrdx − μ∫

Ω
umþrþ1dx þ ∫

Ω
urdx:

(4)

We note that

μ∫
Ω
umþrdx ≤

μ
8
∫
Ω
umþrþ1dx þ C1;

∫
Ω
urdx ≤

μ
8
∫
Ω
umþrþ1dx þ C2;

mþ r þ 1
2ðr þ 1Þ ∫

Ω
urþ1dx ≤

μ
8
∫
Ω
umþrþ1dx þ C3;

(5)
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where C1, C2, and C3 are constants independent of t, as all subsequently appearing constants C4,C5, …, in
this proof, possibly depend on m,r,|Ω| and μ. Let

ΨðsÞ ¼ ∫s

0
τmþr−1ϕvðτÞdτ:

It is easy to check that |Ψ(s)|≤ sm+r/(m+r). Then, integrating by parts, we can estimate

∫
Ω
umϕvðuÞ∇v ·∇urdx ¼ r∫

Ω
∇v ·∇ΨðuÞdx ¼ r∫

Ω
ΨðuÞΔvdx

≤∫
Ω
umþrΔvdx ≤

μ
8
∫
Ω
umþrþ1dx þ 8

μ

� �mþr

∫
Ω
jΔvjmþrþ1dx

≤
μ
8
∫
Ω
umþrþ1dx þ 8mþr∫

Ω
jΔvjmþrþ1dx:

According to Lemma 3.6 and the same argument as (5), we find

∫
Ω
umϕwðuÞ∇w·∇ urdx ≤ C4 ∫

Ω
umþrdx þ ∫

Ω
umþrvdx þ r∫

Ω
umþr−1j∇ujdx

� �

≤
μ
8
∫
Ω
umþrþ1dx þ C5 ∫

Ω
vmþrþ1dx þ 1

� �
þ C4r∫Ω

umþr−1j∇ujdx:

We further have

C4r∫Ω
umþr−1j∇ujdx ≤mr∫

Ω
umþr−2j∇uj2dx þ C2

4r
4m

∫
Ω
umþrdx

≤∫
Ω
∇ðuþ εÞm ·∇urdx þ μ

8
∫
Ω
umþrþ1dx þ C6:

Combining the above inequalities with (4), we infer that

d
dt

∫
Ω
urþ1dx þmþ r þ 1

2
∫
Ω
urþ1dx

≤−
μðr þ 1Þ

4
∫
Ω
umþrþ1dx þ C7 ∫

Ω
jΔvjmþrþ1dx þ ∫

Ω
vmþrþ1dx

� �
þ C8;

(6)

whereC7 ¼ ðr þ 1Þ·maxf8mþr;C5g and C8 = (r + 1)(C1 + C2 + C3 + C5 + C6). Applying Gronwall inequality
to the above inequality (6), we have

e
1
2ðmþrþ1Þt∫

Ω
urþ1ð·; tÞdx

≤∫
Ω
urþ1
0ε dx −

μðr þ 1Þ
4

∫t

0
∫
Ω
e
1
2ðmþrþ1Þsumþrþ1ð·; sÞdxds

þC7∫
t

0
∫
Ω
e
1
2ðmþrþ1Þs jΔvjmþrþ1ð·; sÞ þ vmþrþ1ð·; sÞ� �

dxdsþ C8∫
t

0
e
1
2ðmþrþ1Þsds

≤∫
Ω
urþ1
0ε dx −

μðr þ 1Þ
4

∫t

0
∫
Ω
e
1
2ðmþrþ1Þsumþrþ1ð·; sÞdxds

þC7Cðmþ r þ 1Þ∫t

0
∫
Ω
e
1
2ðmþrþ1Þsumþrþ1ð·; sÞdxds

þ 2
mþ r þ 1

C8e
1
2 ðmþrþ1Þt þ C9; t∈ð0;TmaxÞ;

where C(m + r + 1) is the constant in Lemma 3.3. Thus,

∫
Ω
urþ1ð·; tÞdx ≤∫

Ω
ðu0 þ 1Þrþ1dx þ 2

mþ r þ 1
C8 þ C9; t∈ð0;TmaxÞ;
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provided that μ≥ κ with

κ ¼ 4C7Cðmþ r þ 1Þ
r þ 1

:

The proof is completed.
Lemma 3.8. Let (uε,vε,wε) be the solution of (3) in Ω×ð0;TmaxÞ. If σ>m, then for any given r≥ 1, we have

‖uε‖LrðΩÞ ≤ C; t ∈ ð0;TmaxÞ;

where C>0 is a constant independent of t and ε.
Proof. This proof is quit similar to the proof of Lemma 3.7.We denote u ,v ,w by u,v,w in this proof for the sake
ε ε ε

of simplicity. It is evidently sufficient to prove that for any r 0>1, we can find some r> r0 and C>0 such that

‖u‖Lrþ1ðΩÞ≤C; t∈ð0;TmaxÞ:

By a straightforward computation, testing the first equation in (3) by ur for r>1 and integrating by parts, we
find that

1
r þ 1

d
dt
∫
Ω
urþ1dx þ ∫

Ω
∇ðuþ εÞm ·∇urdx

≤∫
Ω
umϕvðuÞ∇v ·∇urdx þ ∫

Ω
umϕwðuÞ∇w ·∇urdx

þ μ∫
Ω
uσþrdx − μ∫

Ω
uσþrþ1dx þ ∫

Ω
urdx:

(7)

Similar to the proof of Lemma 3.7, we have

μ∫
Ω
uσþrdx ≤

μ
8
∫
Ω
uσþrþ1dx þ C1;

∫
Ω
urdx ≤

μ
8
∫
Ω
uσþrþ1dx þ C2;

σ þ r þ 1
2ðr þ 1Þðσ þ 1−mÞ∫Ω

urþ1dx ≤
μ
8
∫
Ω
uσþrþ1dx þ C3;

(8)

where C1, C2, and C3 are constants independent of t, as all subsequently appearing constants C4,C5, …, in this
proof, possibly depend onm,r,|Ω|,σ and μ. LetΨ be the function defined in the proof of Lemma 3.7. Integrating
by parts, we find

∫
Ω
umϕvðuÞdx∇v ·∇urdx ¼ r ∫

Ω
∇v ·∇ΨðuÞdx ¼ r ∫

Ω
ΨðuÞΔvdx

≤∫
Ω
umþrΔvdx ≤

μ
8
∫
Ω
uσþrþ1dx þ 8

μ

� � mþr
σþ1−m ∫

Ω
jΔvj σþrþ1

σþ1−m dx:

According to Lemma 3.6 and the same argument as (5), we find

∫
Ω
umϕwðuÞ∇w ·∇urdx

≤ C4 ∫
Ω
umþrdx þ ∫

Ω
umþrvdx þ r ∫

Ω
umþr−1j∇ujdx

� �
≤
μ
8
∫
Ω
uσþrþ1dx þ C5 ∫

Ω
v

σþrþ1
σþ1−m dx þ 1

� �
þ C4r ∫Ω

umþr−1j∇ujdx:

We also have

C4r∫Ω
umþr−1j∇ujdx ≤ mr∫

Ω
umþr−2j∇uj2dx þ C2

4r
4m

∫
Ω
umþrdx

≤ ∫
Ω
∇ðuþ εÞm ·∇urdx þ μ

8
∫
Ω
uσþrþ1dx þ C6:
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Combining the above inequalities with (7), we infer that

d
dt

∫
Ω
urþ1dx þ σ þ r þ 1

2ðσ þ 1−mÞ ∫Ω
urþ1dx

≤−
μðr þ 1Þ

4
∫
Ω
uσþrþ1dx þ C7 ∫

Ω
jΔvj σþrþ1

σþ1−m dx þ ∫
Ω
v

σþrþ1
σþ1−m dx

� �
þ C8;

(9)

where C7 ¼ ðr þ 1Þ·maxfð8=μÞmþr;C5g and C8= (r+1)(C1+C2+C3+C5+C6). Applying Gronwall inequal-
ity to the above inequality (9), we have

e
σþrþ1

2ðσþ1−mÞ t ∫
Ω
urþ1ð·; tÞdx

≤∫
Ω
urþ1
0ε dx −

μðr þ 1Þ
4

∫t

0
∫
Ω
e

σþrþ1
2ðσþ1−mÞ suσþrþ1ð·; sÞdxds

þC7 ∫
t

0
∫
Ω
e

σþrþ1
2ðσþ1−mÞs jΔvj σþrþ1

σþ1−mð·; sÞ þ v
σþrþ1
σþ1−mð·; sÞ

� 	
dxdsþ C8 ∫

t

0
e

σþrþ1
2ðσþ1−mÞ sds

≤∫
Ω
urþ1
0ε dx −

μðr þ 1Þ
4

∫t

0
∫
Ω
e

σþrþ1
2ðσþ1−mÞ suσþrþ1ð·; sÞdxds

þC7C
σ þ r þ 1
σ þ 1−m

� �
∫t

0
∫
Ω
e

σþrþ1
2ðσþ1−mÞs u

σþrþ1
σþ1−mð·; sÞdxds

þ 2ðσ þ 1−mÞ
σ þ r þ 1

C8 e
σþrþ1

2ðσþ1−mÞ t þ C9; t ∈ ð0;TmaxÞ;

where C((σ+ r+1)/(σ+1−m)) is the constant in Lemma 3.3. Further, we note that

C7C
σ þ r þ 1
σ þ 1−m

� �
u

σþrþ1
σþ1−m ≤

μðr þ 1Þ
4

uσþrþ1 þ C10;

since σ>m. Combining the above 2 inequalities, we find

e
σþrþ1

2ðσþ1−mÞ t∫
Ω
urþ1ð·; tÞdx ≤∫

Ω
urþ1
0ε dx þ C10∫

t

0
∫
Ω
e

σþrþ1
2ðσþ1−mÞsdsþ 2ðσ þ 1−mÞ

σ þ r þ 1
C8 e

σþrþ1
2ðσþ1−mÞ t þ C9

≤∫
Ω
urþ1
0ε dx þ 2ðσ þ 1−mÞ

σ þ r þ 1
ðC8 þ C10jΩjÞ e σþrþ1

2ðσþ1−mÞt þ C9;

which yields

∫
Ω
urþ1ð·; tÞdx ≤∫

Ω
ðu0 þ 1Þrþ1dx þ 2ðσ þ 1−mÞ

σ þ r þ 1
ðC8 þ C10jΩjÞ þ C9; t ∈ ð0;TmaxÞ:

The proof is completed.
Lemma 3.9. Let (u ,v ,w ) be the solution of (3) in Ω× (0,T ). Assume that σ = m and μ is sufficiently large,
ε ε ε max

or σ>m. Then, there exists a constant C> 0 such that

‖uε‖Lnþ1ðΩÞ ≤ C; ‖vε‖L∞ðΩÞ ≤ C; ‖∇vε‖L∞ðΩÞ ≤ C; t ∈ ð0;TmaxÞ:
Proof. This follows from Lemmas 3.7, 3.8, and 3.3.
We now use the following Moser‐type iteration to get the L∞(Ω) estimate of u.

Lemma 3.10. Under the assumption of Lemma 3.9, there exists a constant C> 0 independent of t and ε such that
‖uε‖L∞ðΩÞ ≤ C; t ∈ð0;TmaxÞ:
Proof. We denote uε,vε,wε by u,v,w in this proof for the sake of simplicity. We test the first equation in (3) by
ur for r>1, and integrating by parts, we find that
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1
r þ 1

d
dt

∫
Ω
urþ1dx þ ∫

Ω
∇ðuþ εÞm ·∇urdx

≤∫
Ω
umϕvðuÞ∇v·∇ urdx þ ∫

Ω
umϕwðuÞ∇w ·∇urdx

þ μ∫
Ω
uσþrdx − μ∫

Ω
uσþrþ1dx þ ∫

Ω
urdx:

(10)

Using Young inequality, we can estimate

μ∫
Ω
uσþrdx ≤

μ
4
∫
Ω
uσþrþ1dx þ 4σþrμjΩj;

∫
Ω
urdx ≤

μ
4
∫
Ω
uσþrþ1dx þ 4

μ

� � r
σ þ r

jΩj;

and

∫
Ω
umϕvðuÞ∇v·∇urdx ≤ r∫

Ω
umþr−1j∇v ·∇ujdx

≤
1
4
mr∫

Ω
ðuþ εÞm−1ur−1j∇uj2dx þ r

m
∫
Ω
umþrj∇vj2dx

≤
1
4
∫
Ω
∇ðuþ εÞm ·∇urdx þ r

m
‖∇v‖2L∞ðΩÞ ∫Ω

umþrdx:

Lemma 3.9 implies that ‖∇v‖L∞ðΩÞ and ‖v‖L∞ðΩÞ are uniformly bounded in ð0;TmaxÞ. According to Lemma

3.6, there exists a constant C0>0 such that

∫
Ω
umϕwðuÞ∇w·∇ urdx ≤ C0 ∫

Ω
umþrdx þ ∫

Ω
umþrvdx þ r∫

Ω
umþr−1j∇ujdx

� �
≤ C0ð1þ ‖v‖L∞ðΩÞÞ∫Ω

umþrdx þ C0r∫Ω
umþr−1j∇ujdx:

We also have

C0r∫Ω
umþr−1j∇ujdx ≤

1
4
mr∫

Ω
umþr−2j∇uj2dx þ C2

0r
m

∫
Ω
umþrdx

≤
1
4
∫
Ω
∇ðuþ εÞm·∇urdx þ C2

0r
m

∫
Ω
umþrdx:

Straightforward computations yield

∇ðuþ εÞm ·∇ur ¼ mrðuþ εÞm−1ur−1j∇uj2

≥mrumþr−2j∇uj2 ¼ 4mr

ðmþ rÞ2j∇u
mþr
2 j2:

Combining the above estimates with (10), we have

d
dt

∫
Ω
urþ1dx þ ∫

Ω
urþ1dx þ 2mrðr þ 1Þ

ðmþ rÞ2 ∫
Ω
j∇umþr

2 j2dx

≤∫
Ω
urþ1dx −

μðr þ 1Þ
2

∫
Ω
uσþrþ1dx

þðr þ 1Þ r
m
‖∇v‖2L∞ðΩÞ þ C0ð1þ ‖v‖L∞ðΩÞÞ þ C2

0r
m

� �
∫
Ω
umþrdx

þ4σþrðr þ 1ÞμjΩj þ 4
μ

� � r
σþr

ðr þ 1ÞjΩj

≤ðr þ 1Þ r
m
‖∇v‖2L∞ðΩÞ þ C0ð1þ ‖v‖L∞ðΩÞÞ þ C2

0r
m

� �
∫
Ω
umþrdx

þ4σþrðr þ 1ÞμjΩj þ 4
μ

� � r
σþr

ðr þ 1ÞjΩj þ 2
μðr þ 1Þ
� �rþ1

σ

jΩj;

(11)
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where we applied the Gagliardo‐Nirenberg inequality, Lemma 3.5 and Young inequality to find a positive
constant C1 independent of r fulfilling

∫
Ω
umþrdx ¼ ‖u

mþr
2 ‖

2
L2ðΩÞ

≤C1 ‖∇u
mþr
2 ‖

2n
nþ2

L2ðΩÞ ‖u
mþr
2 ‖

4
nþ2

L1ðΩÞ þ ‖u
mþr
2 ‖

2
L1ðΩÞ

� 	

≤
2mr

ðmþ rÞ2ðr‖∇v‖2L∞ðΩÞ=mþ C0ð1þ ‖v‖L∞ðΩÞÞ þ C2
0r=mÞ ‖∇u

mþr
2 ‖

2
L2ðΩÞ þ C2‖u

mþr
2 ‖

2
L1ðΩÞ;

where

C2 ¼ C
nþ2
2
1

ðmþ rÞ2ðr‖∇v‖2L∞ðΩÞ=mþ C0ð1þ ‖v‖L∞ðΩÞÞ þ C2
0r=mÞ

2mr

 !n
2

þ C1:

For the sake of simplicity, we let

C3 ¼ ðr þ 1Þ r
m
‖∇v‖2L∞ðΩÞ þ C0ð1þ ‖v‖L∞ðΩÞÞ þ C2

0r
m

� �
;

and

C4 ¼ 4σþrðr þ 1ÞμjΩj þ 4
μ

� � r
σþr

ðr þ 1ÞjΩj þ 2
μðr þ 1Þ
� �rþ1

σ

jΩj:

Therefore, according to (11), we have

d
dt

∫
Ω
urþ1dx þ ∫

Ω
urþ1dx ≤ C2C3‖u

mþr
2 ‖

2
L1ðΩÞ þ C4: (12)

Now, we use the following Moser‐type iteration. Let r=rj with rj=2
j+m−2 for j∈Nþ; that is, r1=m and

rj−1 þ 1 ¼ rj þm
2

; j∈N:

We can invoke Lemmas 3.7 and 3.8 to find C∗ such that

sup
t∈ð0;TmaxÞ

‖u‖Lr1þ1ðΩÞ≤C∗:

From (12) and an ODE comparison, we have

sup
t∈ð0;TmaxÞ

‖u‖
rjþ1

Lrjþ1ðΩÞ≤max ∫
Ω
ðu0 þ 1Þrjþ1dx;C2C3· sup

t∈ð0;TmaxÞ
‖u‖

2ðrj−1þ1Þ
Lrj−1þ1ðΩÞ þ C4

( )
: (13)

A simple analysis shows thatC2 ≤ a1rb1 ,C3 ≤ a2rb2 ,C4 ≤ a3b
r
3, for some positive constants a1,a2,a3 and b1,b2,b3

that all are greater than 1 and independent of r. Therefore, we can rewrite the above inequality (13) into

sup
t∈ð0;TmaxÞ

‖u‖
rjþ1

Lrjþ1ðΩÞ ≤max ∫
Ω
ðu0 þ 1Þrjþ1dx; a1a2r

b1þb2
j · sup

t∈ð0;TmaxÞ
‖u‖

2ðrj−1þ1Þ
Lrj−1þ1ðΩÞ þ a3b

rj
3

( )
: (14)

Let

Mj ¼ max sup
t∈ð0;TmaxÞ

∫
Ω
urjþ1dx; 1

( )
:
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Since boundedness of u in L∞(Ω) is evident in the case when Mj≤maxf∫Ωðu0 þ 1Þrjþ1dx; 1g for infinitely
many j⩾1, we may assume that Mj≥maxf∫Ωðu0 þ 1Þrjþ1dx; 1g and thus, according to (14), there holds

Mj≤a1a2rb1þb2
j M2

j−1 þ a3b
rj
3 : (15)

We note that if M2
j−1 ≤ a3b

rj
3 for infinitely many j⩾ 1, then

M

1
rj−1 þ 1
j−1 ≤ ða3brj3 Þ

1
2ðrj−1þ1Þ ≤ a

1
rj þm
3 b

rj
rj þm
3 ≤ 2b3;

for j sufficiently large, which shows the boundedness of u in L∞(Ω). Otherwise,M2
j−1 ≥ a3b

rj
3 except for a finite

number of j⩾ 1. Thus, there exists a j0⩾ 1 such that

M2
j−1 ≥ a3b

rj
3 ; j≥ j0:

Therefore, we can rewrite (15) into

Mj ≤ 2a1a2r
b1þb2
j ·M2

j−1 ≤DjM2
j−1 (16)

for all j≥ j0 with a constant D independent of j, whence upon enlarge D if necessary, we can achieve that (16)
actually hold for all j⩾ 1. By introduction, this yields

Mj ≤D∑
j−2
i¼0ð j−iÞ·2i ·M2 j−1

1 ¼ D2 jþ2 j−1− j−2M2 j−1

1 ≤D2 jþ1
M2 j−1

1

for all j⩾ 1, and hence that

M
1

rjþ1

j ≤D
2 jþ1

2 jþm−1M

2 j−1

2 j þm−1
1 ≤D2M1;

for all j⩾ 1. This implies that u indeed belongs to L∞ðΩ × ð0;TmaxÞÞ.

Now we turn to the regularity estimates.

Lemma 3.11. Under the assumption of Lemma 3.9, let (u ,v ,w ) be the solution of (3) in Ω×ð0;T Þ; then
ε ε ε max

there exists a constant C>0 such that

∫T

0
∫
Ω
jΔvεj2dxdt ≤ Cð1þ TÞ; T ∈ ð0;TmaxÞ:
Proof. We denote uε,vε by u,v in this proof for the sake of simplicity. Multiplying the second equation in (3)
by −Δv and integrating over Ω yields

1
2
∫
Ω

∂
∂t
j∇vj2dx þ ∫

Ω
jΔvj2 þ ∫

Ω
j∇vj2dx

¼ ∫
Ω
∇v ·∇udx ≤∫

Ω
ujΔvjdx

≤
1
2
∫
Ω
jΔvj2dx þ 1

2
‖u‖2L∞ðΩÞjΩj:

Since ‖u‖L∞ðΩÞ is uniformly bounded, integrating the above inequlity over (0,T), we complete the proof.
Lemma 3.12. Under the assumption of Lemma 3.9, let (uε, vε, wε) be the solution of (3) in Ω× (0,Tmax); then
the third solution component wε fulfills

‖wε‖L∞ðΩÞ ≤ ‖w0ε‖L∞ðΩÞ ≤ ‖w0‖L∞ðΩÞ þ 1; t ∈ ð0;TmaxÞ;
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and

‖∇wε‖L∞ðΩÞ ⩽ 2‖∇w0‖L∞ðΩÞ þ ð‖w0‖L∞ðΩÞ þ 1Þ‖∇v‖L∞ðΩÞt; t ∈ ð0;TmaxÞ:

Moreover, there exists a constant C>0 independent of t and ε such that

∫
Ω
jΔwðx; tÞj2dx≤Cð1þ tÞ4:
Proof. We denote uε,vε,wε by u,v,w in this proof for the sake of simplicity. From the third equation of (3),
we have

wðx; tÞ ¼ w0εðxÞe−∫
t

0
vðx;τÞdτ ;

∇wðx; tÞ ¼ ∇w0εðxÞe−∫
t

0
vðx;τÞdτ −w0εðxÞe−∫

t

0
vðx;τÞdτ∫t

0
∇vðx; τÞdτ;

Δwðx; tÞ ¼ Δw0εðxÞe−∫
t

0
vðx;τÞdτ − 2e−∫

t

0
vðx;τÞdτ∇w0εðxÞ ·∫

t

0
∇vðx; τÞdτ

−w0εðxÞe−∫
t

0
vðx;τÞdτ∫t

0
Δvðx; τÞdτ þ w0εðxÞe−∫

t

0
vðx;τÞdτ ∫t

0
∇vðx; τÞdτ

� �2

:

Thus,

j∇wðx; tÞj ≤ j∇w0εðxÞj þ w0εðxÞ‖∇v‖L∞ðΩÞt

⩽ 2‖∇w0‖L∞ðΩÞ þ ð‖w0‖L∞ðΩÞ þ 1Þ‖∇v‖L∞ðΩÞt;

and

jΔwðx; tÞj ≤ jΔw0εðxÞj þ 2j∇w0εðxÞj‖∇v‖L∞ðΩÞt þ w0εðxÞ∫
t

0
jΔvjdsþ w0εðxÞj‖∇v‖2L∞ðΩÞt

2

⩽ 2‖Δw0‖L∞ðΩÞ þ 4j∇w0ðxÞj‖∇v‖L∞ðΩÞt þ ð‖w0‖L∞ðΩÞ þ 1Þ∫t

0
jΔvjds

þ ð‖w0‖L∞ðΩÞ þ 1Þj‖∇v‖2L∞ðΩÞt
2:

Further, we have

∫
Ω

∫t

0
jΔvjds

� �2

dx ≤∫
Ω
∫t

0
jΔvj2dxdt · t ≤ Cð1þ tÞ2;

according to Lemma 3.11 with the constant C therein. Therefore,

∫
Ω
jΔwðx; tÞj2dx ≤ C′ð1þ tÞ4;

for some constant C′>0.
Lemma 3.13. Let the assumption of Lemma 3.9 holds, and let (u , v , w ) be the solution of (3) in Ω× (0,T ).
ε ε ε max

Then, there exists a constant C>0 independent of ε and T, such that

∫T

0
∫
Ω
j∇umε j2dxdt ≤ Cð1þ TÞ; T ∈ ð0;TmaxÞ:
Proof. We denote uε,vε,wε by u,v,w in this proof for the sake of simplicity. We test the first equation in (3) by
(u+ε)m and get

1
mþ 1

d
dt
∫
Ω
ðuþ εÞmþ1dx þ ∫

Ω
j∇ðuþ εÞmj2dx

≤∫
Ω
umϕvðuÞ∇v·∇ðuþ εÞmdx þ ∫

Ω
umϕwðuÞ∇w·∇ðuþ εÞmdx

þ μ∫
Ω
uσðuþ εÞmdx−μ∫

Ω
uσþ1ðuþ εÞmdx þ ∫

Ω
ðuþ εÞmdx:

(17)
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According to Lemmas 3.9 and 3.10, ∇v and u are uniformly bounded. Thus,

∫
Ω
umϕvðuÞ∇v ·∇ðuþ εÞmdx ≤ 1

4
∫
Ω
j∇ðuþ εÞmj2dx þ C1;

where C1 is a constant independent of t and ε, as all subsequently appearing constants C2,C3,… in this proof.
A slight modification of the proof of Lemma 3.6 with Φ(s) being replaced by

Φ̂ðsÞ ¼ ∫s

0
τmðτ þ εÞm−1ϕwðτÞdτ

implies that

∫
Ω
umϕwðuÞ∇w ·∇ðuþ εÞmdx

≤ C2 ∫
Ω
ðuþ εÞ2mdx þ ∫

Ω
ðuþ εÞ2mvdx þ ∫

Ω
j∇ðuþ εÞ2mjdx

� �
≤
1
4
∫
Ω
j∇ðuþ εÞmj2dx þ C3:

Integrating (17) on (0,T) yields

∫
Ω
ðuþ εÞmþ1dx þ ∫T

0
∫
Ω
j∇ðuþ εÞmj2dxdt ≤∫

Ω
ðu0ε þ εÞmþ1dx þ CT: (18)

We note that

j∇umj ¼ mum−1j∇uj≤mðuþ εÞm−1j∇ðuþ εÞj ¼ j∇ðuþ εÞmj:

This completes the proof.
Lemma 3.14. Under the assumption of Lemma 3.9, let (uε, v ε, wε ) be the solution of (3) inΩ × ð0;TmaxÞ; then
there exists a constant C> 0 independent of ε and T, such that

∫T

0
∫
Ω

u
mþ1
2

ε

� 	
t

��� ���2dxdt þ ∫
Ω
∇umε
�� ��2dx ≤ Cð1þ TÞ5; T ∈ ð0;TmaxÞ:

Moreover,∫T

0
∫
Ω
ðumε Þt
�� ��2dxdt ≤ 4m2

ðmþ 1Þ2‖uε‖
m−1
L∞ðΩÞ∫

T

0
∫
Ω

u
mþ1
2

ε

� 	
t

��� ���2dxdt ≤ Cð1þ TÞ5; T ∈ ð0;TmaxÞ:
Proof. We denote u ,v ,w by u,v,w in this proof for the sake of simplicity. We multiply the first equation in
ε ε ε

(3) by ½ðuþ εÞm�t, and then we have

m∫
Ω
ðuþ εÞm−1jutj2dx þ ∫

Ω
∇ðuþ εÞm ·∇½ðuþ εÞm�tdx

≤∫
Ω
umϕvðuÞ∇v ·∇½ðuþ εÞm�tdx þ ∫

Ω
umϕwðuÞ∇w ·∇½ðuþ εÞm�tdx

þ μ∫
Ω
uσ½ðuþ εÞm�tdx − μ∫

Ω
uσþ1½ðuþ εÞm�tdx

−μ∫
Ω
uσw½ðuþ εÞm�tdx þ ∫

Ω
½ðuþ εÞm�t
�� �� dx:

(19)

We note that ‖u‖L∞ðΩÞ is uniformly bounded according to Lemma 3.10, and then

μ∫
Ω
uσ½ðuþ εÞm�tdx ¼ mμ∫

Ω
uσðuþ εÞm−1utdx ≤

m
8
∫
Ω
ðuþ εÞm−1jutj2dx þ C1;

−μ∫
Ω
uσþ1½ðuþ εÞm�tdx ¼ −mμ∫

Ω
uσþ1ðuþ εÞm−1utdx ≤

m
8
∫
Ω
ðuþ εÞm−1jutj2dx þ C2;

−μ∫
Ω
uσw½ðuþ εÞm�tdx ¼ −mμ∫

Ω
uσwðuþ εÞm−1utdx ≤

m
8
∫
Ω
ðuþ εÞm−1jutj2dx þ C3;

∫
Ω
½ðuþ εÞm�t
�� �� dx ¼ m∫

Ω
ðuþ εÞm−1jutjdx ≤m

8
∫
Ω
ðuþ εÞm−1jutj2dx þ C4;
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where C1,C2,C3, and C4 are constants independent of t and ε, as all subsequently appearing constants C5,C6,…
in this proof. We also have

m∫
Ω
ðuþ εÞm−1jutj2dx ¼ 4m

ðmþ 1Þ2 ∫Ω
ðuþ εÞmþ1

2

� 	
t

��� ���2dx;
and

∫
Ω
∇ðuþ εÞm·∇½ðuþ εÞm�tdx ¼ 1

2
∂
∂t

∫
Ω
∇ðuþ εÞmj j2dx:

There holds

∫
Ω
umϕvðuÞ∇v ·∇½ðuþ εÞm�tdx ¼ −∫

Ω
½ðuþ εÞm�t∇ · ðumϕvðuÞ∇vÞdx

¼ −∫
Ω
mðuþ εÞm−1ut · ðmum−1ϕvðuÞ∇u ·∇vþ umϕ′

vðuÞ∇u ·∇vþ umϕvðuÞΔvÞdx

≤
1
8
∫
Ω
mðuþ εÞm−1jutj2dx þ C5∫Ω

ðuþ εÞ2ðm−1Þj∇uj2dx þ C6∫Ω
jΔvj2dx

≤
1
8
∫
Ω
mðuþ εÞm−1jutj2dx þ C5∫Ω

j∇ðuþ εÞmj2dx þ C6∫Ω
jΔvj2dx;

since the uniform boundedness of ‖∇v‖L∞ðΩÞ. We also have

∫
Ω
umϕwðuÞ∇w ·∇½ðuþ εÞm�tdx ¼ −∫

Ω
½ðuþ εÞm�t∇ · ðumϕwðuÞ∇wÞdx

¼ − ∫
Ω
mðuþ εÞm−1ut · ðmum−1ϕwðuÞ∇u ·∇wþ umχ ′wðuÞ∇u ·∇wþ umχwðuÞΔwÞdx

≤
1
8
∫
Ω
mðuþ εÞm−1jutj2dx þ C7ð1þ tÞ2∫

Ω
ðuþ εÞ2ðm−1Þj∇uj2dx þ C8∫Ω

jΔwj2dx

≤
1
8
∫
Ω
mðuþ εÞm−1jutj2dx þ C7ð1þ tÞ2∫

Ω
j∇ðuþ εÞmj2dx þ C8ð1þ tÞ4;

according to Lemma 3.12. Inserting the above inequalities into (19), and noticing the inequality (18) in the
proof of Lemma 3.13, we find a constant C independent of t and ε such that

∫T

0
∫
Ω

ðuþ εÞ
mþ 1

2

� �
t

����
����2dxdt þ ∫

Ω
∇ðuþ εÞmj j2dx

≤∫
Ω
∇ðu0ε þ εÞmj j2dx þ C9ð1þ TÞ5 ≤ C10ð1þ TÞ5:

Clearly, we have

u
mþ1
2

� 	
t

��� ���2 ¼ ðmþ 1Þ2
4

um−1jutj2≤ðmþ 1Þ2
4

ðuþ εÞm−1jutj2 ¼ ðuþ εÞmþ1
2

� 	
t

��� ���2;
and

jðumÞtj2 ≤
4m2

ðmþ 1Þ2‖uε‖
m−1
L∞ðΩÞ u

mþ1
2

� 	
t

��� ���2 ≤ 4m2

ðmþ 1Þ2‖uε‖
m−1
L∞ðΩÞ ðuþ εÞmþ1

2

� 	
t

��� ���2:
The proof is completed.
Proof of Theorem 2.1. According to the estimates, for any ε, the approximation solution (uε,vε,wε) exists glob-
ally. The regularity estimates of vε and wε are trivial. For any T ∈(0,∞), we see that umε ∈ L∞ðQTÞ,
∇umε ∈ L2ðQTÞ, and ∂umε =∂t ∈ L2ðQTÞ. Thus, there exists a function ~u∈W 1;2ðQTÞ, such that umε weakly in
W1,2(QT) and strongly in L2(QT) converges to ~u. We denote u ¼ ~u1=m since ~u⩾ 0. Thus, umε converges almost
everywhere to um, and uε converges almost everywhere to u. We can verify the integral identities in the defini-
tion of weak solutions. By taking a sequence of T∈ (0,∞) and the diagonal subsequence procedure, we can find
the existence of a global weak solution.
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