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1 | INTRODUCTION

Cancer invasion consists of several important steps involving different biological mechanisms, and a variety of mathe-
matical models have been developed for various aspects of cancer invasion. Tao and Winkler" first derived the chemo-
taxis-haptotaxis model:

g—’; = V- (D) Vi) = xV - (uVv) — £V - (uVw) + pu(1—u—w),
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in a bounded smooth domain Q C R", where u, v, and w denote the relative density of cells, the concentration of
matrix degrading enzymes (MDE), and the density of extracellular matrix (ECM), respectively, and the diffusivity is
D(u) = 8( u + 1) They showed the global existence of a unique classical solution to the above-mentioned model (1)
by developing some L,-estimate techniques. The conclusion is that large values of m seem to enhance the tendency towards
the global solvability. When m > 2 — 2/n, Wang? further obtained the existence of global-in-time solutions for the system
(1). It is worthy of mentioning that the diffusion coefficient in their studies was nonlinear but eventually assumed to be
nondegenerate. However, biological experiments suggest that no cell migration (in particular no diffusivity) occurs in
regions where the tissue is absent.? To account for this biological feature, various taxis models with degenerate diffusion
have been paid more attention during the last decades. They describe the model for chemosensitive movement,*'° moving
towards the gradient of nondiffusible signals (haptotaxis),""'* or incorporating both chemotaxis and haptotaxis effect."**°
Particularly, in Li and Lankeit,'* it is proved that, for sufficiently regular initial data, the bounded solutions of (1) time glob-
ally exist for the cases of nondegenerate diffusion and degenerate diffusion whenever m > 2—2/n with n = 2, 3, 4. Further-
more, the existence of a unique global classical solution for the nondegenerate diffusion of (1) and a global weak solution for
degenerate case in the 2 space dimensions were investigated in Zheng et al,'® recently.

On the other hand, Painter and Hillen'” proposed the transition probability method to model the movement of cell
population. They introduced volume filling approach combining neighbour- and gradient-based rules; that is, particles
have a finite volume and that cells cannot move into regions that are already filled by other cells. In general, the jump
probabilities depend on a variety of environmental factors (eg, other cell populations'® or chemicals). Painter and
Sherratt'® further presented 4 different sensing strategies. Cell movement involves the processing of multiple signals,
each of them may act on the cell in different ways. Inspired by the idea of Painter et al,'”'® recently in Xu et al,*® we
derived the new chemotaxis model with density-dependent jump probability and quorum-sensing mechanisms combin-
ing the strictly local and gradient-based strategies.

Subsequent to Xu et al,* in this paper, we first derive the new chemotaxis-haptotaxis model of cancer invasion with
density-dependent jump probability and quorum-sensing mechanisms (for details of how to derive the new model, we
refer to the next section):

d

671; = DyA(q(u)u) — 2,V - (¢, (u)q(u)uVv) — x,,V - (@, () q(w)uVw) + ru(1 — pu—w),

ov

i D,Av —yv + &u, )
a—W:—/lwv, xeQ, t>0,

ot

where, as mentioned before, u, v, and w denote the relative density of cells, the concentration of MDE, and the density
of ECM, respectively, and y, & and A represent the decay rate of MDE, the production rate of MDE, the decay rate of
ECM causing by MDE, respectively; ¥, and y,, measure the chemotactic and haptotactic sensitivity, respectively. Param-
eters D, D,, r, and u are the cell diffusion coefficient, the chemical diffusion coefficient, the proliferation rate, and recip-
rocal of carrying capacity, respectively, and where Q C R" with n > 1 denotes the physical domain under consideration.
q(u) denotes the jump probability of a cell depending on the population pressure at its present location, which is
increasing with respect to u with the following properties:

namely, the jump probability is 1 when the cell density exceeds maximum and it is zero when the cell density is zero. ¢,(u)
and ¢,,(u) are the density-dependent chemotactic and haptotactic functions responding to quorum-sensing mechanisms,
respectively, while ¢,(u) can be sign-changing representing the phenomenon that some chemicals have been shown to
elicit both attractive and repellent responses.*"*> Moreover, some reasonable structure conditions on ¢,(s), ¢.(s), and
q(s) are also required in discussing the existence of solutions, which we leave in Section 2 after the formulation of this
model. Without loss of generality, throughout the paper, we assume the following positive coefficients as

yzgz)l:r:)_(v:)_(w:Du:szl

for simplification. The second purpose of the paper is to establish the global existence of weak solutions to the system (2) by
the energy estimates with artificial viscosity, Moser-type iteration, and the compactness analysis with viscosity-vanishing
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technique. The main difficulty is the degeneracy of diffusion for the system (2), which causes the solutions lack the basic
regularities, and we have to treat it carefully by the viscosity-vanishing method.

The rest of the paper is organized as follows. In Section 2, we derive the new chemotaxis-haptotaxis model and state
the main theorem. Section 3 is devoted to the proof of global existence of weak solutions to the corresponding chemo-
taxis system.

2 | FORMULATIONS AND MAIN RESULTS

In this section, we first derive a new chemotaxis-haptotaxis model with degenerate diffusion and density-dependent che-
motactic and haptotaxis sensitivity; then we state our main results on the global existence of the weak solution to the
new model.

Chaplain and Lolas* introduced a model for tumor invasion mechanism, which describes tumor invasion phenom-
enon in accounting for the role of a diffusive chemical substance, the so-called MDE, which decays nondiffusive static
healthy tissue (ECM). In this model, both the enzyme and the healthy tissue can attract the cancer cells in the sense that
the cancer cells bias their movement along the gradients of the concentrations of both ECM and MDE, where these pro-
cesses, namely, taxis toward nondiffusible and diffusible quantity, are usually referred as haptotaxis and chemotaxis.
Using the similar modeling approach mentioned in Xu et al,*® we extend the Chaplain and Lolas model to a new
one, incorporating haptotaxis and chemotaxis effect on the cell movement, ie, the transitional-probabilities

TF = qui) (e + B, (zi) (T (vier) = 7o) + By (2) (Tw(Wie1) — Tuw(wi))),

where f,(z) and B,,(z) are chemotactic and haptotactic functions responding to quorum-sensing mechanisms, respec-
tively. By the similar process in Xu et al,*® following the approach of Stevens and Othmer** (see also*>*°), we get the
following model:

=0, T 2 (@) - 2 (o Elatun ).

dr(v) dr(w)
dv dw
Furthermore, we assume that there is a linear dependence for 7 on signal concentration, ie, x,(v) =¥, and x,,(w) = ¥,
where Y, and Y,, are constants. Apart from that, we consider a modification of the Verhulst logistic growth term
to model organ size evolution introduced by Blumberg®’ and Turner et al,® which is called hyperlogistic function, accordingly

where y,(v) = 2k

and y,,(w) = 2k

are the functions of chemotaxis and haptotaxis sensitivities, respectively.

fw)=ru°(1 — pu —w).

In the special case where the quorum sensing molecule z not diffusing and a monotone increasing function of the cell density, z
= z(u). Denote S,(z) = B(z(w)) := ¢,(w), B2) = Buzw)) = ¢, (). Assume that the attractive effect of haptotaxis concentration w
is weaken with the increasing concentration of z; namely, 3, is a nonnegative and nonincreasing function. And z switches the
response to chemotaxis concentration v from attractant at low concentrations of v to repellent at high concentrations; namely,
B, is a sign-changing and nonincreasing function, eg, f,(z) = 1 — z/z+. '”* Including cell kinetics and signal dynamics, we
derive the resulting model for the cell movement:

o — DuA(g(w)) 2,V - (8, (W)aWuTY) 2,V - ($,(0)g)uvw) + (1 — g —w).

dispersion chemotaxis haptotaxis proliferation

Incorporating the kinetic equation of ECM and MDE, we arrive at a modified Chaplain and Lolas' chemotaxis-haptotaxis
model (2).

Since degenerate diffusion equation may not have classical solutions in general, we need to formulate the following
definition of weak solutions.

Definition 2.1. Let T € (0, o). A triple (u, v, w) is said to be a weak solution to the problem (2) in
Qr=Q x (0, T) if
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() u € L*(Qy), V(gww) € L*(0,7); L*(2)), and q(w)u, € L*((0,T); LA(Q));
(i) veL®(Qr) NL*((0,T) ; W>*(Q))nW'2((0,T); L* (Q));
(iii) weL®(Qp), w, EL*(0,T); LA(Q));
(iv) The identities

/T/ u§0¢dxdt+f upp(x, 0)dx

"] Viatuu) - Vot - [ gy(uiatuuvy- Vo
—ffqbw w)uVw - Vodxdt — f/Q,uu 1—u—w)pdxdt,
and
f [ vapaxde + / [ v Vidxdt = f [ (= v)paxar,
and

/ Z f oWitpdxdt = — f Z / oWepdxdt

hold for all ¢,9 € L*((0, T); W'*(Q)) nW2((0, T); L*(Q)) with ¢p(x, T) = 0, x € Q;
(v) (v,w) takes the value (vo,wy) in the sense of trace at t = 0.
If (u, v, w) is a weak solution of (2) in Q7 for any T € (0,00), then we call it a global weak solution.

Throughout this paper, we assume that

H1) qw)=u"""m>1,0>m u>0;

(H2) uo,Vo, and w, are nonnegative functions, uy € C°(Q), vy € W>®(Q), wy € C**°(Q) with 6 € (0,1), and W =0
on 0Q;

(H3) ¢.(s) and ¢,(s) are continuously differentiable with

B[ <1, Igi(s)| <1, 0<¢,(s) <1, [Bi(s)[<1.

Theorem 2.1. Under the above assumptions (H1)-(H3), the problem (2) admits a global weak solution (u,v,
W), satisfying that there exists a constant C such that

Sup{llullLeo(Q) + Il + ||w||W1,m(Q)} <c,

teR™
and v €L*((0,T); W>A(Q)), u™ € LX(0, T;W"X(Q)), u"s € W'2((0, T); L*(Q)) for any T € (0,00).

Remark 2.1. If 0 = m and u is sufficiently large, then the same result in the theorem is also valid.

3 | PROOF OF THE MAIN RESULTS

We prove the existence of a global weak solution in this section. We first use the artificial viscosity method to get smooth
approximate solutions. Despite the absence of comparison principle, we can prove a special case compared with a lower
solution, which is helpful for establishing the regularity estimates. By making use of the special structure of dispersion,
we carry on the estimates on u™ in W"*(Qy), instead of u. These energy estimates ensure the global existence of weak
solution.

Consider the following corresponding regularized problem:

e = V- (m(ae())" Vi) = V - (W, () Vo) — V(" () Vo) + pelul” (1 = = w) + ¢,

v =AV—V+ U,

wy = —wy, xeQ, t>0, (3)
du 0v
v v
u(x,0) = ug(x), v(x,0) =vp(x), w(x,0) =we(x), xe€Q,

=0, x€0Q, t>0,
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where ¢ € (0,1), a. € C*(R), als) = s+e for s > 0, a(s) = ¢/2 for s < — ¢, a. is monotone increasing with 0 < a; <1, and
Uoe;Voe» and wy, are smooth approximation functions of ug,vy, and wy, respectively, with

e U fUug+e, 0=Zvee<vy+e 0wy <wy+eg,
|Vu05| S 2|Vl,t0|7 |VV05| S 2|VV()|, |VWO£| S 2|VW()|, |AWOE| S 2|AWQ|7

ow,
and 61;)8 = 0 on 0Q. Without loss of generality, we may assume that ¢, and ¢,, are smooth enough. The local existence

and uniqueness of the solution to the regularized problem (3) are trivial, and we denote the unique solution by (u.,ve,w;).
Let (0, Tmax) be its maximal existence interval.

Generally, there is no comparison principle for the coupled parabolic system. However, we prove the following
assertion compared with some special lower solutions.

Lemma 3.1. There holds u.>0, v.>0 and w.>0 for all x € Q and t € (0, Trax)-

Proof. We denote u.,v.,w, by u,v,w in this proof for the sake of simplicity. We argue by contradictions. Since
Uo: > >0, there exists fy € (0, Tmax) such that u>0 for all x€ Q and t€(0,t,), u(xo,to) =0 for some x, € Q
and u(x,ty) >0 for all xe Q.

Now, we divide this proof into 2 parts. If x,€Q, then Vu(x,t,)=0, and at this point, we have

V- (m(a:(w)" "' Vu) = m(a.(w))™ " Au + m(m —1)a(u)|Vul* > 0,

V- (U, () Vv) = up,(u)Av + (mu™'¢,(u) + u"$ (u))Vu-Vv = 0,

V- (U, () Vw) = u¢,, (u)Aw + (mu"1¢,, (u) + u"$, (u))Vu-Vw = 0,
uluP " u(l — u—w) =0,

ou
which contradict to E(XO’ to) <0.

2

ou u .
If x, €9Q, then g(xo, to) =0, ﬁ(xm to) > 0 for any tangent vector 7, and the boundary condition shows

ov u
tha‘[a—(xo7 to) = 0. We assert that ﬁ(xo, to) > 0. In fact, if it were not true, Taylor expansion at (xy,t,) shows
u v

that there would exist a point X € Q such that u(x't,) < 0. Therefore, we also have Vu(x,,t,) = 0 and the
above equalities. Those contradictions imply that u > 0. The nonnegative property of v and w is trivial.

Since u.> 0, the first equation of (3) is equivalent to

0
a—btl =Au+e)" =V W, (u)Vv) = V- (u"¢,(u)Vw) + uu’ (1 —u-w) +¢, u>0.
Now we present some energy estimates independent of time ¢ and the parameter e.

Lemma 3.2. It holds

2(Cy + jQ)\ VY
/Qus(-, t)dx < max{/guodx +19Q|, <T :

for all t € (0, Trax), where C; = u2°1Q1 and C, = 1/|Q[°.

Proof. We denote ug, v, w, by u, v, w in this proof for the sake of simplicity. From the third equation of (3),
we see that

t

w(x,t) = wee (x)e—fov(xﬁ)df.

ou dv 0
Since u is nonnegative and a—z = a—z = % = 0 on dQ, integration of the first equation of (3) over Q yields

%fgudxglufgu“dx—/xfgu"“dx + 1€,
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for all ¢ € (0, Trmax). We note that
1
,u/Qu"dx siu/0u0+ldx +Cy,

and
/Qua+1dx >C, (fgudx) GH,

where C; = u2°1Ql and C, = 1/|Q|°. Let y(t) = /

QU(s t)dx for ¢ € [0, Trmax). We find

V(0 <0+ 10 -2 ).

2
By an ODE comparison, this shows that
2(Cy + |Q|))1/<““>
t) <max< y(0), | ———=
0 {y( ) ( e

for all ¢ € (0, Trax)-

Here, we recall some lemmas about the LP-L? type estimates for the components of the solution.

Lemma 3.3. Let (u, v, W) be the solution of (3) in Q X (0, Tmax), p>1,
np n
1 <—
qe| ’n—2p)’ p<3,
n
q € [17 OO], b > )
2
and
np
€ 17—7 S 9
s€| n_p) p<n
se€[l,»], p>n.

Then, there exist C(p,q)> 0, C(p,s)>0 and C(p)> 0, such that for any T € (0, Tpax), we have
sup ||VE('7 t)”Lq(Q) < C(p, q)( sup ||ng(', t)”LP(Q) + ”Vo”y](g)),

te(0,T) te(0,T)
sup IVve(-, )lipsq) < C(p,s)( sup llue(-, )llpq) + IVvollzs(q)),
te(0,T) te(0,T)

and

T 1 ol
[o Lot (bl + ) + )P + [ S

p
) dxdt

T
< C(p)f0 /Qefps\ug(x, s)[Pdxdt + C(p)lIvolly, g + C(P) AV, g -

Proof. This follows from the standard LP-L9 type estimates for the Neumann heat semigroup, and we refer

the readers to Fujie et al** and Cao*' for details.

Lemma 3.4. Let (i, v, W) be the solution of (3) in Q X (0, Tyax). Then, we have
lite(-, )l i) S C, IVV(-, Ollpsay S C, £ E (0, Trnax),

n
where s € [1, —1); C is a constant independent of ¢ and t.
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Proof. This is a simple conclusion of Lemmas 3.2 and 3.3.

The following Gagliardo-Nirenberg inequality (see Wang? and Winkler and Djie**) will be used in deriving the L?
estimates of u, and |Vv,l.

Lemma 3.5.Let0<s<p<

. There exists a positive constant C such that for allue W?(Q) N L¥(Q),

2n
(n_2)+

lllzp ) < CIVUIE g Il + lullzs )

is valid with a = _n/s=n/p _ € (0,1).

1-n/2+n/s

Lemma 3.6. Let (u,, v, w.) be the solution of (3) in QX(0, Tmax). Then, for any r> 1,

—fﬂugv-(u;”qbw(ug)VwE)dx

SC </.Qu;n+rdx + /Qu;n+rv5dx + V/Qu;n+r_1|vu£|dx> 9 te(07 Tmax)a

with constant C being independent of t, ¢, and r.

Proof. We denote u.v,,w, by u,v,w in this proof for the sake of simplicity. From the third equation of (3),
we have

w(x,t) = wog(x)e‘f Qv
/. J. t
Vw(x,t) = Vwge(x)e S o"EDE _ypo (x)e) oV x ) f o Vv(x, T)dr,
t t t
Aw(x,t)  >Awy, (x)e_f ov(x’f)dT—Ze_f DG (x)- f o Vv(x, 7)dr
_'/'tv(x:r)d‘r/.t
—Woe (x)e™ " JAv(x, 7)dr.

. ov  ow ow
According to the fact a = 61;)6 = 0, we see that 3 = 0. For any r>1, we define

a(s) = [, (r)dr.

1
Clearly, 0 < ®(s) < - rs’””. Integrating by parts yields

—fﬂurV-(uquW(u)Vw)dx
= /Qumqbw(u)Vw -Vu'dx =1 U™, (u) Vw - Vudx
= r/QVw -VO(u)dx = —r/QCI)(u)Awdx

—/lv(xr)d‘[ —/ v(x,7)dt ' —f[v(xr)df ‘
S—rfotb(u)- Awge(x)e™/ VT 27 oV Vwog(x)-fOVv(x,r)dr —Woe(x)e ™ o fOAv(x,T)dr dx

= Jl + J2 + Jg .
Now, we have the following estimates:

i = —r/QCD(u)AWOE(x)e‘fo"(x‘)dfdx

<

n r||AW()g||L°°(Q)/Qum+rdXS2”AW0”L°°(Q)fQMm+rdx,
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and

/ —ftv(x.f)d‘r /t
T2 =2r) @(u)e "IV (x)- | Vv(x, T)drdx
= ZV/Q(D(M)VWOE (x)- Ve Jovlxa)dz gy
=-2r / G Pw)e! VeI Ay (x)dx—2r / QU (w)e ) DTG0 (x)-Vudx

2r
<

—r ||AW[)E||L°°(Q)/Qum+rdx + 2rIIVw0£||Loo(Q)/Qum+’_1|Vu|dx
< 4||Aw0|ILeo(Q>/Qu’"+’dx + 4rIIVw0||Lm(Q>/Qum+"1|Vu|dx,

and
_ f _ftv(x.r)dfft drdx
T3 =r) P(u)woe(x)e™/ 0" oAv(x, 7)dr

t
= r/.QdD(u)wog(x)e—fo"(xaf)dffo(vt + v—u) drdx

< erCIJ(u)WOg(x)e‘ff)"()‘*f>‘“1)(x7 t)dx + erCID(u)WOE(x)e‘ffi"()‘ff)dfj‘gv(x7 7)drdx

r r
< llwoell oo / U™ vdx + ———liwgell / u™dx
S Weelle@) o +m+r oellz2 () o

< (”W()”Lw(g) + 1)/Qu’"+’vdx + (”W()”LOO(Q) + 1)/Qu’”+’dx.
These complete the proof.

Lemma 3.7. Let (u,, v, w,) be the solution of (3) in Q X (0, Tmax ). If 0 =m, then for any given r>1, there exists
a constant x>0, such that if u>x, then we have

”uEHL"(Q) <C, te (0, Tmax);
where C> 0 is a constant independent of t and e.

Proof. We denote u,,v.,w, by u,v,w in this proof for the sake of simplicity. It is evidently sufficient to prove
that for any ry>1, we can find some r>r, and C >0 such that

”u”LrH(Q) < C, te (O, Tmax)

Without loss of generality, we may assume that p>x > 1. By a straightforward computation, testing the first
equation in (3) by u’ for r>1 and integrating by parts, we find that

1 d
r+1de @

sfgumgbv(u)Vv- Vu'dx + fgumcpw(u)Vw - Vu'dx )

b af i gy [

utdx + fQV(u +¢)™ - Vu'dx

We note that

,u/Qum”dx < %/Qumﬂﬂdx—i—cl,

/Qurdx S %/Qum+r+ldx+cz, (5)

m+r+1

gy < B mirelgy | o
20r+1) 4" —8/9” +Cs
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where C;, C,, and C; are constants independent of t, as all subsequently appearing constants C,,Cs, ..., in
this proof, possibly depend on m,r,IQ| and p. Let

w(s) = [ o1, (2)dr.

It is easy to check that [¥(s)l <s™*"/(m +r). Then, integrating by parts, we can estimate

fﬂu’”gﬁv(u)Vv- Vu'dx = rf Vv V¥(u)dx =r| ,¥(u)Avdx
m-+r
S/ m+rAvdx<:uf m+r+1dx + <M> / |A ‘m+r+1dx

<l‘_"fﬂum+r+1dx 4 8m+r/0|Av|m+r+1dx.

According to Lemma 3.6 and the same argument as (5), we find
fﬂumqbw(u)VW Vu'dx <C4 ([Qu’"”dx + fﬂum”vdx + rfﬂum+"1|Vu|dx>

S%/QuerrJrldx +Cs (/va+r+1dx 4 1) 4 C4r/9um+r_1|Vu|dx.

We further have
C3r
+r-1 2 2 4 +
C4r/0um "HVu|dx Smr/ Ut Vu| dx—i—m/Qum "dx

H 1
</ V(u+e)" Vu’dx—i—gfgu’"’ dx + Cs.

Combining the above inequalities with (4), we infer that

d r+l m+r+1 r+1

E/’Qu dx+7f0u dx ©
,M(V—i—l) m+4r+1 m+r+1 m+r+1

<D wrerae s oo [ avmtae + f vt + ¢,

where C; = (r + 1)-max{8™",Cs} and Cs = (r + 1)(C; + C, + C3 + Cs + C¢). Applying Gronwall inequality
to the above inequality (6), we have

L(m+r+1)t
e m-+r: /Q
1 F D [ [ pmerens meria
S/ an dx— 1 /O/Qez(mr )symtr (-,s)dxds
t
+C7ff ei<m+r+l)s(‘Av‘m+r+l(, S)+vm+r+1(-,s))dxds—|—Cg/oef(m”H)SdS
</ de M r—|—1 f/ L(mtr+1)s m+r+1( s)dxds

—|—C7C(m +r4+ 1)/0/0@ m+r+1)sum+r+1(.7s)dxds
2

44—

m+r+1

ur+1(_’ t)dx

Cge%(m”H)[ + Co, t€(0, Trmax),

where C(m + r + 1) is the constant in Lemma 3.3. Thus,

2
Jaur e < [+ 1) et 2 ot Cor €00, ),
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provided that u > x with

— 4C,C(m+r+1)
N r+1 '
The proof is completed.

Lemma 3.8. Let (u,v,w,) be the solution of (3) in QX (0, Tmax). If >m, then for any given r> 1, we have
”ué:”Lr(Q) S C7 te (07 Tmax);
where C> 0 is a constant independent of t and «.

Proof. This proofis quit similar to the proof of Lemma 3.7. We denote u,v.,w, by u,v,win this proof for the sake
of simplicity. It is evidently sufficient to prove that for any r,>1, we can find some r > ry, and C> 0 such that

”u”LHl(Q)SC, tE(O, Tmax)-
By a straightforward computation, testing the first equation in (3) by u” for r>1 and integrating by parts, we

find that

1 d
r+1dt @

sfoumqﬁv(u)Vv- Vu'dx + fﬂumcpw(u)Vw - Vu'dx @)

udx + fQV(u +¢)™ - Vu'dx

+#/Qu"+rdx—ﬂ/9u"+’+1dx + /Qu’dx.

Similar to the proof of Lemma 3.7, we have

+ “ +r+1
,ufﬂu" ’dxsgfgu"’ dx + Cy,
H 1
[ urax sgfgu"’ dx + Cs, ®)
o+r+1 r+1 M 1
dx < = otrtldx + C
2(r—|—1)(cr+1—m)'/9u = sfﬂ”‘ Tt

where Cj, C,, and C; are constants independent of ¢, as all subsequently appearing constants Cy,Cs, ..., in this
proof, possibly depend on m,r,|Ql,0 and u. Let ¥ be the function defined in the proof of Lemma 3.7. Integrating
by parts, we find

fQ u",(w)dxVv-Vu'dx = r fQVv-V‘I’(u)dx =r )  ¥(u)Avdx

M 8 Uﬁ%’m otril
S/Q um+rAvde§/QuU+r+ldx+ <;> fQ‘Av‘“‘l_m dx

According to Lemma 3.6 and the same argument as (5), we find
/Q u¢,,(u)Vw - Vu'dx
<Cq4 (/Q u™ " dx + fQ u™vdx + r/Q u™ = Vu|dx

S/i/lg Mc7+r+lder Cs <f0vm(jx+ 1> + C4T/Q um+r—l|vu|dx'
We also have

C2
C4r/Q u™tr T Vuldx < mer w2 | Vul*dx + T;:/Q u™trdx

< /Q V(u+e)" - Vu'dx +%/Q uetdx + Ce.
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Combining the above inequalities with (7), we infer that
d il o+r+1
- dx+—-°" "= r+1dx
ded o +2(cr—i—1—m) ot ©)
u(r+1)

S_T/Quc+r+lwc+c7</ﬂAv|<m—:mdx+/ v:?ﬂ mdx) +C8,

where C; = (r +1)-max{(8/u)""", Cs} and Cg=(r+ 1)(C, + C, + C5+ Cs + Cq). Applying Gronwall inequal-
ity to the above inequality (9), we have

e [t s
r+1)

5/ g, dox — é + / / e T U (. 5) dxds

+C5 /0 /Q eZ(U+_1—m)S<|Av| m(-’s) +v%( ))dxds+ Cs/ e_2(<r+1‘m) Sds

ur—+1)
S/ uogldx— + /./ e20+1 m)5u0+r+1( )dXdS
o+r+1 oiril oartl
c,C e 2o+1- S Uoiim dxds
e <o+ 1- m)f / S

2(c+1-m)
c+r+1

Cs e2(o+1 ) _|_ Cy, te (07 Tmax)a

where C((c+r+1)/(c+1—m)) is the constant in Lemma 3.3. Further, we note that

C7C o+r+1 ua+r+1 Sy(r—Fl) ua+r+1 +C10,
o+ 1-m 4

since o> m. Combining the above 2 inequalities, we find

2(c+1-m)
ez(aﬂm)f r+1 dx<f uogldx—&-Cm/.f e“+1m>ds+ﬁ

O' +1-— ) otril ¢
uy — = (Cs + C1p|Q]) e 2ert=m" 4 C
f o ot (Cs + Cro|Q|) + Co,

'a+r+1 t
C8 e 2(o+i-m) + C9

which yields

1—
fa s a2 G,

P € (0, Trpax)-

The proof is completed.

Lemma 3.9. Let (u,v,w,) be the solution of (3) in Q X (0,T,,ax ). Assume that c = m and u is sufficiently large,
or o> m. Then, there exists a constant C>0 such that

||u5||Ln+l<Q) < C, ||V5||L°°(Q) < C, ”VvE“Lm(Q) < C, te (07 Tmax)-

Proof. This follows from Lemmas 3.7, 3.8, and 3.3.
We now use the following Moser-type iteration to get the L*(Q) estimate of u.
Lemma 3.10. Under the assumption of Lemma 3.9, there exists a constant C > 0 independent of t and ¢ such that

ltello () < C, £ E(0, Trma)-

Proof. We denote u,,v.,w, by u,v,w in this proof for the sake of simplicity. We test the first equation in (3) by
u" for r>1, and integrating by parts, we find that
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1 d
r+1dt
sz u,(u)Vv- Vu'dx + /Q u"¢,,(u)Vw - Vu'dx (10)

+Mf9 u‘”’dx—,ufQ u"““d.x—i—/Q u"dx.

QU dx + fQV(u +¢)™ - Vu'dx

Using Young inequality, we can estimate

#/’Q WO dx 5%/9 oy 4 470,
Tl

r H r +
/' wdx < / a++1dx+(#>o r

and
/Q u™@,(u)Vv-Vu'dx < er u™ vy - Vu|dx
1 m—1_ r—1 2 r + 2
Szmer(LH—s) u = |Vu| dx—l—afﬂum "|Vv|“dx

1 m r 2 +
< foVas e vy v g, [ ax

Lemma 3.9 implies that [IVvll;=(q) and Ilvll;=(q) are uniformly bounded in (0, Tmax). According to Lemma
3.6, there exists a constant Cy>0 such that

fﬂuquW(u)Vw- Vu'dx <Cy </Q u™trdx + /Q u™ vdx + er um+"1|Vu|dx>

<Co(1+ IIVIILw(Q))/Q U™t dx + COF/Q u™ =1 Vu|dx.

We also have

1 C?
Corfgum+r—l|vu|dx Szmr/lgum+r—2|vu|2dx+_0rf uerrdx

1 Cor N
SZfQV(u +¢)"-Vu'dx + fﬂu’” "dx.

Straightforward computations yield

Vu+e)" Vu' = mr(u+¢)" 'u"Vul

m+r

4m
> mru™ 2 Vul* = 72\Vu7|

(m+r)

Combining the above estimates with (10), we have

d 1 2mr(r+1) mir o

— | u™dx+ u'“dx+7 Vu 2 |"dx 11

ol [a S [ v an
1

sfgu”ldx—@/gu”’“dx

c
+(r+1)( VW12 ) + Co(1 + IVl (g )+—°r)fﬂum+’dx

r

+47 (r 4+ 1)u|Q| + (ﬁ) (r+1)|Q|

r 5 Cor
<(r+ 1) (ol ) + Co1 + Wl )+—>/Qum+’dx

r+l

+4T (r + 1)ulQ| + G)GLYH DiQf+ (ﬁ) [0l
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where we applied the Gagliardo-Nirenberg inequality, Lemma 3.5 and Young inequality to find a positive
constant C; independent of r fulfilling

m+r
[ wmrax = s,

S I el i =)
<C1<||Vu Ity IS + s g )

L*(Q)
2mr mtr
< VU= 112, + Callu™ 112,
(m + 1) (FIVVIZw ) /m + Co(1 + IVllgs(q)) + C2r/m) (@ "2 e
where
w2 (M4 1) (HIVVIlEe gy /m + Co(1 + IVlle(q)) + Cr/m)\
C,=Cp +C.
2mr
For the sake of simplicity, we let
2 C(Z)’"
Cy=(r+1) (—IIVvII =) T Co(1 + IWll=(q)) + —>
and
Ca = 47 (r + 1|0 + C)ﬁ(w DiQl + QJ 2 )%|Q|
‘= H r+1) '
Therefore, according to (11), we have
d
E/ r“dx—i—/ U tldx < C,Cllu™s 1%, ) T Ca (12)

Now, we use the following Moser-type iteration. Let r=r; with rj:2j+m—2 for jeN™; that is, r,=m and

r+m
rj_l—l—lij, JEN

We can invoke Lemmas 3.7 and 3.8 to find C, such that

sup ||u||Lr1+1(Q)SC*.
t€(0,Tmax)

From (12) and an ODE comparison, we have

sup nu||g,,tﬁ(m3max{fg(uo+1>’f'“dx,czcg- sup lul ’““))+c4} (13)

LI 1+1
1€(0,Trmax) t€(0,Tmax) (@

A simple analysis shows that C; < a; 1, Cs < a,r™, Cy < a;b’, for some positive constants a;,a,a; and by,b,,bs
that all are greater than 1 and independent of r. Therefore, we can rewrite the above inequality (13) into

41 . 1
sup IIMIIZ,:l(Q) < max{/Q(MO + 1)’1+1dx, alazrj’?l+bz, sup ”u”Lerll}-l'—( )) + a3b } (14)
t€(0,Tmax) t€(0,Tmax)

Let

M; = max{ sup fﬂu’f“dx, 1}.
te

<O$TmZIX)
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Since boundedness of u in L™(Q) is evident in the case when M;<max{ fq(uo + 1)"*'dx, 1} for infinitely
many j>1, we may assume that M;>max{ [ (uo + 1)""'dx, 1} and thus, according to (14), there holds

MjSalazr}l.’1+b2MJ»2_1 + azby. (15)

We note that if sz_1 < a3b;’ for infinitely many j > 1, then

1 1 rj

1+ 1 I ey rp+m rj+m
M;~, < (asby)"" <ay 3

b <2bs,

for j sufficiently large, which shows the boundedness of u in L*(Q). Otherwise, sz_1 > a3by except for a finite
number of j > 1. Thus, there exists a j, > 1 such that

Mf—l 2 a3bgj, JZJo-
Therefore, we can rewrite (15) into
M; <2ayapr) - M7, <DIM7 (16)
for all j > j, with a constant D independent of j, whence upon enlarge D if necessary, we can achieve that (16)
actually hold for all j > 1. By introduction, this yields
-2, . A o i
M; < DZi:o(l—l)'Z . M%J — p¥+? —J—ZM%" <D¥ M%J

for all j>1, and hence that

241
1 FT8 e
M < DM FMlepiyy,

for all j > 1. This implies that u indeed belongs to L* (Q X (0, Tax))-

Now we turn to the regularity estimates.

Lemma 3.11. Under the assumption of Lemma 3.9, let (u,v,w.) be the solution of (3) in QX(0, Tmax); then
there exists a constant C>0 such that

T
[ [ v Pdxde <C+T), T €0, Ta).

Proof. We denote u.,V, by u,v in this proof for the sake of simplicity. Multiplying the second equation in (3)
by —Av and integrating over Q yields

10 0
5f@|v1;|2dx+f0mv|2 [ Vv
= fQVv- Vudxsfgu\Ade
1 1
§§/Q|Av|2dx Sl 0]
Since llull;=(q) is uniformly bounded, integrating the above inequlity over (0,T), we complete the proof.

Lemma 3.12. Under the assumption of Lemma 3.9, let (u, v, W) be the solution of (3) in Q X (0,T.x); then
the third solution component w; fulfills

||Wg||L°°(Q) < ”W()EHL‘X’(Q) < ||W()||L°°(Q) +1, te (0, Tmax),
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and

IVWellze (@) < 21Vwgllze q) + (”WQ”L‘X’(Q) + 1)|IVv||Lw<Q>t, t € (0, Tax)-
Moreover, there exists a constant C> 0 independent of t and ¢ such that
[ Jaw(x, o)Pax<c(1 + o,

Proof. We denote u.v,w, by u,v,w in this proof for the sake of simplicity. From the third equation of (3),

we have
w(x, t) = we (x)e‘/ T
¢ t t
Vw(x,t) = Vwog(x)e_f ovxn)dr _ wog(x)e_f ov(xT)de f o Vv(x, 7)dr,
t L t
Aw(x,t) = Awy (x)e‘f Qo) _ 2e‘f DA (x) - / o Vv(x, 7)dr
t t t t 2
— Wy (x)e_fo”(x’”df/'OAv(x, 7)dt + wog(x)e_fo"“’f)df </0Vv(x, ‘L’)d‘[) .
Thus,
IVw(x, £)] < [Vwoe(X)| 4 woe () IVVll e ()t
< 2MVwllze () + (Iwollze () + 1IVVIIL= ),
and

t
|Aw(x, )] < |Awge(X)| + 2| Vwoe (X) [ VYl (o)t + wog(x)/O\Av|ds + Woe (%) [1VVIIFe 12
t
< 2||AW()||L°°(Q) + 4|VW0(X)|||VV||L°°<Q)t + (||W0||L°°<Q) + 1)f0|Av|ds

+ (”WO”LOO(Q) + 1)|||vv||2m<0)t2.

Further, we have
t 2 ¢
fﬂ </O|Av|ds> dx < /Qfo|AV|2dxdt < C(+1)

according to Lemma 3.11 with the constant C therein. Therefore,

2 / 4
[ Jaw, e <1+ 1),
for some constant C > 0.

Lemma 3.13. Let the assumption of Lemma 3.9 holds, and let (u, v, w;) be the solution of (3) in Q X (0,Tyayx)-
Then, there exists a constant C> 0 independent of € and T, such that

T
/O/Q|Vu;"|2dxdts CA+T), TeE(0, Tmx)-

Proof. We denote u,v.,w. by u,v,w in this proof for the sake of simplicity. We test the first equation in (3) by
(u+e)™ and get

1 d
m+1dt @

sfﬂu’”qﬁv(u)Vv-V(u +¢)"dx + /Qum¢w(u)Vw-V(u +¢)"dx 7

(et [V (u+ o) P

+ ,ufﬂu"(u + E)mdx—ufgugﬂ(u +¢&)"dx + fg(u +¢)"dx.
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According to Lemmas 3.9 and 3.10, Vv and u are uniformly bounded. Thus,
1
J g ua) Vo 9 (a + ¢ sz/Q\wu +¢)"[2dx + €y,

where C; is a constant independent of ¢ and ¢, as all subsequently appearing constants C,,Cj,... in this proof.
A slight modification of the proof of Lemma 3.6 with ®(s) being replaced by

D(s) = /;‘rm(r +¢)" 1, (7)dr
implies that

/Qu’"cpw(u)Vw -V(u+e)"dx

<c, (fﬂ(u wemax+ [ (e v+ [ |V(u+ £)2m|dx)

<oV ety e,
Integrating (17) on (0,T) yields

T
[t e tae+ [ [ v+ ey Paxde < [ (e + )" dx + CT. (18)

We note that

V"] = mu™|Vu < m(u+ )"V (u+e)| = [V(u+ )"
This completes the proof.

Lemma 3.14. Under the assumption of Lemma 3.9, let (U, v, W) be the solution of (3) in Q X (0, Tmax); then
there exists a constant C> 0 independent of € and T, such that

[.J, [C MH)trddefQWuTIzdxscu+T)S, T € (0, Trnay).
Moreovers [ [ 1w |dxdt<74+2)llugl S (i '"“)

Proof. We denote u.v,,w, by u,v,w in this proof for the sake of simplicity. We multiply the first equation in
(3) by [(u +¢)™],, and then we have

t<CA+T)°, Te(O, Tma)

mf e+ )"+ [ Vi + )" V(€)Y dx

<[ wmg, )V Vi + o) dx + [ um, (w) Vw - Vi + )™, dx
pf el e d—uf (o)) dx
—uf Qu"w[(u+£)m],dx+ [+, dx.

(19)

We note that llull;=(q) is uniformly bounded according to Lemma 3.10, and then

m _
,uf [(u+¢e)"],dx = m,uf (u+e™ u,d.xsg Qu+e)” YuPdx + Cy,
_ m _
—uuf ()" = —mue[ e ()™ 1utdxg§fﬂ(u+s)m YugPdx + C,
—,uf u'w(u +¢)",dx = —m,u/ uew u+£)m_1utdx§m/ (u+¢)" Hu,[*dx + Cs,

f|u+£ dx = m/ u+£m1\u|dx<—f (u+¢)" ul?dx + Cy,
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where C;,C,,C3, and C, are constants independent of ¢ and ¢, as all subsequently appearing constants Cs,Cs,...
in this proof. We also have

m/g(u +6)" u[Pdx = (m4+ml)2/0‘ ((u + E)MTH>t’2dx’

and

/QV(u—ka)m-V[(u—i-a)m]tdx f IV (u+ )™ *dx.

20t
There holds

f ()90 Vila+ €)= = (w4 ")V - (7, () V)
= —f +6)" uy - (MU', (w) V- Vv 4 u@) (u)Vu - Vv + u$, (u)Av)dx
<= / m(u+ )™ u,Pdx + Cs/ (u+ €)™ V| VuPdx + C6/Q|Av\2dx

1 _
nggm(u +)" [ Pdx + Csz|V(u +¢)"Pdx + c6fQ|Av|2dx,

since the uniform boundedness of Vvl = (q). We also have

[ wm )V V(w + o) dx = — [ [+ )",V - (g, (w) Vi)

1

m(u+ )" uy - (mum™ g, (u)Vu - Vw + uy, (u)Vu - Vw + u™y,, (u) Aw)dx

sgf m(u+ &) uPdx + C(1+ 02 (u+ eV [Vuldx + Cyf [ Awdx
1
<3 [amtu e uPax + G+ 02 V(@ + e Pax+ Cx(1 + 1),

according to Lemma 3.12. Inserting the above inequalities into (19), and noticing the inequality (18) in the
proof of Lemma 3.13, we find a constant C independent of ¢ and ¢ such that

)

sz|V(uog+s)’”| dx + Co(1+T)’ <Cro(1+T)°.

2
dxdr+f IV (u+ €)™ dx

Clearly, we have

min\ |2 1) 1) _ i1\ |2
‘(uT‘) (m+1) u’”‘1|u,|2§—(m+ ) (u+e)" Hu > = ’((u+€) 2+) ;
t 4 4 t
and
4m? mat) |2 4m? me1y |2
my |2 m—1 o m—1 =
s ] ()| < G et | (9%,
The proof is completed.

Proof of Theorem 2.1. According to the estimates, for any €, the approximation solution (u,v.,w.) exists glob-
ally. The regularity estimates of v. and w, are trivial. For any T €(0,00), we see that ul® € L*(Qr),
Vu™ € L*(Qr), and ou™/dt € L*(Qy). Thus, there exists a function u€ W'"*(Qy), such that u™ weakly in
wh Z(QT) and strongly in L*(Qr) converges to ii. We denote u = /™ since it > 0. Thus, ul" converges almost
everywhere to u™, and u, converges almost everywhere to u. We can verify the integral identities in the defini-
tion of weak solutions. By taking a sequence of T € (0,00) and the diagonal subsequence procedure, we can find
the existence of a global weak solution.
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