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Abstract

This thesis is to study the nonlinear asymptotic stability of ”traveling wave solutions
~with shock profile” (simply saying, ”viscous shock profiles” in what follows) for non-
convex viscous conservation laws. There are three main goals in this thesis.

The first is to investigate the exponential decay rate of asymptotics for one-
dimensional scalar viscous conservation laws with general non-convexity in the form
ug + f(u), = puz, = € Rt > 0. We show that if the viscous shock profile is
non-degenerate, the solution converges to it in maximum norm, at some exponential
time decay rates, when the initial perturbation has some exponential spatial decay
order.

The second is to improve the results on the nonlinear stability of viscous
shock profile for systems in the provious works by Kawashima and Matsumura,
(Commun. Pure Appl. Math. 47, 1547-1569 (1994)) and by Nishihara (J. Diff.
Eqns. 120, 304-318 (1995)). With some weaker conditions on nonlinearity, initial
disturbance and weight, we prove the asymptotic stability of viscous shock profiles
for one-dimensional non-convex system of viscoelasticity in the form v, — u, = 0,
uy — 0(v)z = pug, with the non-convexity o' (v) S0forvSo.

The third is to study the nonlinear stability of non-degenerate shock profile
for above system with an opposite non-convexity condition ¢"(v) S 0 for v 2 0,

which is an open problem proposed by Kawashima and Matsumura (Commun. Pure
Appl. Math. 47, 1547-1569 (1994)). We prove the asymptotic stability for any
non—degenerat¢ shock profile under some restrictions. Thus, we partly answer the

open question as above.

The approach is an elementary but technical weighted energy method. To

select the weight functions and transform functions plays a key role in our proofs.
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Chapter 1. Introduction

1.1. Background and Purpose

The purpose of this thesis is to study the nonlinear asymptotic stability of "traveling

wave solutions with shock profile” ( we simply say "viscous shock profiles” in what

follows) for non-convex viscous conservation laws. We have three main aims in this

thesis.

1). We study the exponential decay rate of asymptotics to the viscous shock

profile for the solution of one-dimensional scalar viscous conservation laws with

general non-convexity in the form

U+ f(u)r = pug,, z€ Rt >0, (1.1.1)

with the initial data,
u(z,0) = uy(z), z€R, (1.1.2)

where 1 > 0is a constant, and the initial data tends toward some given constants
Ut as ¢ — oo, f € C?. We shall show that if the viscous shock profile Uz —
st) of (1.1.1), s is the speed of shock profile, is non-degenerate, the solution of
(1.1.1),(1.1.2) converges to it in maximum norm, at some exponential time decay
rate, when the initial perturbation has some exponential decay order.

2). We improve the results on the nonlinear stability of viscous shock profile
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for system in the previous works [7,17]. Roughly speaking, with some weaker con-
ditions on nonlinearity, initial disturbance and weight function than ones in [7,17],

we shall prove the asymptotic stability of viscous shock profiles for one-dimensional

non-convex system of viscoelasticity in the form

Ve —ug =0, (1.1.3)
ug— o(v); = pug,, (1.1.4)

with the initial data
(v,u)|e=0 = (vo,up)(z) = (vi,uy) as z — too. (1.1.5)

Here, z € R! and ¢ > 0, v is the strain, u the velocity, u > 0 the viscous constant
b

o(v) is the smooth stress function satisfying, as considered in [7,17]
o'(v) >0 forall v under consideration, (1.1.6)

0"(v) S0 for vS0 under consideration, (1.1.7)

so that o(v) is neither convex nor concave, and has an inflection point at v = 0.
3). We partly answer an open problem on nonlinear stability of viscous shoclk
profile proposed by Kawashima and Matsumura [7]. Namely, we study the nonlinear

asymptotic stability of viscous shock profile for the system (1.1.3)-(1.1.5) with an

opposite non-convexity to (1.1.7)

o"(v)20 for v S0 under consideration, (1.1.8)

which Kawashima and Matsumura (7] proposed as an unsolved case.
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The study of the asymptotic stability of shock profile is very important from
both physical and mathematical point of view, and so it becomes one of hot spots in
the mathematical physics. Many important progresses have been made by a number
of mathematicians in the last 40 years (see [1-23] and references therein). The first
work in this research field is due to I'in and Oleinik [4] in 1960, in which they inves-
tigated the asymptotic stability of shock profile for Cauchy problem (1.1.1),(1.1.2)
with the assumption of convezity, i.e., f"' > 0. Based on the maximum principle,
they also showed the solution of (1.1.1) tends toward, in maximum norm, the shock
profile U(z—st) of (1.1.1) with an exponential time decay rate e ~#* (for some 8 > 0),
when the integral of the initial disturbance over (—oo, z] decays in an exponential
order O(e~*I2l) (with some a > 0). A same result was showed by Sattinger [21] by
using the spectral analysis method. After that, as an important example of (1.1.1)
for f = u?/2, which is called as Burgers’ equation, using an explicit formula of
solution, Nishihara [18] obtained a precise estimate of solution for the decay rates.
This estimate shows that if the integral of the initial disturbance over (—oo, z] has
an polynomial order O(|z|™%) (with some o > 0) as |z| — oo, then the solution
converges, in the maximum norm, to the shock profile at the same algebraic rate t =<
as t — 0o. These time decay rates are optimal in general. An asymptotic stability
with a fixed time decay rate also was showed in [18]. In 1985, a new different ap-
proach based on an energy method which can be applied to systems was introduced

independently by Matsumura and Nishihara [13] and by Goodman [1]. This has

led a great of progresses in this field. Among them, Kawashima and Matsumura [6]




generalized Nishihara’s result [18] to the case of general flur function with convezity
f" > 0, in which the polynomial time decay rate is obtained and is almost optimal in
L%-framework from the arguments in Nishihara [18]. Recently, the research interest
is focused on the case of non-convexity. In the non-convex case, when f(u) only has
one infelection piont somehow corresponding to (1.1.7) or (1.1.8), Kawashima and
Matsumura [7] proved the stability of non-degenerate viscous shock profile by ap-
plying an technical weighted energy method. Later then, Mei [15] obtained the time
decay rates of polynomial or exponential order, corresponding to the initial data
with polynomial or exponential spatial decay order respectively. The author also
proved the stability of degenerate viscous shock profile at the first time. Further-
more, for general non-conves flux function f € C?, Matsumura and Nishihara [14]
in 1994 made an important contribution to the stability and the polynomial time
decay rates not only for non-degenerate viscous shock profile but also for degenerate
one. Although an asymptotic stability of non-degenerate viscous shock profile was
obtained by Jones et al [5] by means of spectral analysis method in 1993, but their
result is less sufficient than Matsumura and Nishihara’s one [14]. The polynomial
time decay rates showed in [14,15] are also optimal in L?—framework. However,
the exponential time decay rate of asymptotics for the general non-convez case is
unknown yet. To solve this problem is one of our purposes in this thesis. We will
see our results are much wider, also the proofs are much simpler, than the previous

ones in [4,15,18,21].

On the other hand, the stability for the non-convex system of viscoelasticity
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is another interesting problem, but has not been studied well yet. In [7], Kawashima-
Matsumura also treated the system case and proved the stability of non-degenerate
viscous shock profile for system (1.1.3),(1.1.5) with the non-convexity condition
(1.1.7). Although it seemed hardly to solve the stability in the case of the degenerate
shock. Nishihara [17] successfully showed the stability provided that the integral
of the initial disturbance over (—oo,z] have a polynomial decay O(Ix]"uzﬁ) (for
some 0 < & < 1) as * — +oco. In the both papers [7,17], the authers supposed as
sufficient conditions that the third derivative of the stress function ¢''(v) > 0 and
the shock strength |(vy — v_,u; — u_)| is suitably small. Here, we expect these
stability results can be improved by making weaker conditions on nonlinear stress
function, initial disturbance and weight function. This is our another purpose in the
present thesis. Exectly saying, we have two goals here. One is to show the stability
of traveling wave solutions without the condition o"(v) > 0. Another is to improve
the weight function used in [17] in the degenerate shock case. The stability theorems
will be shown even in the degenerate shock case with the improved weight function,
provided that both the shock strength and the initial disturbance are suitably small.
In the degenerate case, we shall impose the initial disturbances Just have the decay

order O(|z|~%) as z — 4-00. Thus, we improve the results in both (7] and [17).

When the nonlinear stress function o(v) satisfies the opposite non-convex
condition (1.1.8), remarkably different from the scalar case, the procedures in the
previous works [6,7,12-19] can not be applied to our problem (1.1.3)-(1.1.5). So the

1‘.‘
stability remains still open as is stated in Kawashima-Matsumura (7] (also cf.[12]). 1‘
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To answer this open problem is our last purpose in this thesis. In order to overcome
this difficulty, we shall introduce a suitable transform function depending on the
viscous shock profile of (1.1.3),(1.1.4) to transfer the original system into a new one,
and then, following the technique in [7], choose a desired weight function to establish
a basic energy estimate. Thus, under some restrictions, we shall get the asymptotic
stability for the non-degenerate shock profile even for non-convex condition (1.1.8).
We call this scheme as the transform-weighted energy method. To select the desired
transform and weight functions plays a key role.

Our plan in this paper is as follows. After stating the notations and an
embedding theorem in the next section, we shall study the exponential time decay
rate of asymptotics of non-degenerate viscous shock profile for scalar conservation
laws in Chapter 2. In Chapter 3, we shall improve the stability results in [7,17]
with weaker conditions on nonlinear stress function, initial disturbance and weight

function. In Chapter 4, we shall partly answer the open problem on the stability of

(1.1.3)-(1.1.5) with the non-convex condition (1.1.8).




1.2. Notations and Embedding Theorem

'L? denotes the space of measurable functions on R which are square integrable,

with the norm
I = ([ 15 paz)™”

H'(1 > 0) denotes the Sobolev space of L*-functions f on R whose derivatives

lf = 1,-+. 1, are also Lz-functions, with the norm

Il = (§_'j loifi2) ™",

L2, denotes the space of measurable functions on R which satisfy w(z)/?f e L2,

where w(z) > 0 is a called weight function, with the norm

£l = ([ w@lf@pa) "

H!, (I > 0) denotes the weighted Sobolev space of L} -functions f on R whose

derivatives 8if,j = 1,--.,1 are also L2, -functions, where w(z) > 0 is a called

weight function, with the norm

o = (3 0212
=0

e > 0) denotes the weighted I-times continuously differentiable space whose

functions f(x) satisfy w(z)df e, )= 0,1,---,1, with the norm

!
Ifllct = 1p > w(z)]di f].

j=0
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Denoting

(x)+={v1+w2, if >0

1.2,1
1, if & <0, ( )

we will make use of the space L?ZH and H (’z)+(l = 1,2) later. We also denote

f(z) ~ g(2) as ¢ — a when Clg< f<Cgina neighborhood of a. Here and

after here, we denote several constants by C;, or ¢;, 1 = 1,2,---, or by C without
confusion. When C-! < w(z) < C for z € R, we note that L2 — H® =12 = gO
and [ || = |- |lo ~ | £ =2 ]+ lo,w- Especially, when w(z) = (z), we have the

following embedding theorem which will be used in Chapter 3.

Embedding Theorem. There erists the embedding relation H<lr)+ — H! je, if

fe H('z)+, then f € H' and it holds the following inequality

£l < CI£l1 0y, - (1.2.2)

Moreover, if f € H(Iz)+ for 1 <2, then (w)l/zf € H' and it holds the inequality

=) £l < Clfl ey, - (1.2.3)

When I > 1, then HY,, < c(ﬂz);,, = C e, if f € HY, | then (2)}/?f ¢ ¢o

and it holds the inequality

sup |f(z)] < C'sup(2) Y2 |£(2)] < C|fyay,. (1.2.4)
TER TER

Furthermore, the embedding relation H’ﬂsz“ < C?x)l“ — C% and the inequality
+

SR @ < Csupla) I @) < (il + Ifiay,) (1.2.5)

8




hold for any 1 > 1.

Proof. Noting the facts (z)4 > C for all ¢ € R, and I;ld;kg(a:)ir/?l < Cforz e
(~00,~0] and z € [+0, +00), and using Sobolev’s embedding theorem H' c' (>

1), we can prove (1.2.2)-(1.2.4) by simple but tedious calculations. By Holder

inequality, we have
z g
@50 = [ way
=/_x -21-(1+y2)“%yf(y)2dy+/_ WY 2f () f'(y)dy

< CUFIP + £y, + 15017,

which proves (1.2.5).
Let T and B be a positive constant and a Banach space, respectively. We

denote C*(0,T; B) (k > 0) as the space of B- valued k- times continuously differ-

entiable functions on [0, T], and L2 (0, T, B) as the space of B-valued L2-functions

on [0,T]. The corresponding spaces of B-valued function on [0,00) are defined

similarly.




Chapter 2. Scalar Viscous Conservation

Laws

In this chapter, we study the asymptotic stability of shock profile for general non-
convex scalar conservation laws (1.1.1),(1.1.2). In the convex case f" > 0, the
stability and time decay rates have been studied by many authers [4,6,9,21,22]. In
the non-convex case, when f(u) has one inflection point, the stability are studied by
Kawashima and Matsumura [7] and Mei [15]. Mei also proved the polynomial and
exponential time decay rates, and studie& the stability of degenerate shock profile at
the first time. When f(u) is generally non-convex, the stability and the polynomial
time decay rate are studied by Matsumura and Nishihara [14] and Jones et al [5].
But the time decay rate of the later is less optimal than the former. Matsumura and
Nishihara [14] also showed the asymptotic stability of degenerate shock profile for
the first time. Other interesting results can be found in Osher and Ralstin [20] and
Weinberger [23]. However, the exponential time decay rate in the generally non-
convex case is unsolved yet. To investigate it is our main purpose in this chapter.
We shall prove that the solution of (1.1.1),(1.1.2) converges exponentially to the

non-degenerat viscous shock profile of (1.1.1) for the initial perturbation with some

exponential decay orders as z — *oo.




Our plan in this chapter is as follows. We first study the properties of non-
degenerate viscous shock profile in Section 2.1, then state our main stability theorem
and transfer our original probelm into new one by a reformulation in Section 2.2.
'Section 2.3 is to prove a priori estimates which is the key step for our stablity proof.
In the last section, as a remark, we disuss the relation between time decay rates

and spatial decay orders.

2.1. Viscous Shock Profiles

This section is to summarize properties of viscous shock profile of (1.1.1). If u(t,z) =
U(z — st) is a smooth solution of (1.1.1) satisfying U(+o0) = uy, then we call
U(z — st) a vicous shock profile of (1.1.1) which connects u; and u_, and call s a

shock speed. Here, uy and s satisfy the Rankine-Hugoniot condition

—s(up —u_) + (f(ug) — f(u-)) =0 (2.1.1)

and the generalized shock condition, or say Oleinik’s shock condition

£ <0, if up<u<u_
M = —s(u—us) - S { S0 WSS g
If Lax’s shock condition
fl(ug) < s < f'(u) (2.1.3)

is satisfied, we say the viscous shock profile is non-degenerate. Correspondingly, the

degenerate shock profile means that the degenerate shock condition s = f'(u,.), or

s = f'(u-), or s = f'(uy) holds.




By the Rankine-Hugoniot condition (2.1.1), as a smooth solution of (Lh1y,

U(€) (€ = = — st) must satisfy the following ordinary differential equation
pUe = —su + f(u) — a; = h(U), (2.1.4)

where a; = —suy + f(uy) is an integral constant.

Throught this chapter, we focus on the case of non-degenerate shock, i.e.,
Lax’s shock condition (2.13) holds. With a similar proof as in Kawashima and
Matsumura (7], we find (2.1.4) admits a smooth solution if and only if (2.1.1) and

(2.1.2) hold. This result is stated as follows without proof,

Proposition 2.1.1.

(1) If (1.1.1),(1.1.2) admits a traveling wave solution with shock profile U(z — st)
connecting u, then uy and s must satisfy the Rankine-Hugoniot condition (2.1.1)
and the generalized shock condition (2.1.2).

(ii) Conversely, suppose that (2.1.1) and (2.1.2) hold, then there ezists a shock
profile U(x — st) of (1.1.1),(1.1.2) which connects (vt,ux). The U(E)(€ =z — st)

i3 unique up to a shift in ¢ and is a monotone function of €. In particular, under

Laz’s shock condition (2.1.8), then it holds

|h(U)| ~ U — us| ~ exp(—cs|€]), as € — Foo, (2.1.5)

where i = |/ (u) — /.
Let us make some preparation for the following sections. Without loss of
generality, we assume that u, < u_. Define

. 11—« _ 11—«
wo(u) = () —h§::; u) , 0<a<l, uy<u<u_, (2.3.7)

12




ga(u) = (1 — a)[a(uy +u_ — 2u)? + 2(u — uy )(u_ — u)], 0<a<l, (2.1.8) |

_ h(w)(wah)"(u)

e N C)

y UL EE L (2.1.9)

in which, w,(u) is called as a weight function, and will play a key role in the proof

of asymptotic stability below. When U(£) is non-degenerate, we have by (2.1.5)

Wo(U) ~ U —uy|™® ~ exp(act|l]), as € — foo, (2.1.10)
HU) : —00, 00
TR )| 2o (e (aay

for some constant ¢; > 0. Put

B i== €y o B, ga(u), . {21.12)

then a straight computation leads to

(aa(l-a)(u- ~uy)?, O0<a<i,
LA(u_ —uy)? a=1
O, ={ % )b 7 (2.1.13)
01(12—a'!(u__ _ u+)2, _%_ <a< 1,
which implies that
max 0, = 6,. (2.1.14)
0<a<1 2
By (2.1.9),(2.1.11) and (2.1.13) we have
h(U) 2
ko(U) = (U)>4,. 2.1.15
(U) B0 =) =T ¢ (U) ( )

All these conclusions will be used in Section 2.3.

2.2. Main Theorem and Reformulation of Problem

Let U(z — st) be a non-degenerate viscous shock profile connecting u 4, and let us

13




define =y by

+ o0
/ (TS BT L sty Sy (2.2.1)

)
We note that zo is uniquely determined by (2.2.1), provided that uy—U is integrable
over R. Then the shifted function U(z — st + 2¢)'is also a shock profile connecting

u4 such that

+o0
/ (uo(2) — U(z + 20))dz = 0. (2.2.2)

— 00

Without loss of generality, we assume z, = 0 for simplicity. We also define

bo(@) = [ (o) ~ Uiy (2.2.3)

Our main theorem is as follows.

Theorem 2.2.1 (Decay Rates).  Suppose that (2.2.1) and (2.1.1)-(2.1.3) hold.
If gg € H?ua(U(:c)) for0<a< %, then there ezists a positive constant §,_, such that

if |¢ol2,w, < 82-1, the Cauchy problem (1.1.1),(1.1.2) has a unique global solution

u(t,z) satisfying
u—Ue€ C’O(O,oo;Htlva) N L2(0,oo;H,2ua).
Moreover, the solution verifies the following decay rate estimate
ig;}; lu(t,2) — Uz — st)| < Ce 4¢3 u, , (2.2.4)

where 0, is defined as (2.1.13).

Remark 2.2.1. 1. In Theorem 2.2.1, by (2.1.10), we see that the initial perturbation

$o(z) has such exponential decay order exp(—3E|z|) for 0 < & < 1 as & — +oo.

14




Hence, our exponential decay result is much better than that in the previous works
[4,15,18,21], because, when « is very closed to 1, $o(z) can have much slower spatial
decay order than ones in [4,15,18,21], to get the exponential time decay rate.

2. The fact (2.1.14) shows us that when the initial perturbation ¢,(z) has a
stronger spatizﬂ decay rate with o > %, we cannot always have better time decay
rate by our present method. This is quite different from the polynomial decay case.

3. Same as in Matsumura and Nishihara [14], we get the stability for any

shock profile (weak or not).

In order to prove Theorem 2.2.1, like the previous works, we make a refor-

mulation of our problem by changing unknown variable as the form

u(t,z) = U(€) + ¢e(t,€), € = — st. (2.2.5)

Then the problem (1.1.1),(1.1.2) is reduced to the "integrated” equation

¢+ B'(U)be — poee = F(U, ¢e), (2.2.6)
where
F=—{f(U+¢e)~ f(U) - f'(U)ge}. (2.2.8)

The problem (2.2.6),(2.2.7) can be solved globally in time as follows.

Theorem 2.2.2. Suppose that ¢y € H?Ua for 0 < a < %, and the conditions

in Theorem 2.2.1 hold. Then there exists a positive constdnt 0y such that iof

15




[folo,w, < 63-2, the problem (2.2.6),(2.2.7) has a unique global solution #(t, &)
satisfying
¢ € C°(0,00; H;, )N C*(0,00; L2, ), ¢¢ € L*(0,00; H2, ), (2.2.9)

and the decay estimate

t
e g(t)2 ., + / 7| ge(r)2 . dr < Clollu. (2.2.10)
0

holds for t > 0.

Since we can easily prove Theorem 2.2.1 from Theorem 2.2.2, 1t is sufficient
to prove Theorem 2.2.2 for our purpose. To do that, we shall combine a local

existence result together with a priori estimates.

Proposition 2.2.3 (Local Existence). Suppose that ¢y € H? and the conditions
i Theorem 2.2.1 hold. Then there is a positive constant Ty such that the problem

(2.2.6),(2.2.7) has a unique solution ¢(t,£) satisfying
QS & 00(01 TO; H2) n CI(O) TO; L2)’ ¢€ € L2(07T0;H2))

sup |[|é(2)]l2 < 2o ]|z (2.2.11)
t€[0,Tyo)

Moreover, if ¢o € HZ_ for some 0 < a < 1, then ¢ € CO(O,TO;H?U“) and ¢¢ €

L2(01T0; Hﬁ;a)

Proposition 2.2.4 (4 Priori Estimate). Let T be o positive constant, and #(,€)

be o solution of the problem (2.2.6),(2.2.7) satisfying

$ € C°(0,T; H2 )nCY(0,T; L2, ),
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e € L*(0, T; H,). (2.2.12)

Then there ezist positive constants 8,_3 and C which are independent of T' such

that if sup |¢(t)|§’wa < b3-3, then the estimate (2.2.10) holds for t € [0,T).
0<t<T

Since Proposition 2.2.3 can be proved in the standard way, we omit its proof.
Once Proposition 2.2.4 is proved, using the continuation arguments based on Propo-
sitions 2.2.3 and 2.2.4, we can show Theorem 2.2.2. This scheme is the same as in
the previous papers [6,15], so we also omit its proof. To prove Proposition 2.2.4 is

our main goal which will be showed in the following section.

2.3. The Proof of A Priori Estimate
~ We now define the solution space of (2.2.6) and (2.2.7)
X(0,T) = {¢ € C°(0,T; H}, ), ¢ € L*(0, T; HZ )},

with 0 < T' < 400. Put

N(t) = Oiggths(r)lz,wa,

then we first prove a basic energy estimate as follows

Lemma 2.3.1 (Basic Energy Estimate). Let ¢(t,¢) € X(0,T) be a solution of

(2.2.6),(2.2.7) for some T > 0. Then it holds

t .
20412 + / e |ge(r)[2, dr < Cléol?,. (2:3.1)
0
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provided N(T) is suitably small,
Proof. Multiplying (2.2.6) by e20ali, (U)g(t, £), we have

(%e2aatwa(0)¢2)t + €20 ;;-(wah)’(U)ezﬁ2 ~ Hwa(U)dde)e

+,Lt629°‘t'wa(U)¢§ + [ka(U) — ga]CZOatwa(U)¢2 = ewutwa(U)qSF. (2.3.2)

Here we used pUy = h(U), ko(U) is defined as in (2.1.9).
Integrating (2.3.2) over [0,#]x R, and noting (2.1.14) and the facts [F| < Céz,

sup |4(t,€)| < CN(t) and ko(U) > 6, (see (2.1.15)), we obtain .
0<r<t

t
FWOR, + = ONW) [ Tl dr <Clbol,. (203)

Letting N(t) be suitably small, we then complete the proof of Lemma 2.3.1.

Based on the basic energy estimate (2.3.1), we can derive the following energy

estimates for higher order derivatives of #(t, £).

Lemma 2.3.2.  There hold for suitably small N(T),

4
e**!|ge(t)]%, + / e*oT|gee(T)[2, dr < Clgol? ., (2.3.4)
0

t
F e, + [ e b < Cléol. (205)

Proof. Similar to Lemma 2.3.1, differentiating equation (2.2.6) respect with ¢, and

multiplying the resulant equality by e”‘*‘wa(U)d)e and integrating it over [0, t] x R,
using |Fe| < O(1)(|¢l® + |¢]|pee|) and (2.3.1), we can get the estimate (2.3.4) for
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some small N(T'). The estimate (2.3.5) can be proved by a scheme somehow same

as above, We here omit the details.

By Lemmas 2.3.1 and 2.3.2, we have proved Proposition 2.2.4.
2.4. Remarks

By some computation like above, we can also choose the weight function as

(v —ug 1= (us — )-8
—h(u) 3

Wa,p(u) =

foruy <u<u_. Hereaandﬂmuststatisfy0<a<1,1—a5ﬁ_<_afora2%,
oraS,BSI—aforag%.

When U(¢) is non-degenerate shock profile, we have

U — uq |~ exp(—aci|f], as £ — +oo,
We,p(U) ~ {IU - ui|"ﬂ = {exp(——ﬂcflél), as ¢ — —oo.

If we apply this weight function to make an energy estimate likes (2.2.10), we
can also show the exponential time decay rate e % for some 0a,p > 0. Which
means ¢o(z) allows some different spatial decay order for = near —oco or +00, to
get the asymptotics of time. Especially, when o = 8 = 1, the time decay rate

ewp(—G%,%t) = ewp(~—9%t) is the largest in the sense of the present method.
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Chapter 3. System of Viscoelasticity (I)

In this chapter, we are concerned with the asymptotic stability of shock profiles for
Cauchy problem to a non-convex system of viscoelasticity (1.1.3)-(1.1.5) under the
non-convexity conditions (1.1.6),(1.1.7). With weaker conditions on nonlinearity,
initial perturbations and weight, we shall improve the stability results in Kawashima
and M@tsumura [7] and Nishihara [17).

We find that the system (1.1.3),(1.1.4) with = 0is strictly hyperbolic, with

the characteristic roots

A= +A(v), .where A(w) =+/a'(v)

and with the corresponding right eigenvectors

r+(v) = (JﬁAl(v)) '

Moreover, we see that both characteristic fields are neither genuinely nonlinear nor

linearly degenerate in the neighborhood of v = 0. In fact, the quantity

VA() - re(v) = N(v) = 0" (v)/2v/c' (v),

changes its sign at v = 0, where V denotes the gradient with respect to (v, u).
Throughout this chapter, without loss of generality, let us suppose a(0) = 0.

In fact, if 0(0) # 0, setting oy (v) = o(v) — a(0), then o (0) =0 and o,(v) satisfies
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equations (1.1.3), (1.1.4) and (1.1.6), (1.1.7) corresponding to o(v). Thus, we may
denote o4(v) by o(v) again.

Our plan in this chapter is as follows. After analysing the properties of the
viscous shock profile of (1.1.3),(1.1.4) in Section 3.1, we give our stability theorems
in Section 3.2, whose proofs are also given by admitting a prior: estimates in this
section. In the final section, we complete the proofs of a priori estimates, where to

introduce some suitable weight functions plays a key role.

3.1. Properties of Traveling Wave Solution

In this section, we state the properties of traveling wave solution with shock profile.

The traveling wave solutions are solutions of the form
(v,u)(t,2) = (VU)E), &=z - st (3.1.1)

(VL U)E) = (va,ug), € — oo, S .(3.12)
where s is the shock speed and (v, u4) are constant stats at +c0. Let the system

(1.1.3),(1.1.4) admit the traveling wave solutions, then both (v4,u+) and s satisfy

the Rankine-Hugoniot condition

—s(v4 —v-) = (uy —u_) =0,
3.1.3
{ ~s(ut —u2) = (a(v4) ~ o(v-)) = 0, (3.13)
and the generalized shock condition
1 _ 1 <0, if vpg<v<ov_
;h(v) = s[—-s (v—v4)+0o(v) — o(vs)) { >0, #f vo<v<uvy. (3.1.4)
We note that the condition (3.1.4) with (1.1.6) and (1.1.7) implies
AMvy) £s<Awv-) or —Avy)<s< —-)\(lv_), (3.1.5)
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and that, especially when o"'(v) > 0, the condition (3.1.4) is equivalent to
Avi) <s < A=) or —A(v=) <s < =A(vy), (3.1.6)

which is well-known as Lax’s shock condition(Lax[8]). We call the condition (3.1.5)

with s = A(v4) (or s = —A(v4)) and the condition (3.1.6) as the degenerate or

non-degenerate shock condition respectively.

If (v,u)(t,z) = (V,U)(€) (£ = = — st) is the traveling wave solution with

shock profile of (1.1.3),(1.1.4), then (V,U)(¢) must satisfy

—sV'-U' =0,
{_SUI — (V) = pU" (3'1-7)

Integrating (3.1.7) over (—o0, 00), we have Rankine-Hugoniot condition (3.1.3). We

integrate (3.1.7) over (—o0,¢] and eliminate U, then we obtain a single ordinary

differential equation for V(¢)

psV' = —s*V + o(V) — ay = K(V), (3.1.8)

as = —s*vy +o(vy). (3.1.9)

Letting (v4,u4+) % (v—,u_) and s > 0, we are now ready to summarize a charac-
terization of the generalized shock condition (3.1.4) and the results on the existence

of shock profiles studied in [7):

Proposition 3.1.1. Suppose that (1.1.6) and (1.1.7) hold. Then the following

statements are equivalent to each other.
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(i) The generalized shock condition (3.1.4) holds.
(ii) o'(vy) < .52, e, AMvg) < s.
(iil) o'(vy) < 8?2 < o'(v-), e, Mvy) < s < AMv-).

(iv) There ezists uniquely a v, € (v4,v-) such that o'(vs) = s? and it holds
o'(v) < 8% forv e (v4,0), s*<o'(v) forve (vayv2). (3.1.10)

i€,

hi(va) =0, h'(v) <0 forve (V+,04), A'(v) >0 forve (vsy0-).  (3.1.11)

Moreover, if one of the above four conditions holds, then we must have v_ #0. In

addition, vy S v_ and v, 20 hold when v_ 2 0.

| Proposition 3.1.2. Suppose that (1.1.6) and (1.1.7) hold.

(i) If (1.1.8),(1.1.4) admits a traveling wave solution with shock profile (V(z —
st),U(z — st)) connecting (vt,uy), then (vi,ust) and s must satisfy the Rankine-
Hugoniot condition (3.1.8) and the generalized shock condition (8.1.4).

(ii) Conversely, suppose that (8.1.8) and (3.1.4) hold, then there ezists q shock
profile (V,U)(z — st) of (1.1.8),(1.1.4) which connects (vi,uy). The (V, U)(é)(¢ =
- T —st) s unique up to a shift in € and is @ monotone function of €. In particular,

when vy S v_ (and hence uy 2 u_) we have

ur 2UE) 2us, Ug6) 20, (3.1.12)

v SV(E)Svo, Vee)So, (3.1.13)
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for all £ € R. Moreover, (V,U)(€) — (v4,us) ezponentially as ¢ — oo, with the
following ezceptional case: when Mvy) =s, (V,U)(€) — (v4,uy) at the rate |£]72

as £ = 400, and |h(V)| = |psVe| = O(|¢]72) as £ — .

For the graphes of o(v) and h(v), may see Figures 3.1 and 3.2.

o)

\
~N

L
|< P S
3

Figure 3.2. Degenerate case

Now we give a function of the form

G(v) = h(v)o" (v) — h'(v)0"(v) = h(v)? (i'((:)))', veE0,v]  (3.1.14)

which plays an important role in our proof. We know that G(v) is continuous, and
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G(v) satisfies, by‘virtue of (3.1.11),
G(0) = —0'(0)h'(0) > 0,  G(va) = h(vs)a" (vs) < O. (3.1.15)

According to these facts, we know that there exist some finite or infinite points in
(0,v4) such that G(v) = 0. These pointskdivide [0,v4] into sub-intervals such that
G(v) > 0 or = 0 or < 0 on these sub-intervals.

Now we only pay our attention to the case in which there are finite number

of the points v; € (0,v,) defined as follows
(v = sup{v|G(v) > 0 on [0,v]},

Vg = sup{v|G(v) < 0 on [vy,v]},
4 (3.1.16)
v2i—1 = sup{v|G(v) > 0 on [vg;—s,v]},

\ vg; = sup{v|G(v) < 0 on [vy;_1,v]}.
vr In this case, the graph of G(v) looks like the following Figure 3.3.

Qo) & W)

G- - - - — — - - - __ _ _ —- =

Figure 3.3
The function G(v) may have infinitely many v;’s, whose case will be remarked

 later (see Remark 3.3.6). By our choice (3.1.16), we get the properties of G(v) in

the followings

Proposition 3.1.3.  There ezist the odd number points, without loss of generality,
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“ n points (n is an odd number), v; € (O,v;),i =1,"++,n, such that G(v;) = 0

an d

G(v) 2 0 on Ij_y = [vg;_9,v9,_4],j = 1,2,..., 80

. (3.1.17)
G(’l)) <0on IQ] = ['U2j—-1,’l)2j],] = 112)" i) n—2!—1’

where vy and v,y denote 0 and Vs, respectively. Especially, G(v) <0 on (vn,v4]

Proof. By the continuity of G(v) and (3.1.15), and our choice (3.1.16), then we see

easily that Proposition 3.1.3 is true.

We also denote I, and I,49 as the following intervals

Iy =(vy, 0], Inpp = [o,,v_]. (3.1.18)
' V(¢) is monotonic on [v,, v-](see (3.1.13)), then there exist the unique num-
,;'s B i(i=1,2,... ,n), and £, such that V(&) =vy =0, V(iE)=v;,i=1,.. “n
d V(éx) = v,. Here, we also denote R (i=0,1,--,n4+1,n+ 2) as the follow-
« sub-intervals of (—oo, +00): Ry = [£, +00), R; = [&,6i-4], (¢t =1,---,n),

Bot1 = [bni1,6n] = [€xs&n], Ruqy = (—00,£,], respectively. It is clear that

B ni2p.

J2 Stability Theorems

‘this section, we shall state the stability theorems of traveling wave solutions with

Iock profiles for (1.1.3)—(1.1.7) without the condition o"'(v) > 0. To state our
: in the degenerate case, we set

7(v) = o(v) — o' (0). (3.2.1)
en we have 7(0) = '(0) = 5"(0), 7'(v) S0 for vS0and

0<~T(vy) < ~04&(vy) for vy, <0< v (3.2.2)
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by an observation of the graph of the function &' (v); v+ < v <0 (see Figure 3.4).

Spp—— oltw)
(
|
yramany
Y/, =T \%)
S [ g
N (V] ‘ A
}
Figure 3.4

Now, we assume that there is a constant §(0<38 < 1) such that

—0(v4) < —8v45'(v4) as vy —0_. (3.2.3)

We note that 6 can be taken as § = 3 +eif a(0)(= c"'(0)) > 0, where € > 0 is

© any given constant. In fact, we have

_ O,III 0
—o(v4) = ~ 3§ )vi + o(v}),
_ a.lll 0
g7 (o) = =210 o0

] which means (3.2.3) holds for § > 3 as vy — 0.

Now, without loss of generality, we restrict our attention to the case
$>0 and vy <0<wv_, e, psVe = h(V) < 0. (3.2.4)

- Let (V, U)(z — st) be a pair of traveling wave solutions connecting (v4,uy), we
'~ assume the integrability of (vy — V,uy — U )(z) over R and express that integral in

, the form

/;oo (vo = V,ug — U)(z)dz = Zo(v4 — v, uy —u_). (3.2.5)
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Then the shifted function (V.U Y& — st o) s s apen \ravdhmg, wave sotion

with shock profile conneting (v4,u4) such that

/_m (vo(2) = V(2 + 20), uo(2) - U(z + 20))dz = 0, (3.2.6)

We also suppose 24 = 0 without loss of generality.

Let us define (¢, o) by

(¢9,¢0)($) i /j (vo — V,up — U)(y)dy. (3.2.7)

Our main theorems are the followings.

Theorem 3.2.1.( Non—degenerate case: Avy) < s < Av=)). Suppose (1.1.6),
11.1.7), (3.1.9), (3.1.4), (3.2.6), and (do,%0) € H2. Then there ezists a positive

. constant b3y such that if |(vy — Vst —u_)| + [|(do, %o)l|2 < b31, then (1.1.3)-

(1.1.5) has a unique global solution (v,u)(t,z) satisfying
v =V € C%([0,00); H') N L*([0, 00); HY),
u=U € C°((0,00); H') N L*([0, c0); H?).

Furthermore, the solution verifies

sup |(v,u)(t,z) — (V, Uz~ st)] <0 a8 560, (3.2.8)
zZER

- Theorem 3.2.2.( Degenerate case: Av) = s < A(vo)). Suppose (1.1.6), L),

' (3.1.8), (3.1.4) and (5.:2.6). Assume [(vy —v_,uy —u_)| < 1 and (3.2.3), then
.~ the followings hold;
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(1) Suppose that ($o,v0) € H?ZH, then there ezists a positive constant §3_o
such that if |(do,%o)l2,(z), < b3—2, then (1.1.8)-(1.1.5) has a unique global solu-

tion (v, u)(t,z) satisfying

v~V € C*([0,00); Hy, ) N L*([0,0); H(‘ y)
Ty

u—U € C%([0,00); Hiyy, ) N L*([0,00); HE,y ).

Furthermore, the solution verifies the asymptotic stability (3.2.8).
(11) Suppose that (¢o,1e) € H? N L?IH and ¢g , € L? 3 Then there exists a
($>+

positive constant 633 such that if ||(do, %o)ll2+ |(0, %)z, +|¢0,1:I( 3 < 833,
£y

then (1.1.8)-(1.1.5) has a unique global solution (v,u)(t, ) satisfying

v—V € C%[0,00); H? ﬂL%xH)r1L2([0,oo);H1 DL? )%)
£t

u—U € C°([0,00); H' N L,y ) N L*([0,00); H2 Li,,)-

Furthermore, the solution verifies the asymptotic stability (5.2.8).

Remark $.2.3. In the stability results in [7,17] both ¢"(v) > 0 and smallness of
shock strength |(v; — v_,u} — u_)| are assumed as sufficient conditions. In the
non-degenerate shock case, Theorem 3.2.1 deletes the condition ¢'(v) > 0. In the
degenerate shock condition, A(v4) = s < A(v-), the condition (3.2.3) in Theorem
3.2.2 seems to be much weaker than the condition o"'(v) > 0, and also the weight

is improved compared to that in Nishihara [17]. As an example of o(v), we have

vz 1
0'(’[)) = bv+/ / yk(szn?j +2)dyd$, k = 1, 3,5’...,
0 0
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where b is a constant satisfying

b> max ,/ a:"(sz'n-1-+2)da:.
v4.<v<0 0 T

Then, note that o (v) does not exist for k=1 and o"'(v) changes the sign on

[vy,v_] for k > 3.

In order to solve the stability, we make a reformulation for the problem

(1.1.3)-(1.1.5) by changing the unknown variables as

(v u)(t, @) = (V,U)() + (¢, e )2, €), §=z—st. (3.2.9)

Then the problem (1.1.3)-(1.1.5) is reduced to the following "integrated” system
bt — $¢e — e =0
t,bt - S’l,bf = OJ(V)¢E = /u,bff =F (3.2.10)

(6,1)(0,€) = (¢, 1ho)(£)
with

F = o(V + §¢) = o(V) - (V).
For any fixed T e (0, 00), let us define the solution spaces of (3.2.10) by
Xo(0,T) = {(8,9) € C*(0, T} %), g¢ € £(0, T 21,
be € I3(10, T} 1),
X(0T) = ((4,8) € OO0, 1 7y )61 € L0, 1 ),

©?

e € L*([0, 00); Hiy )},
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X:(0,7) = {(6:9) € CMOTLH N Lfy, ) e € L(O0,THH I ),
+

Ye € L*(0, T H? N I, )}, |

Setting . |
No(t) = sup [[(4,8)(7)] |
|

Ni(t) = Vs ([CXDCIIIRTII

M) = sup (N8Ol +16 9o + el ) | |
we have by the embedding theorem in Section 1.2, Chapter 1 |
( supeer (6, 9)(,6)] < CNo(2), 1
supger (¢, 9)(t, €)| < Csupeer (€)Y (4, 9)(t, )] < CNy (2), |

|
(3.2.91)
supgep [¥(t, €)| < Csupeer (€)Y (2, €)| < CNy(2),

\ SUP¢er l(¢"/’)(t,€)] < CNz(t). ‘

Theorem 3.2.1 and Theorem 3.2.2 can be regarded as the direct consequences

from the following theorem. | ‘

Theorem 3.2.4. (A) (Non-degenerate Case): Suppose the assumptions in Theo-
rem 3.2.1. Then there ezists a positive constant 83—, such that if (o, to)||2 < 83—,

H
then (3.2.10) has a unique global solution (¢,%) € Xo(0,00) satisfying |

(¢, ¥)@)I12 +/0 {I8e()I1F + Ilbe(mlI3}dr < Cll(go, o) 2 (3.2.12), ‘ §

for any t > 0. Moreover, the stability holds in the following sense: |

| | |
sup |(¢e, ¥e)(t,€)| -0 as ¢t — oco. (3.2.13)
£ER

|
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(B) (Degenerate Case): Suppose the assumptions in Theorem 3.2.2, then we have

the followings.

(1) There ezists a positive constant 635 such that if l(¢0,1/)0)l2,<5)+ < 83_s, then

(3.2.10) has a unique global solution (¢,%) € X,(0,00) satisfying

6B, + [ 9 s + W) g, Y

< Cl(¢o,%0)l3, ey, (3.2.12),
i ‘ for any t > 0. Moreover, the stability (3.2.13) holds.

(1) There exists o positive constant 63—¢ such that if (40, %0)ll2 + (0, %0)l¢ey,

$ : +|¢0,5I<€)§ < 836, then (3.2.10) has o unique global solution (4,v) € X2(0, 00)
7 +

% 3 satisfying

1€, )Nz + 18, ) D)y, + I¢e(t)l?5),3

+ [seone + 19e(T)egars + 0TI + We(r)lEy, Jdr

< Cll(po, Yo)llz + (b0, %0) gy, + |¢0,elj£)g), (3.2.12),
¥

. for any t > 0. Moreover, the stability (3.2.13) also holds.

Theorem 3.2.4 is proved by a weighted energy method combining the local

- existence with a priori estimates.

. Proposition 3.2.5.(Local existence)  For any 6§, > 0, there ezists a positive

: constant Ty depending on 8, which satisfies the followings.
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(A) (Non-degenerate Case): If (do,%0) € H? and I(d0,%0)ll2 < b0, then the

problem (8.2.10) has a unique solution (¢,) € Xo(0,Tp) satisfying ||(¢,9)(2)|2 <

26y for 0 <t < Ty.

(B) (Degenerate Case): (i) If (do, o) € H(2€)+ and |(do,%0)l2,(ey, < b0, then the
problem (3.2.10) has a unique solution (¢,v) € X;(0,Ty) satisfying 1(8,%)(®)2,¢6),

5260for0§t5T0.

(1) If (¢o,%0) € H* N L?¢)+; and ¢o¢ € L?E)%’ (b0, bo)ll2+ |(¢0,¢0)|(5)+ .
+
|¢0,5|(£)% < by, then the problem (8.2.10) has a unique solution (¢,9) € X5(0,Tp)
+

satisying (8 B)OI+ 106 D)o, Hel 3 <260 for0 <t < T,
+

Proposition 3.2.6. (A priori estimate) (4) (Non-degenerate Case): Let (¢,9) €
Xo(0,T) be a solution for a positive T. Then there exists a positive constant 837 1n-

dependent of T such that if No(T) < 63_7, then (¢,1) satisfies the a priori estimate

18.2:12)9 for0 <t < T.

(B) (Degenerate Case): (i) Let (¢,%) € X1(0,T) be a solution for a positive T.
Then there exists a positive constant 65_g indépendent of T such that if N,(T) <

b3-s, then (@,v) satisfies the a priori estimate (3.2.12); for 0 < ¢ < T.

(i) Let (¢,%) € X2(0,T) be a solution for a positive T. Then there ezists a
positive constant 65_g independent of T such that if No(T) < 839, then (¢,%)

satisfies the a priori estimate (3.2.12)y for 0 <t < T.

Proposition 3.2.5 can be proved in the standard way. So we omit the proof.
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We shall prove Proposition 3.2.6 in the next section.

3.3. The Proofs of A Priori Estimates

This section is a key step to complete the proofs of the stability theorems. At first,

let’s introduce our desired weight functions which pay a key role for our a prior:

estimates. Let a weight function be

Uz'_v2
( 'Ll)g('v) = T(JiW vE Io,

wyj—1(v) = koj_y 7,%;}7, v € Iyj_q,

wai(v) = kajpigys v € By,

| Wnt2(v) = knp1 gigys 0 € Lnga,

where j = 1,---,1‘—52*1, Ii (¢ = 0,1,---,n + 1,n + 2) are mentioned in (3.1.16)-
| (31.18) and k; = v2, ky = —kyo'(vy)/h(v1), kajoy = —kaj—ah(va;j—3)/0" (vaj2),
i = —kqgj—10'(v2j-1)/h(v2j—1), § = 2,---,3251. Soki >0 (i =1,2,---,n+1).

We also denote r(£) as another weight function in the form

(3.3.2)

1+£'—€01 as£2£0a
0=}

1, as { < &,
- where ¢ is defined as such number that V(&) = 0in Section 3.1. Then we know that
| w(V) € C°(v4,v-], w(V) ¢ C*(vy,v-], but wi(V) € C*(IL;),i=0,1,-+-,n+1,n+2.

r(€) has the same property of w(V). Moreover, we find

non-degenerate case: w(V(¢)) ~ Const., L% = L?

degenerate case: w(V(€)) ~r(€) ~ (£)4, L2 = L= L?E)+‘
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Now we are going to prove part (B) of Proposition 3.2.6 by the following two sub-
sections. Since part (A) of Proposition 3.2.6 can be proved in the same procedure

as (B), we omit its detail and only give a remark in the following sub-section.

3.3.1. The Proof of Proposition 3.2.6 B(i)

Let (¢,%) € X1(0,T) be a solution of (3.2.10). On the every interval R; (i =
0,1,---,n + 2), multiplying the first equation of (3.2.10) by (w;0')(V)é and the

second equation of (3.2.10) by w;(V)y and adding those equations, we have

S 030 YY) iV WY, — (i’ )V + (Ve
= 5{wio )V + iV he + pui(VIUE + Ai(t,6)

= Fu;(V)y, (3.3.4)

where

4i(t,€) = 5(wio") (V)Ved® + pol(V)Veripe

+ (i (VIVedt + Swl(VIVed?, i=0,1,-,n+2  (33.5)

~ Integrating (3.3.4) over R; and adding thses integrated equations, we obtain

n+42
57 ] (@) (V) +u(v WY [ o
n+2
+Z/A@W£/RMW& (3.3.6)

Step 1. When ¢ € Ry, i.e., v € Iy = (v4,0], we can check the facts w)(v) < 0,

(wg0")'(v) <0 and (wph)"(v) = 2, similar to Nishihara[17]. By (3.3.5), (3.2.4) and
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. Proof. Since a"(V) < 0 (V < 0), and o'(V) > 0, ie

Cauchy’s inequality, and noting

=35 OMOWE 6" = (L= 1 Syt oo o

]

where « is a constant which will be suitably chosen as 0 < o < 1, we obtain

/R Ao(t,€)de
) _iw;,(o)h(o)zp(t &)?
/ —£[(woo") (V)($ + = ¢)2 —-—————("”""Sl"(” ¥*lde
> _———-wO(O)h(O)w(t €)*
Lt ¥ 2 ey
+ 2 0(0)/}20 52 (HV(,6) )d£+/R° P

> _Lz‘sﬁwg(O)h(o)¢(t,£o)2

= g/Ro wo(V)pide +/Ro f-;/—:pa(V)wzdf, (3.3.7)
where
Pa(V) = 2 — awf(0)h' (V) + & ws)(g(z)V;l(V)' (3.3.8)

Lemma 3.3.1.  Suppose that (3.2.8) holds. Let o = (1-6)2, then pa(V) > 6(2-5).

. 0'(V) is decrease on

‘ Iy and o(V) is increase on [v+,v_], we have 0 < (s? = o'(V))/(s? - a'(0)) < 1,

 0 < —'(V—.v+)/(V+v+) <1l,and 0 < (32 - z(—y‘)%_ff—(l’tl)/(s2 — M) L.

—v4 —v4

1 o2 B!
.~ Noting w}(0) = 22O ;14 3.3.8), both above-mentioned facts, we obtain
h(0

Pa(V)=2- a(vzi(l(l)()())) 2{332 :Z,/((Z))
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et (- AT E)’ (o - L=y

T V+'U+ V-—'l).*. —UV4

>2-a(1+a)( ”“;t'(’;()o)y. (3.3.9)

By (3.2.3), we find

’U+h,(0) _ '—"U+—0'-’('U+) 1

BO) | 5(or) —v45(07)  1-5

Due to (3.3.9) and & = (1 — §)?, we obtain p, > §(2 — ). This completes the proof

of Lemma 3.3.1.

. Lemma 3.3.2. Consider the non-degenerate case. For any fized o (0 < o < ),

if [uy — v_| is suitably small then there exits o positive constant Cy depending on

a, such that pa(V(€)) > Cy for any ¢ € R.

Proof. Let H(vy) = —2%0-%92 > 0 be a function on vy. Due to (3.1.4),(3.3.10)
and s? = Z4)=o(v-)

v T here, vy and v_ are independent, we know lim, +—0H (vy)
exists with the type of ” %” as the followi.ng
—v4(0'(0) — 5%)

vl:!_{lo H(U+) = vl.:r—r-»lo 0'(0) — 0(U+) -+ 32v+ = L (3.3‘11)

For an arbitrary given constant e; > 0, by (3.3.11), there exists a § = 6(e1) > 0

such that |vy| < §, then 0 < H(vy) < 1+, holds. Thus, by (3.3.9), we get

Pa(V(E) 2 2= a(l+a)(1+¢1)2 = Cy, for € € R
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by choosing such positive constant €1 that g; < 1/3712+_a)' — 1 for any a € (0,1).

By Lemma 3.3.1, substituting (3.3.7) back into (3.3.6), we have

2dt / {(wa")(V)$* +w(V)g?)de + & / wo(V )pldé

n+2

3 [ iV uta - L uonopie ¢
n+2
+ [ -5 DEQUZEDY / At E)de
< / Fu(Vypde, (33.12)
R

Step 2. Due to the continunity of w(V'), i.e., wi(vi) = wi41(vi), and w}(0) =

Ly (OR(0)/A(0), H(02) = 0 (sco(3.1.5)), we have

: }:-_aw{,(o)h(o)lﬁ(t, )" = 5= r W OW(L &)

n+l

1)2 - w,(v,)lz’(v,)¢(t 5:)2}

i=1
n-41

- / 8g(w.(mh'(vw £))de.

n+1

1—~oz

| Bi(n)de, | (3.3.13)

$=1

~ where

Bi(t,€) = [wi(V)R'(V) + wi(V)R"(V)]Veep?
+2w(V)R' (V)ppe, 1=1,-- ., n+1. (3.3.14)

' Substituting (8.3.13) into (3.3.12), we have

537 [ 1o Vg (v ystyae + & [ wovyide
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n+42

23 / wi(V)ylde + / S58(2 - Byp(t, £)2de

i=1

n-4-1

+Z/ (Ai(t, §)+——-——B (2, 5))d§+/‘_ An+a(t,§)dE

< / Fu(VYpde. (3.3.15)
R

Using Cauchy’s inequality and #sVe = h(V), we obtain

n+1

Z/ (Ai(t,€) + ——B i(t,€))de
0 /R {g(wia')'(V)Ve(sq5 +1)’?

_kﬁw,-(V)Vf[ wi(V )h(V)+h"(V)]

2s (V)
’(V) @y
+,u'w,~(V)[ (V) Th (V)] wbepe }dt
> [ S awn (V)Y I - (V)08 + e
— .’é/R wi(V)$gde, =1, ,n 41, (3.3.16)
where
, " .(V) V) [wi(V) h'(V) '
“(V) = K(V) + W) 2] 7 g [w,(V) (1-a)t) h(V)] (3.3.17)
vi(V) = (wio") (V). (3.3.18)

- We can prove the followings

| Lemma 3.3.3. It holds

Z,‘(V) 21, y,'(V) <0 for Ve I, i= 1,--v,n+41, (3.3.19)
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provided the shock strength is suitably small.

Proof. Since the weight functions w,;(V') on I, j are different from the wy; (V)

only;_1,5=1,---, "T'H-, we have to divide the arguments into two parts to discuss

(3.3.19) as follows.

Part 1. When V € I, ie., € € Hagy 3, = 1,---,%—1-, noting wy;

k2jo' (V)71 o"(V) = B"(V) 2 0 and G(V) < 0, ie., 0 < XD < o)

(V) = Gr(v)» We
have y,;(V) = 0 and
1y 22 W) R a(v) mv)®
Z2J(V) =38 O'I(V) T [— O'I(V) +(1_a) h(V)]

20" (V) . h(V) ra"(V)\?
28 a'(V) ¥ « (0’(V))

,0"(V)
i (L~ 2a(V)) 20,

=3S

where

h(V)e"(V)
b WY e e 2T R Wy
q2];°1( ) szaa'(V) = 01
and mazver,; 42;,a(V) <1 as vy —v_| < 1.
Part 2. When V € L;_4, ice., ¢ € Rajj, 7 = 1,---,"T+1, since wyj_; =

—k2j-1/h(V), a"(V) = h"(V) 2 0, (V) < 0 and G(V) > 0, we have

y2j—1(V) = (w2j—-l U')'(V)

= w31 (V)0 (V) + wz-1(V)o" (V)




H(V)o' (V)  o"(V)

= S~ wwy ]

= —kyj1G(V)/M(V)? < 0,

_ _ iy W2i-1 (V) | (V) wh; (V) e
z25-1(V) = h (V)+h(v)w2]__l(v)+ - [wz,-_l(V) +(1 )h(v)]

hr(V)Z

= h”(V) = (1 = O{)W 2 0.

Thus, we have proved Lemma 3.3.3.

By (3.3.15), (3.3.16) and (3.3.19), we obtain

53 [L(@oV)8 4 w(v )ity + 2 [ w(vyvie

n-+41

+ g ; /R | wi(V)$EdE + p /R wnta(V)ihgdé

n+42

Ve - _
+ /R 0—5:-5(2—6)¢(t,£)2d£+ / Ana(t, £)d¢

Rn+2 ‘
< / Fuw(V)pde. (3.3.20) |
R
Step 3. Now we consider the last term in the left hand side of (3.3.20). When

V.€ Inyy, te, £ € Ryyp = (—00,&4], due to Kawashima and Matsumura, (7], we

have .

/ Anyalt,€)de
Rn+2

_ Wnt2(V) rwr (V)
B /R 2 Vf[wn+2(V) o
n+42

(V) + (V)] $2de
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Vi
+ /Iz,,+2 '2_:(wn+20")’(v)(3¢ + tﬁ)?df + u/ Wi o (V) Vepiedt

Rn+2
2 ==

o=

Ve
L VW [ a4

V, :
() / S a(V)ensa(VIWE, (3.3.21)
Rn+2 8
where yn4+2(V) = (wpt20") (V) and

znt2(V) = B'(V) + h'(v)ﬁ'w_(_v_) + 2h(V) [“’;‘“(V)] 2

wnt2(V) wnt2(V)
Corresponding [7], it is easily checked that
yn+2(V) =0 and Zn+2(V) >0 } (33.22)

provided vy —v_| < L.
Substituting (3.3.21)-(3.3.22) into (3.3.20) and integrating the resultant in-

equality over [o, t], we have the following first Key Lemma.

Key Lemma 3.3.4. It holds

t t
(6, #) (e, + / [e(r)[Eey, dr + / /R Vel €

t
< C(|(do, %o)lGey, + Nl(t)/0 |¢€(r)|?€)$d7). (3.3.23)

- Remark 3.3.5. In the non-degenerate case, noting Lemma 3.3.2 and (3.3.3);, both

. step 1-step 3, we get

169D + / lbe(r)lPdr + / /R Vel €)2dedr

< (| (b0, %o + No(2) / lge(rlPdr).
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Thus, we can prove part (A) of Proposition 3.2.6 corresponding the procedure in

[7,17).

Remark 3.3.6.  G(v) may have infinitely many v;’s defined in (3.1.16), so that there

are cluster points. But, both endpoints 0 and v, are not cluster points by (3.1.15).

Denote a cluster point by 7 with vJ"- — T as j — oo. Then, we have lim;_,, k; E
; ) B, N . ;
k* < 400 and also lim;_, —12}2;':_1 = —-ah—,((%%. Due to this, at each cluster point, by

changing Z;’:g to 37;;, the procedures in steps 2-3 are still available.

The next Key Lemma is to estimate the last term in (3.3.23) provided small

Ni(2).

Key Lemma 3.3.7. It holds

2 (=) [ 1P dr
B0 3 + (1= CR() / el

< C(I(do, o)y, + 190.el” )- (3.3.24)
©7

Proof. From equations (3.2.10), we have

1der — Spdee + U'(V)‘f’f + st — ¢y = —F. (3.3.25)

Since Lf»(V) = LE(E) e L?E)Jr’ firstly, let’s consider our problem in the weighted
2

space Lr(e)'
(1). On the interval [£, +00) = Ry, i.e., v € (vy,0], multiplying (3.3.25) by

r(ﬁ)%ﬂéfa here ""(f) =14 6 - & (see (3.3.2)), we get

O B - T 0@ e+ Lro) el
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+1(6)20'(V)§E + sr(€)E bevpe — r(€) Yohude = —Fr(€)¥ge.  (3.3.26)

By the first equation in (3.2.10), we note that

—r(€) T ide = —{r(E) e} +r(€) Fde
= —{r(6) e} + () p(sde + ve)e
= —~{r(6) e} + {r(E) (spe + ve))e
— sr(€)epede — r(€)
~ 5@ e~ {3r(©) WM - g Ht, (3m)

and

l B %r(é)—%"p‘ﬁfl < EZT(G)%U’(VMS% + (160"(0)52)_132r(£ —%¢2, (3.3.28)

where 0 < €5 < 1.

Substituting (3.3.28), (3.3.27) into (3.3.26), and integrating it over Ry, we

have

d [t 1 d [t 1
R GLL T S OB o sende

e 1 N Lo
+ff/€ r(f)"5¢§+(1—52)/& r(§)7a'(V)gide

32

1, [t ol
- (et 3 /6 r(€)-$y2de
+o0 '
- /6 r(E)FURdE + 1r(6)H ot &)

+o00
<- / r(€)} ge P, : (3.3.29)
&o
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where {-.-} = —%ﬁr(f)%qﬂg + r({)%d)(sd)f + t¢). Moreover, by Cauchy’s inequality,
we find the fact

ir(fo)_%lﬁ(t, ¢)*

1 g T3 ~1 2
=~y [ v e

Il

! 1 +°° b 1
—gr @)t [ =3O H ()t apne)de

&o

+o0 3
21 GO @ v - rewiias (3.3.30)

where r(§)) = 1.

Substituting (3.3.30) into (3.3.29), we have

dis jf 78 1 O 1
s ), O e [ O evas

&o
+o0 A +oo L +oo

+ [ O R [T ot mcr [ o
+o0 . toa

som) [ rersde e [ e, (3.3.31)
o &o

where
_% . 2
Cal) = M= (00 - 2 - 0) (333

Since r(£) = O(|¢]) as £ — oo, thus we know there exists a larger number Euanl(> Eo)

such that

Ce,(€) 2 0 on [¢,,, +00), |Ce,(€)] < Const. on [&,¢,.] (3.3.33)

Due to (3.3.23) in Key Lemma 3.3.4 and the boundness of [Ve| on [€o, €xs], noting

(3.3.33) and w(V) ~ (£)4 ~ r(¢), we obtain

/Ot /: Cea(&)l(r, )2 dedr
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< C(I(¢o, %o)liey, + Na(2) /0 |¢€(r)|?9 dr), (3.3.34)

H
/ " (O, e > 0. (3.3.35)
Eun

Then we can rewrite (3.3.31) as follows

M d +o0 + o0

1 d 1
55 b r(f)z¢§d»§+{...}|€=€0_a g r(€)? perpdé

: +o0 +o00
Ha-a) [t [ ot

-

-+o00

u :
< /E ICea (E)2dE + N (1) / r(€)} gRde

o

+oo '
+C /e r(€)pzde. (3.3.36)

(ii). On the another interval (—00,&0], t.e., v € [0,v_], mutilplying (4.3.25)

by ¢¢, and integrating it over (—oo, €o], here r(£) = 1, we have

d &o d &o o /
2 | P e = [ gevder [ ognae
éo éo
< CNy(2) ded¢ +C / pede, | (3.3.37)

The continuity of r(¢) at £ admits the addition of (3.3.36) and (3.3.37).

Noting

+o0 4 1
[ @ttt < Sy + L,

and (3.3.34)(3.3.35), Key Lemma 3.3.4, and (£) 4 ~ r(€), we have proved (3.3.24).

By Key Lemma 3.3.4 and Key Lemma 3.3.7, we have the following

Lemma 3.3.8. It holds

t
6.9, + [ Beley,dr < G0 )iy, +ldoel ), (3339
0 (E)+
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l¢£(t)lj€)i +/0 |¢€(T)|j€)idT < C(I(d0,%0)l5gy, + |¢o,e|?£)i{), (3.3.40)

provided Ny(T) is suitably small.

Next, we shall derive the higher order estimates on the solution (¢,). Let us
differentiate equations (3.2.10) on £, and mutiply the frist equation by w(V)o(V )¢
and the second equation by w(V )¢, respectively. We add them and integrate the

resulted equation over [0,] X R, similar to the procedures in Lemmas 3.3.1 — 3.3.8.

Then by the fact w(V) ~ (§)+ ~ r(€) and L2, = L%E>+ = L7 ¢y, we have

Lemma 3.3.9. It holds
t
|(¢E,¢e)(t)lfy(V)+/; [ee(r) |2 vydr < C(l(¢o,¢0)|f,w(V)+|¢0,££|1(V),}), (3.3.41)

t
|¢es(t)li(v)§ +/; |¢fe(T)|fU(v)5dT < C(I(d0s%)l3 wevy + |¢°'“|Z,(V)%)’ (3.3.42)

for suitably small N,(T).

Similarly, the second order estimate of the solutions can be proved as follows.
Lemma 3.3.10. It holds

(bee Yee) iy, + /0 [Yeee(T)liey, dr < Cl(do,%0)l3 (), (3.3.43)

for suitably small N,(T).

The Proof of Proposition 4.2.6 B(i). Combining Lemmas 3.3.8—3.3.10, we

have

t
@O 0, + [ 8Ly + e g0, < Clldn )
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for suitably small N;(T).

Thus, we have completed the proof of (i) of part (B) in Proposition 3.2.6.

3.3.2. The proof of Proposition 3.2.6 B(ii

Let (¢, %) € X5(0,T) be a solution of (3.2.10). By the same procedures as in the last
sub-section, we estabilish the key estimates correspoding to Lemmas 3.3.4—3.3.7 by
the weight functions w(V) and r(¢). Noting w(V) ~ (§)+ ~ r(£),and qu(v) =

L%E)+ = L% ¢y, We obtain the following lemma.

Lemma 3.3.11. It holds

t ) :
69O, + [ Wi, dr < O o)y, +1ducl 1) (3.3.44)
0 (E).*.

t
l¢€(t)l?€)§ +/0 l¢f(7)|j€):;: dr < C(|(¢o,¢o)|?g)+ + |¢0’€ij)3 )i (3.3.45)

Next, we shall derive the higher order estimates on the solution (¢, ) without
weight function. This procedure is simpler than previous one. According to Lemma
3.3.11, we can prove the following Lemmas same way as in [7,17]. So, here we also
oniy give the sketch of the proofs.

Multiplying the second equation of (3.2.10) by —t)¢e, and integrating it over

[0,#] X R, we have by Lemma 3.3.11

Lemma 3.3.12. It holds

||¢f(t)]|2+/0 lbee(r)l|*dr < C(Il(sﬁo,e,¢o,s)||2+I(¢o,¢o)lf¢>+"+l¢o,elje)g) (3.3.46)

+
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for suitably small No(T).

When we differentiate (3.3.25) in { and multiply it by ¢¢¢ and integrate the

- resultant equation over [0,%] X R, then we get

Lemma_ 3.3.13. It holds

eI + [ ee(rlar

< Clldoclld + lo,ell* + (B0, %o)lFgy, + 160,e ljﬂ.}) (3.3.47)
+

forsuitably small No(T).

Differentiating the second equation of (3.2.10) in ¢ and multiplying it by

—1eee, then integrating the resultant equation over [0,1] x R, we obtain

Lemma 3.3.14. It holds

t
Ibec)|* + / lbese(r)|2dr
0

< C(|I(¢oes o ellf + |(¢0,¢‘0)|%5)+ "+ |¢0,5|?E)$) (3.3.48)

for suitably small No(T).

Finally, combining Lemmas 3.3.11—3.3.14, we complete the proof of Propo-

sition 3.2.6 B(ii).
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Chapter 4. System of Viscoelasticity (II)

The main aim in this chapter is to study the stability of viscous shock profile for
Cauchy problem (1.1.3)-(1.1.5) with the non-convexity (1.1.8), which is an open
problem proposed by Kawashima and Matsumura [7). Quite different from the
single equation case, the procedures in the previous works [6,7,12-19] are invalid
for this problem. Therefore, we expect to develop a new recipe to solve this open
problem which is the transform-weighted energy method as we call, and the details
will be showed in Section 4.3.

The arrangement in this chapter is as follows. After sating some preliminar-
ies and the main asymptotic stability theorem in Segtion 4.1, we prove this main
theorem based on a basic energy estimate in Section 4.2. Finally, we comlete the

proof of the basic estimate in Section 4.3.

4.1. Preliminaries and Main Theorem

In this section, before stating our main theorem, we now recall the properties of
traveling wave solution with shock profile as stated in Chapter 3.
We know the traveling wave solution with shock profile for (1.1.6) and (1.1.7)
has the form
@u)(t2) = (V,UE), €=z—st, (+1.1)
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(VUX(E) — (va,ux), € — oo, (4.1.2)

where s is the shock speed and (v4,uy) are constant states at +oco satisfying the

Rankine-Hugoniot condition

=8(v4 —v-) = (uy —u) =0,
4.1.3
{ —s(uy ~u_) = (o(v4) — o(v-)) =0, (4.1.3)
and the generalized shock condition
1 L 5 ' <0, if vp<v<ow_
:S—h(v) = ;[—s (v—wvi)+o(v) — o(vs)] { 50, 3 v <5<y (4.1.4)
We note that the condition (4.1.4) with (1.1.6) and (1.1.8) implies

Av4) <s<Mov) or = Mwy) <s < —=A(vo), (4.1.5)

where A(v) = y/o'(v) is the positive characteristic root, and that, especially when

0" (v) > 0, the condition (4.1.4) is equivalent to
Avg) <s <Av-) or —A(vy) <s<—Avo), (4.1.6)

which is well-known as Lax’s shock condition [8]. We also call the condition (4.1.5)
with s = A(v_) or = —A(v-) (resp. the condition (4.1.6)) the degenerate (resp.
non-degenerate) shock condition.

If (v,u)(t,z) = (V,U)() (€ = = — st) is the viscous shock profile, then

(V,U)(€) must satisfy

—-sV'-U' =0,
{ LTt g O.(V)I L 'uUII (4'1-7)

Integrating (4.1.7) and eliminating U, then we obtain a single ordinary differential

equation for V(¢):

psV' = —s2V 4 o(V) —a3 = h(V), (4.1.8)
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where
a3 = —s?vy + o(vy). (4.1.9)
Let (v4,ut) # (v—,u_) and s > 0 (the case s < 0 can be treated similarly). We

are now ready to summarize a characterization of the generalized shock condition

(4.1.4) and the results on the existence of viscous shock profile corresponding to

one in the above chapters:

Proposition 4.1.1. Suppose that (1.1.6) and (1.1.8) hold. Then the following

statements are equivalcﬁt to each other.
(1) The generalized shock condition {4'.1.4) holds.
(ii) o'(v=) > s?%, i.e., Mv_) > s.
(ili) o'(v4) < s? < 0'(v-), dee, Mvg) < 5 < A(w-).
(iv) There ezists uniquely a v, € (vy,v_) such that o'(vy) = % and it holds
o'(v) < s? for v € (vg,v,), s%< o'(v) for v € (vy,v_). (4.1.10)

i.e,

h'(ve) =0, R'(v) <0 forv € (vy,v,), K(v)>0 forve (veyv2).  (4.1.11)

‘Moreover, if one of the above four conditions holds, then we must have vy # 0. In

aeddition, vy S v_ and v 2 0 hold when vy 20, ie., v;v+ > 0.

Proposition 4.1.2. Suppose that (1.1.6) and (1.1.8) hold.
() If (1.1.8), (1.1.4) admits a viscous shock profile (V(z — st),U(z — st)) con-

necting (vi,u+), then (vi,uy) and s must satisfy the Rankine- Hugoniot condition

(4.1.8) and the generalized shock condition (4.1.4).
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(i) Conversely, suppose that (4.1.3) and (4.1.4) hold, then there exists a vis-
cous shock profile (V,U)(z — st) of (1.1.8),(1.1.4) which connects (va,uy). The
(V\U)(E)(€ =z — st) is unique up to a shift in £ and is a monotone function of €.

<

In particular, when vy S v_ (and hence uy 2 u_) we have

up 2UE) 2us, Uele) 20, (4.1.12)

e SVE)Sv., V(o) S, (4.1.13)

for all £ € R. Moreover, (V, U)(¢) — (va,ug) exponentially as £ — +oo, with the
following ezceptional case: when Awo) =s, (V,U)(€) — (v—,u_) at the rate |£|7}

as £ = —o0, and [h(V)| = |usVe| = O(|¢]~2) as £ — —co.

We see the following graphes of o(v) and h(v).

(V)

Piv)

Figure 4.1 Non-degenerate case
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1o

Figure 4.2 Non-degenerate case
In this chapter, our aim is to show the stability of viscous shock profile in
the non-degenerate case (4.1.5). Unfortunately, the degenerate case is still open.

Now, without loss of generality, we restrict our attention to the case

$>0 and vy <0<wv_, ie, pusVe = h(V) < 0. (4.1.14)

Let (V,U)(x — st) be a viscous shock profile connecting (v4, uy ), we assume the




integrability of (vo — V,ug — U)(z) over R and

/ (vo = Vyug — U)(z)dz = zo(vy — v_,uy — u_), (4.1.15)

—00
for some 9 € R. Then it is easily seen that the shifted function (V,U)(z — st+ )

is also a viscous shock profile connecting (v, u +) such that
/ (vo(z) = V(2 + 20),uo(z) — U(z + 2¢))dz = 0. (4.1.16)

In what follows, set 2o = 0 for simplicity. Let us define (¢0,%0) by

z

(40, 0)(z) = / (g = Vo DM (4.1.17)

— 00

as in the previous Chapter 3. Our main theorem is the following.

Theorem 4.1.3. (Stability) Suppose (1.1.6), (1.1.8), (4.1.8), (4.1.5), (4.1.16),

and (¢o,%0) € H?. Further, assume that
1
s* <a'(v) + —2-0"(1)‘)[2(1)* —v4) + v — vy, (4.1.18)

a"'(v) <0, ve€ (vy,0)U(0,0_). (4.1.19)

Then there exists a positive constant §,_, such that if [|(do,%o)lla < b64—1, then

(1.1.8)-(1.1.5) has a unique global solution (v,u)(t,z) satisfying
v—V € C[0,00); H') N L*([0, co); H),
u—U e C'[0,00); H) N L*([0, 00); H?)
and the asymptotic behavior

sup |(v,u)(t,z) — (V,U)(z — st)| > 0 as t — oo. (4.1.20)
TER
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Remark 4.1.4. 1. First note that our condition (4.1.18) is, as easily seen, much
stronger than Lax’s shock condition. We get the stability of any viscous shock (weak
shock or not) as long as the condition (4.1.18) is satisfied. This means that we don’t
necessarily assume that the viscous shock profile is weak, ‘i.e., |v4 —v_| < 1, which
is a sufficient condition in the previous works.

2. An important example is o(v) = av — Bv® for v € [vs,v_], where a,
are any given positive constants. It is easy to see that o(v) satisfies (1.1.6), (1.1.8)
for some vy and v_. In this case, Lax’s condition is equivalent to vy < —2v_, and
our condition (4.1.18)"56 vy < —a,v_, where a, = 7.418190... is a unique positive

root of

~w2+10m+5=2\/§\/m2—m+1.

3. For the general stress o(v), if viscous shock is weak, ie., vy —v_| € 1,
and suppose o"’(0) # 0, then the condition (4.1.18) is equivalent to the condition

U+ < —a,v-. A significant example is o(v) = v/\/I F o7,

4.2. Proof of Stability Theorem

In this section, we shall prove the Stability Theorem 4.1.3 by means of a key estimate
which will be proved in the next section. In order to show the stability, we first

make a reformulation for the problem (1.1.3)-(1.1.5) by changing unknown variables

(v’u)(t’x) - (V; U)({) + (¢£a¢’£)(ta f)) 6 =z —st (421)
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Then the problem (1.1.3)-(1.1.5) is reduced to the following "integrated” system
¢t — 8¢ — e =0
1,b¢ = S’l/)E = a’(V)qu = ,U’l,bff =K (422)

(¢a ¢)(07 5) = (¢0, ¢0)(€)

where

F = o(V +¢¢) = o(V) = o' (V)gs.
For any interal I C [0, 00), we define the solution space of (4.2..2) as
X(I) = {(¢,¥) € C'(I; H?), ¢¢ € LA(I; HY), ¢ € L*(I; H?)},

and set
N(t)= sup [(¢,%)(7)|2.
0<r<t

It is well-known as in the previous papers that Theorem 4.1.3 can be proved by the

following theorem to the problem (4.2.2).

Theorem 4.2.1. Suppose the assumptions in Theorem 4.1.8. Then there ezxist

positive constants 649 and C such that if I(do,%0)|lz < b1—2, then (4.2.2) has a

unique global solution (4,v) € X([0,00)) satisfying

14, )3 +/0 {lige(mI + eIz }dr < Cll(do, o)l (4.2.3)

for any t > 0. Moreover, the stability holds in the following sense:

sup (e, ¥e)(t,€)| =0 as t— oo, (4.2.4)
£ER
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By the same continuation procedure as in the last chapters, we can prove

Theorem 4.2.1 combining the following local existence and a priori estimate.

Proposition 4.2.2. (Local existence) For any 6y > 0, there ezists a positive con-
stant Ty depending on 8y such that, if (do,10) € H? and ||(¢o,%o)||2 < b0, then the

problem (4.2.2) has a unique solution (¢,%) € X([0,Ty]) satisfying ||(¢,%)(2)|2 <

250 fO‘I‘OStSTg.

Proposition 4.2.3. (A priori estimate)  Under the assumptions in Theorem
4.1.3, let (¢,%) € X([0,T]) be a solution of (4.2.2) for a positive T. Then there ezist
positive constants é4—3 and C which are independent of T such that if N(T) < 6,_s,

then (4,%) satisfies the a priori estimate (4.2.3) for 0 <t < T.

The proof of Proposition 4.2.2 is standard, so we here omit it. In the rest of
this paragraph, our purpose is to prove Proposition 4.2.3 by using the following key
estimate. In what follows, we assume that (4,%) € X ([0, T)) is a solution of (4.2.2)

for a positive T' and N(T') < 1.

Key Lemma 4.2.4. (Basic Estimate) Suppose the assumptions in Theorem 4.1.3.

Then 1t holds

6O+ [ Ier)Fdr < Cltdn, i)l +8G) [ Noctrltar) (a2
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fort € [0,T).

Proof of Proposition 4.2.3. Since the proof is given exactly in the same way

as in (7], we only show its rough sketch. From the equations (4.2.2), we have

poer — spudee + o' (V) e + s1pe — thy = —F. (4.2.6)
Multiplying (4.2.6) by ¢, and integrating the resultant equality over [0, t] x R, using

the basic estimate of Key Lemma 4.2.4, we obtain

I¢e@II* + (1 - CN(t))/O I¢e(mII*dr < C(II(do, Yo)lI* + 1o,ell®).  (4.2.7)

For the estimates of 1¢, we may differentiate the equations (4.2.2) in ¢, and mutiply
the frist equation by ¢'(V')$¢ and the second one by 1, respectively, then may add
them up and integrate the resultant equality over [0,¢] x R. Then, combined with

(4.2.5) and (4.2.7), it consequently gives us

I(Ber )OI + / lbee(r)IPdr < Cll(do, o)1 (4.2.8)

provided N(T') is suitably small. Similarly, for the estimates of Pee, differentiating
equation (4.2.6) in £, multiplying it by ¢¢¢, and integrating the resultant equality

over [0,¢] X R, we then obtain, combined with (4.2.5), (4.2.7) and (4.2.8),

20l +/0 18¢e(m)II*dr < C([I(do, o)} + | bo,ecll”) (4.2.9)

provided N(T') is suitably small. Furthermore, we differentiate the second equation

of (4.2.2) in £ twice, and mutiply it by 1¢ee. Then, for suitably small N(T), we can

similarly show

[|(Peebee) ()| +/0 [%eee(T)II*dr < C||(Ho,%0)|3. (4.2.10)
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Combining (4.2.5)—(4.2.10) yields

I, )OI +/0 {lge(mIIE + llbe(nlIz}dr < Cll(do, wo)ll3

for suitably small N(T'), say N(T') < é4—3. Thus, we have completed the proof of

Proposition 4.2.3.

4.3. Proof of Basic Estimate

To prove the stability by energy method, the key step is to establish the basic
estimate (5.2.5) in Key Lemma 4.2.4. Since the previous procedures in [7,12-19] are
invalid for the non-convexity condition (1.1.8), so we have to find another way to
arrive at our goal. Here, our idea is that after transforming the system (4.2.2) into
a new one by selecting a suitable transform function, we prove the basic estimate
(4.2.5) by the weighted energy method with a suitable weight.

Let us introduce a transform function T'(v) and a weight function w(v) as

follows:

Co(v+b), veo,v_),

T(v) = 4.3.1
)=\ VT4, velsol, S
w(v) = (v+b)?, wvE€ [vy,v], (4.3.2)
where Cyp = 1/0'(0) and b is a positive constant choosen as
0 < 2v, —3vyp < b<2(s? —o'(v_))o"(v_)"! —v_ (4.3.3)

corresponding to the assumption (4.1.18) and Proposition 4.1.1. It is noted that

T(v) and w(v) are bounded and positive on [v4,v_], and are in C'[vy,v_], but
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the continunity of 7"(v) at the point v = 0 cannot be ensured, for example, in the
case of 0''(0) # 0. We shall show how to choose T(v) and w(v) in the following

procedure.
Let (¢,)(t, €) be the solution of equations (4.2.2). We define a transforma-

tion in the form

(:9)(: €) = T(V(E))(2(2,€), ¥(¢,¢)), (4.3.4)

where V(¢) is the viscous shock profile. We denote £, as a number in R such that
V(&) = 0. It is easily seen that & is unique because of the monotonicity of V(é),
Le., Ve(£) < 0. Then the equations (4.2.2) can be transformed into
(@ — 5@ — ¥ — s T - Ty =,

J \I’t - (3 + 2/1,"1715-)‘1’5 = O'I(V)(I)e - ;I,\I’EE

(4.3.5)
~(s + )T — o!(V)R2 = F/T(V),

(2, 0)(0,€) = (do,%0)(6)/T(V),
in respect of two spatial parts ¢ € (—oo, §o] and ¢ € [£), 00) due to the discontinuity
of Tge at the point &y, where T' denotes the transform function T(V), T, = -B—%%O
and T = _8_262;12_‘/_).

Multiplying the first equation of (4.3.5) by o'(V)w(V)® and the second one

by w(V)¥ respectively, noting pVe = h(V), we have

SN VIB 4 0V, = (Y + pa(V) 22
+ J;’T‘flw(V)Y(V)(mb +0)? 4 |—E€-|w(V)Z(V)\1;2

= Fu(V)¥/T(V), " (4.3.6)
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in respect of the two spatial parts (—00,&0] and [¢), 00), where

{44} =-§o’(V)w(V)<I»2 + o' (V)w(V)3 T

+ [(% 4 p%)w(V) +Su(V)e| v, (4.3.7)

VW)= o) - o) (0 - 220 (3.9
TW) Ly 20y WOTE) e )
2N = KOs ~ Mo Ty~ M s

+ h(V)(—:I:,:'(L://)l)2 + ﬁ%/l(%)'(V) + h—(g—)(’:’((“:)))2. (4.3.9)

We see that the coeficient functions in (4.3.7) are continuous in R since w(V(¢)) and
T(V(¢)) arein C'(—00, c0), s0 {- - -}¢ will disappear after integration over (—o00, 00).
The most essential point of this paper is to choose w(V) and T(V) properly so that

both Y (V') and Z(V) are non-negative in (4.3.6).

Lemma 4.3.1. Under the sufficient conditions (4.1.18) and (4.1.19), let T(v) and

w(v) be chosen as in (4.8.1) and (4.3.2). Then it holds
Y(v) > o0, Z(v) > C1lo" (v)| (4.3.10)
for allv € [vy,v_], where C; > 0 is a constant.

Proof. Since o"'(v) changes its sign depending on the sign of v, we have to divide

the region of v into two parts as follows.
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Part 1. When v € [0,v_], i.e., 0"(v) < 0 and k'(v) = o'(v) — 5% > 0, we find
T(v) and w(v) satisfy

w(v) . T'(v)
w() ~ 2T(w)"

‘which yields Y'(v) = —o"(v) > 0, and

2(0) = 252+ A B0 (2 4 KD (w)y:
41(1’)

ppy (4.3.11)

where
q1(v) = h'(v) + = a"(v)(v + b). (4.3.12)

Therefore, in order to see (4.3.10), we should show ¢;(v) is positive on [0, v_]. We
first note that ql(v) 1s monotonicaly decreasing since ¢j(v) = 3o"(v) + 30" (v)(v +
b) <0, 0"(v) <0, 0" (v) < 0and v+b> 0(see (4.1.18) and (4.3.3)). Then we have

71(v) 2 qi(v-) = h'(v_) + Lo"(v_)(v— 4+ b) > 0 by (4.3.3). Thus, we observe that

a-) o ai(v-)]o"(v)|
Z(v) > 3 4 L B o b)|a"( 7 v € [0,v-].

Part 2. When v € [v4,0], i.e.,, 0"(v) > 0 and A'(v) = o'(v) — s S 0 for

v S v,, see (5.1.11) in Sect.5.1, we find T(v) and w(v) satisfy

w'(v) _ 2T'(v) _a"(v)
w(v) T(w) o'(v)’

which yields Y'(v) = 0, and

s? a"(v) | h(v) f0"(0)\2  o'(v) — s?
Z(v) = 20"(v)+ 1 (a,(v)> Lo et
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To show Z(v) > Co"(v), we further devide the region [v4, 0] into [v4, 0] and [v4, v.].

When v € [v,, 0], since ¢'(v) — s* > 0 and b+ v > 0 for v € [v,, 0], we have

B ‘;"((;’)) (2+ %(-;’—)) > Ca"(v). (5.3.14)
Here we used the fact
0< qo(v) = —E(‘;%)(—;—Z <1, for v € [vy,0]. (5.3.15)

To see (5.3.15), making use of h(v4) = 0”(0) = 0, and ¢"'(v) < 0, we observe that
q2(v4+) = ¢2(0) = 0, and g2(v) > 0 for v € (v4,0). Consequently, go(v) attains its
maximum over [v4,0] at a point v = ¥ in (v4,0), and hence g, = ug[lvixo] q2(v) =
¢2(9) > 0 and ¢3(%) = 0. Rewriting g3(v) as —h(v)o"(v) = s20'(v)ga(v) and

differentiating it with respect to v at v = o, we have

9@ _ h@)"()

¥4 s20'"(D)

<L

When v € [v4,v4], ie., 0'(v) — s? < 0, there exists a point © € (v,v,) such

o'(v) = s* = 0" (D) (v — vi) > 0" (v)(v — vy), (5.3.16)

because of o(v) < 0. Substituting (5.3.16) back into (5.3.13), we have

o"(v) 2 1 " 2V — Uy
Z0) 2 4o (2%0'(0) + K)o (0) + 40’ (0 2202
a"(v)
~To'(o )2q3(v). (5.3.17)

Differentiating ¢3(v) with repect to v, and making use of A(v) < 0 and ¢"(v) < 0,

we have

1) = K" (0) + ")) + 42 ()
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" o'(v)
> o"(v)ga(v) + 4(—ng)—5q5(v), (5.3.18)

where

—4v, + b

(o) = 5+ ') D i) = o/(0)(wn + 8) + (0 D)o = )0 (),

Making use of s* > ¢'(v) and v + b > 0 on [vy,v,], and (4.1.18) and (4.3.3), we

know ¢4(v) > 0 for v € [v4,vs]. On the other hand, we can see that
g5(v) 2 ¢5(—b) = o'(=b)(va + b) > 0. (4.3.19)
In fact, by 0"(v) > 0, v + b > 0, (4.1.18)(see also (4.3.3)) and (4.1.19), we have
g5(v) = 20" (v)(v + b) + (v + b)(v — v.)o " (v) 2 0

for v, > v > —b, which implies (4.3.19). Consequently, we have proved g5(v) > 0

for v € [v4,v4] in (4.3.18). Thus using s? > o'(v4), (4.1.18) and (4.3.3), we obtain

a3(v) 2 g3(v4) 2 20" (0) {14222 50, v € [vy, 04,
’U++b

Therefore, by (4.3.17), we can see that Z(v) > Const.o”(v) > 0 for v € [v4,v,].

Combining Parts 1 and 2 together, we have completed the proof of (4.3.10).

Integrating (4.3.6) over [0,t] x (—00,&o] and [0,¢] x [€, 00) respectively, and

adding them, we obtain the followings by Lemma 4.3.1.

Lemma 4.3.2.  Suppose the assumptions in Theorem 4.1.8. Then it holds

1@, B)@)|* + / 12 e(r)Pdr + / / T Velw(V)2(V) 22 dedr
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< C(ll(®s, To)|* + / / IFII‘I'Idéd) (4.3.20)

for t € [0, 7).

The Proof of Key Lemma 4.3.4:  Since ||(®, T)|| ~ ||(4,%)|| by the boundedness

of T(V), and |F| = O(|$¢|?), we have due to Lemma 4.3.2
I, O + [ Ie(rlPar + || Weuvyzvyeraear

< C((bo, o) I +N(t)/0 16¢(r)]1*dr). (4.3.21)

Furthermore, multiplying the first equation of (4.2.2) by ¢ and the second one by

ho'(V)~! respectively, and adding them, we have

2 ¢2 3452 ¢2
sa"(vm v Ty
I(V) ¢€ U'(V) ¢ U'(V) Ql”rbf = 0_’—(‘7—)‘ (4322)

We note that

po"(V)Ve
o (V)

m/% po'(V)2Viy?
'(V) 4eo' (V)3

BEar iy ey (4.3.23)

for 0 < e < 1. Substituting (4.3.23) into (4.3.22), and integrating the resultant

inequality over [0,?] x R, we have |
I, YOI + [ Ioer)IPar
< C(lI(do, o)l +/0 /—00 lo" (V) V|2 dédr + N(t)/0 l|pe(r)||?dr)(4.3.24)

Making use of Lemma 4.3.1 and w(V') ~ T(V) ~ Const., we obtain

t (o] t ©0
/ / 0" (VYV [h2dedr < C / / VelZ(V)w(V)WPdedr.  (4.3.25)

0 J—-oo 0 J—o0
Applying (4.3.25) and (4.3.21) to (4.3.24), we finally have (4.2.5). This completes

the proof of Key Lemma 4.2.4.
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