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Abstract

This paper concerns the structural stability of subsonic steady-states to the bipolar Euler-Poisson equa-
tions under small perturbation of doping profiles. Here, the electron density is imposed with degenerate
sonic boundary and considered in interiorly subsonic case, while the hole density is considered in fully
subsonic case. Unlike the unipolar model, we show that the structural stability in bipolar model holds re-
gardless of the type of doping profile and propose a new version of comparison principle, which captures
the intrinsic negative correlation between electrons and holes. To overcome the difficulty caused by the de-
generate effect at the sonic boundary, we introduce two different weight functions to handle the singularity
near both sides of endpoints separately. The approaches adopted to prove the structural stability include
the local singularity analysis, the monotonicity method, the continuation argument and the squeezing skill.
Several numerical simulations are performed which support our theoretical results.
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1. Introduction and main results

The bipolar Euler-Poisson equations arise from the modeling of semiconductor devices com-
posed of electrons and holes (see [5,25]). The one-dimensional time-dependent bipolar Euler-
Poisson equations are given by

pr + (pu)x =0,

(pu); + (pu2 + p1(p))x =pE,

ny + (nv)y =0, (1.1)
(o), + (mo? + p2(n))x = —nE,

E.=p—n—>bx).

Here p, n, u, v and E denote the electron density, the hole density, the electron velocity, the hole
velocity and the electric field, respectively. The known functions p;(p) and p;(n) represent the
pressure of electron and the pressure of hole, respectively. In this paper, for isothermal flow, we
assume

p1(p)=Tp, p2(n)=Tn

with a constant temperature 7 > 0. The given function b(x) > 0 is the doping profile, which
stands for the density of impurities in semiconductor devices.
The main purpose of this paper is to study the following steady-state equations of (1.1):

J1 = constanty,

I
p X

Jo = constanty, (1.2)

5
—~4+Tn| =—-nE,
n

X

E)C:p_n_b('x)v

where Ji := pu is the current density of electron and J, := nv is the current density of hole.
Without loss of generality, we set T =1, J1 = J and J, = —J, where J > 0 is a constant.
Therefore, (1.2) can be reduced to

) px =pE,

( ) _uE (1.3)
E,=

p—n—>b(x).
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By the terminology in gas dynamics, we call ¢, 1=,/ p}(p) = /T =1 the sound speed of elec-
tron and ¢;, :=,/p,(n) = VT =1 the sound speed of hole. The electron flow is said to be
subsonic/sonic/supersonic if

[J1]

u|=—= ce=1, orequivalently, p % J,

D |~
VIIA

and the hole flow is said to be subsonic/sonic/supersonic if

J J
I 7
n

AV

§Ch =1, orequivalently, n

Throughout this paper, we consider (1.3) on a bounded interval [0, 1]. The critical sonic
boundary condition for the electron density and a given subsonic boundary condition for the
hole density are proposed as follows:

p)=p)=J, n0)=o9>J. (1.4)

We also assume that the doping profile b(x) € C[O0, 1]. For simplicity of notation, we denote

b:= inf b(x) and b:= sup b(x).
x€[0,1] x€[0,1]

Background of study. Over the past few decades, the study of the stationary Euler-Poisson
equations has been a fascinating subject. The research of the unipolar stationary Euler-Poisson
equations was initiated by Degond-Markowich [11]. For one-dimensional case, they proved the
existence and uniqueness of purely subsonic solution under a smallness assumption on the cur-
rent density. Since then, many facets of subsonic steady-states have been extensively investigated,
see [3,4,12,27,29,30,38], for instance. For the supersonic steady flows, Peng-Violet [33] showed
the existence and uniqueness of one-dimensional supersonic solution corresponding to large cur-
rent density. Bae-Duan-Xiao-Xie [2] established the well-posedness of supersonic solution in a
two-dimensional domain with a rectangular geometry. As regards the transonic case, Ascher-
Markowich-Pietra-Schmeiser [1] first investigated the one-dimensional transonic steady-states
with subsonic boundary conditions and a constant supersonic doping profile via phase-plane
analysis. Gamba and Morawetz [16,17] constructed the one-dimensional and two-dimensional
transonic solutions with shocks by artificial viscosity approximation, but the solutions, as the lim-
its of vanishing viscosity, yield boundary layers. Under different boundary settings, Luo-Xin [24]
made significant progress on the detailed structure to the one-dimensional model, establishing the
existence/non-existence and the uniqueness/non-uniqueness of transonic solutions. Further, Luo-
Rauch-Xie-Xin [23] proved the structural and dynamical stabilities of steady transonic shocks.
Wei-Mei-Zhang-Zhang [37] investigated the smooth transonic solutions and observed that the
crucial mechanism affecting the structure of the stationary Euler-Poisson equations is the doping
profile.

The results mentioned above are related to non-degenerate states. When the boundary is sub-
ject to be sonic, the structure of physical solutions to the stationary Euler-Poisson equations
becomes more complicated due to the strong singularity caused by the degenerate effect at the
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critical boundary. Li-Mei-Zhang-Zhang [21,22] first studied the one-dimensional unipolar Euler-
Poisson equations with sonic boundary condition. They systematically classified the structure of
subsonic/supersonic/transonic solutions when the doping profile is subsonic/supersonic. Subse-
quently, Chen-Mei-Zhang-Zhang extended the results of [21,22] to the radially symmetric spiral
flows in [7], the transonic doping profile case in [8] and the multi-dimensional case in [9,10].
Very recently, Feng-Hu-Mei [14] and Feng-Mei-Zhang [15] established the structural stability of
subsonic solution and the structural stability of smooth transonic solution, respectively. Xu-Mei-
Nishibata [39] studied the structural stability of subsonic solution in multi-dimensional case.

Despite the great significance in physical practice, the mathematical results of bipolar sta-
tionary Euler-Poisson equations are few and limited due to the coupling of electrons and holes.
Zhou-Li [41] proved the existence and uniqueness of stationary solution with Ohmic contact
boundary conditions when the doping profile is zero. Tsuge [36] took account of the non-flat
doping profile and obtained the existence and uniqueness of purely subsonic solution when the
electrostatic potential is small enough. Yu [40] showed the existence and uniqueness of one-
dimensional and two-dimensional subsonic solutions with insulating boundary conditions by the
calculus of variations. Lately, based on the topological degree method, Mu-Mei-Zhang [28] in-
vestigated the existence and non-existence of several types of stationary solutions with respect
to degenerate sonic boundary condition for the electron density and different non-degenerate
boundary conditions for the hole density.

For more discussions on the stationary Euler-Poisson equations concerning time-asymptotic
behavior of solutions and asymptotic limits of small parameters, we refer to [6,13,18-20,26,31,
32,34] and references therein.

Feature and difficulty of our study. In practical applications, the conductivity of semicon-
ductors can be improved by adding an appropriate amount of impurities (see [25]). The doping
profile represents the density of impurities in semiconductor devices. As shown in [8,21,22,37],
from the mathematical viewpoint, the doping profile plays a major role in the well-posedness/ill-
posedness of physical solutions to the stationary Euler-Poisson equations. Therefore, it is of
significance to investigate the structural stability of the steady-states, that is, under small pertur-
bation of doping profiles, we expect the difference between the corresponding solutions to be
small. In [23], Luo-Rauch-Xie-Xin first considered this topic regarding the unipolar stationary
Euler-Poisson equations and proved the structural stability of transonic shocks with transonic
boundary. In their settings, no singularity appears on the sonic line due to the fact that the
transonic shocks jump the sonic line without interaction. For the structural stability of smooth
transonic solution with transonic boundary, the singularity arises when the transonic solution
cross the sonic line. Feng-Mei-Zhang [15] successfully addressed this situation by some techni-
cal analysis around the singular points. In the case of sonic boundary, the steady-states exhibit
singularity at the degenerate boundary. Under the assumptions of subsonic doping profile and
small momentum relaxation time, Feng-Hu-Mei [14] established the structural stability of sub-
sonic steady-states to the one-dimensional unipolar Euler-Poisson equations with relaxation term
by precise weighted multiplier method and monotonicity argument.

However, the structural stability of steady-states to the bipolar Euler-Poisson equations is still
unknown. The aim of this paper is to establish the structural stability of subsonic steady-states
to (1.3)-(1.4). There are some essential difficulties in this study. Owing to the strong singularity
caused by the boundary degeneracy and the coupling of electrons and holes, it is full of challenges
to derive the estimates near boundary points x = 0 and x = 1. Further, it is difficult to deal with
the electric field in the stationary Euler-Poisson equations. For unipolar Euler-Poisson equations
with subsonic doping profile, relaxation term and sonic boundary, according to the phase-plane
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analysis in [21], the value of the electric field at x = 0 is the reciprocal of the relaxation time.
Unfortunately, the bipolar system (1.3)-(1.4) does not contain relaxation term and the value of
the electric field at x = 0 is vague. Therefore, the existing approaches for unipolar model are
ineffective in bipolar case.

In order to overcome the above difficulties, we propose some new ideas for the proof. We
establish a new version of comparison principle, which captures the intrinsic negative correla-
tion between electrons and holes. Moreover, we introduce the x% -weight function to control the
singularity at x = 0 and the (1 — x)%-weight function to control the singularity at x = 1. The
local weighted singularity analysis, the monotonicity method, the continuation argument and the
squeezing skill are introduced to deal with the coupling of electrons and holes and the degen-
eracy of electrons at the critical sonic boundary. It is worth mentioning that the perturbation of
electric field at each endpoint can be controlled by the perturbation of doping profiles, which is
the core of establishing the structural stability.

Before proceeding, we first give the definition of the subsonic solution to (1.3)-(1.4). Due to
the degeneracy of the system at the sonic boundary, the subsonic solution has to be defined in the
weak sense, as in [21,28].

Definition 1.1. (p, n)(x) is said to be a subsonic solution to (1.3)-(1.4) if
() (p—J)* € Hy(0,1), n € W>>(0, 1);
(i) p(x) > J forx € (0,1),n(x) > J forx € [0, 1];

(iii) p(0)=p()=J,n(0) =00 > J;
(iv) Forany ¢ € H}(0, 1), one has

1
f( )prpxder/(p—n—b)de—O,
0

and

1
1
f(; )nxgoxdx+/(n+b p)edx = 0.
0

Remark 1.1. Once (p, n)(x) is determined, in view of (1.3);, E(x) can be solved by

(1 I\ e+ Dl =D
Ew = (5 - F) o= 203 '

In this sense, (p, n, E)(x) is also called a subsonic solution to (1.3)-(1.4).
We recall the existence of subsonic solution to (1.3)-(1.4) as follows, excerpted from [28].

Proposition 1.1 (/28]). Suppose that the doping profile b € L* (0, 1). Then for any n > J, there
exists a constant c* = o*(b,n) > J which only depends on b and n, such that for any oy >

o*, the boundary value problem (1.3)-(1.4) admits a subsonic solution (p,n, E) € C%[O, 1] x
w220, 1) x H'(0, 1).
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Remark 1.2. In Proposition 1.1, for a doping profile b € C[0, 1], by the interior regularity theory
of elliptic equations and Sobolev’s embedding theorem, we obtain a subsonic solution (p, n, E) €

(C] O, HnN C%[O, 1]) x C1110, 11 x €10, 1] with relatively higher-order regularity.
Our main results are as follows.

Theorem 1.1 (The uniqueness of subsonic solution). Suppose that the doping profile b € C|0, 1].
Then the system (1.3)-(1.4) admits a unique subsonic solution (p,n, E)(x).

Theorem 1.2 (The structural stability of subsonic solution). Suppose that the doping profiles
b1,by € C[0,1]. Fori = 1,2, let (p;,n;, E;)(x) denote the subsonic solution to (1.3)-(1.4) cor-
responding to b;(x). Then (p1,n1, E1)(x) and (p2,n2, E2)(x) are structurally stable, namely,
there exist two constants 8o € (0, %) and C > 0 independent of ||b1 — b2 ||c|o,17 such that

1
llor — p2licro, 1) + 12 (o1 — p2)xllcro.s0) + 1101 — P2)x Il 180, 1=80]
i
+ (1 =x)2(p1 = p2)xllc1-s0,11 (1
+lln1 = n2llcipo, ) + 1 Ex = E2licijo,17 < Cllb1 = balicpo. -

Remark 1.3. Unlike the unipolar case [ 14], in which an extra subsonic restriction on doping pro-
files is proposed, we prove the structural stability in bipolar case regardless of the type of doping
profile. The negative correlation between electrons and holes leads to this essential difference.

Remark 1.4. In a similar way, the corresponding results in this paper can be extended to the
isentropic case.

This paper is organized as follows. In Section 2, we show the uniqueness of subsonic solution
to (1.3)-(1.4). Section 3 is devoted to establishing the structural stability of subsonic solution to
(1.3)-(1.4). Finally, Section 4 presents some numerical simulations which support our theoretical
results.

2. The uniqueness of subsonic solution

In this section, as a prerequisite for the structural stability, we prove the uniqueness of subsonic
solution to (1.3)-(1.4).

Proof of Theorem 1.1. Assume that (p(l), n®, E(l))_ and '(p(z),n(z), E(Z)) are two subsonic
solutions to (1.3)-(1.4). Therefore, fori = 1,2, (p@, n®, E®) satisfy

1 J? > . .
- (,O(l)) — E(l),
(pm ()3 !

1 J? . .
Dy — O]
(,,m - (n@)a) () =—ET, x €0, 1), @1

(ED)x=p® =0 —b(x).
pD0)=pP1) =1, n00) =09 > J,
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and the equivalent form

(we®) =p® =0~ ),
XX

(L _ J_2> (D), = _ED xe,1), (2.2)
n®  (n®)3 * ’
P = o) =17, n0) =09 > J,
where
12
w(s) :=logs + 752 2.3)

is increasing on s € [J, 00). Taking the difference of (2.2);|;=1 and (2.2),|;=> implies that

(0™ =w(e®) =V = p@)—n" —n®). 24)

XX
Then, for any ¢ € H& 0,1), ¢ =0, we get

1 1

1
- / (0™ = w(p®)) gudx = f (00 — p@)gdx — / D —nP)pdx. (25
0 0

0

Taking ¢ = (w(p®) — w(p@)) " = max {0, w(pD) — w(p@)} in (2.5) gives

1 N 2
- / '(w(pa))_w(pm)) ‘ dx
0
1

1
= [0 =5 (we™) = we®) " dx ~ [V 1) (w(p?) - w(o®)) " d.
0

0
(2.6)
According to the monotonicity of w, we obtain
1
+
f PV = p@) (w(p") — w(p?)) dx =0, @7
0
Summing up (2.1); and (2.1),, we have
(w(,o(i)) + w(n“))) —0, i=1,2. (2.8)
X

For any x € (0, 1], integrating (2.8) over (0, x), we deduce
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: 1 . J?
w(p?) — (logJ + 5) +w®n?) — {logoy + )= 0, i=1,2. (2.9)
0

Taking the difference of (2.9)|;=1 and (2.9)|;=> implies that
w(e) —w(e®) =wn®) —wn®). (2.10)

It is worth noticing that (2.10) shows the negative correlation between electrons and holes, which
plays a crucial role in the following proof. Hence, the monotonicity of w yields

1 1
_ /(na) N (w(pa)) _ w(p<2>)>+dx _ /(nm — ) (w(,,@)) _ w(na)))*dx > 0.
0 0

(2.11)
Substituting (2.7) and (2.11) into (2.6), we have
1 e
f ’(w(p(”) - w(p<2>)) dx =0. 2.12)
X
0
(2.12) together with Poincaré’s inequality leads to
1 e
/ ’(w(,o(l)) - w(p<2>)) dx =0. 2.13)
0

Thus, we have w(p(l)) < w(,o(z)). Using the monotonicity of w again, we get p(l) < ,0(2).

By a similar argument, taking ¢ = (w(,o(])) — w(p(z)))_ = —min {O, w(,o(l)) — w(p(z))} in
(2.5) yields p(V > p® by repeating the above process. Consequently, p!) = p@.

Moreover, (2.10) and the monotonicity of w yield 'V = n® . Additionally, by (2.1),, we
obtain E(V = E@_ The proof of uniqueness is complete.

3. The structural stability of subsonic solution

This section aims to prove the structural stability of subsonic solution to (1.3)-(1.4). The
analysis carried out is long and technical. We divide the proof into several lemmas.

For i = 1,2, let (p;, n;, E;)(x) denote the subsonic solution to (1.3)-(1.4) corresponding to
b;(x), then (p;, n;, E;)(x) satisfies

J2
<1 - @7) (pi)x = pi Ei,
J2
<1 - W) (nj)x =—niEj, x€(0,1). (3.1)
(Ei)x = pi —ni —bi(x),
pi(0) = pi(1) =J, nj(0) =00 > J.
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The degeneracy of (3.1) at the sonic boundary p; (0) = p; (1) = J will bring multiple difficulties
to the proof of the structural stability. We begin with analyzing the sign of E;(0) and the boundary
behaviors of p; (x) and (p;)x(x) near the left endpoint x = 0.
Lemma 3.1. Fori =1, 2, let b; € C[0, 1]. Then,

E;(0) >0, 3.2)

and there exist positive constants C; (j = 1,2, 3,4) such that, for x near the left endpoint 0,
Cix? < pi(x) = J < Cax?, (33)
and
C3x72 < (p)x(x) < Cax 2, (3.4)
where Co > C1 > 0and C4 > C3 > 0.
Proof. Fori = 1,2, letus first prove E;(0) > 0. Otherwise, we assume that £;(0) < 0 by contra-

diction. According to Remark 1.2, we have (p;, n;) € C[0, 1] x C1-1[0, 1]. Therefore, there exist
constants p > J and n > n > J such that

J=pix)=p, J<n=ni(x)<n, xe€l0,1] (3.5

Since n; (0) = o9 > p; (0) = J and b; (x) > 0 for x € [0, 1], there exists a constant & € (0, %) such
that p; (x) — n; (x) — bj (x) < 0 for x € [0, ]. Integrating (3.1)5 over (0, x) for x € (0, €] yields

Ei(x)=E; () + f [pi(s) —n;(s) — b;i(s)]ds < E;(0) <O0.
0

This together with (3.1); implies (p; ) (x) < 0 on (0, &), which is in contradiction with p; (0) = J
and p; (x) > J over (0, 1).
By the continuity of E;(x), there exists a constant «k € (0, £) such that

0< £ < E;j(x) < M, < [0, «]. (3.6)
2 2
By (3.1);, we have
(pi)? — J? (pi + ) [(pi — I)?]
Ei(x)= ———=—(pi)x = > 3.7
=" 20103 G-

Inserting (3.5) and (3.6) into (3.7), for x € [0, k], we get

31, AN AN AN, 3.
0< J_Ez(o) - (pi)"Ei(0) _ [(,0; _J)z] _ 2(p) Ei(x) < 3(pi)” Ei(0) < 3p Ez(o)_
p+J oi+J oi+J oi+J 2J
(3.8)
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Integrating (3.8) over (0, x) for x € (0, ], we deduce

Cix? < pi(x) — J <Cax?, x€[0,k], (3.9)

with

. J3E(0) | J3E»(0) 3p3E1(0)  [3p3E2(0)
Ci:=min — , — , (Cr:=max ,
o+J o+J 2J 2J

Furthermore, it follows from (3.8) that

J3E;(0) 353E;(0)
— < (pi)x <, x€[0,k]. (3.10)
26+ Npi—0) = T 4d(pi —J)
Substituting (3.9) into (3.10), we obtain

1 1

C3x7 2 = (pi)x(x) <Cqx™2, x€[0,k],

with

[ PE0)  JPEx0) 30°E1(0) 35°E2(0)
C3 :=min — , —— , Cyq:= )
20+ J)Cy 2(p+ J)C3 4JC4 4JCy
This completes the proof of Lemma 3.1. O
Following a similar reasoning in the proof of Lemma 3.1, for i = 1, 2, we can determine the
sign of E;(1) and the boundary behaviors of p; (x) and (p;)x(x) near the right endpoint x = 1.
Details are skipped.

Lemma 3.2. Fori =1, 2, let b; € C[0, 1]. Then,
E;i(1) <0, 3.11)

and there exist positive constants C; (j =5, 6,7, 8) such that, for x near the right endpoint 1,

Cs(1—x)2 < pi(x) — J < Co(l —x)2, (3.12)

and

1

1
—C7(1 =x)72 < (pi)x(x) < =Cs(l —x)" 2, (3.13)
where Cg > C5 > 0 and C7 > Cg > 0.
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We observe from (3.4) and (3.13) that the first order derivative of p; (x) blows up near x =0
and x = 1, namely,

li%l+(/)i)x(x) =400, hn{‘, (pi)x(x) = —00. (3.14)

Therefore, endpoints x = 0 and x = 1 are both singular points. In order to deal with the singu-
. . . . I .
larity of the solution at the sonic boundary, we introduce the x 2 -weight function to control the

singularity at x = 0 and the (1 — x) 2 -weight function to control the singularity at x = 1 in order
to perform the following local weighted singularity analysis.

Lemma 3.3. Fori =1, 2, one has

J
lim x? (p;)y (x) = VvV Ei(0) >0, (3.15)
x—0F 2
and
. 1 J
1111117(1 —X)2(pi)x(X)=—§\/—Ei(1) <0. (3.16)
X—>
Proof. It follows from (3.3) and (3.12) that the coefficient 1 — ﬁ in the degenerate principal

part of (3.1); is comparable to X2 near the left endpoint x =0 and (1 — x)% near the right
endpoint x = 1. By the regularity theory of boundary degenerate elliptic equations [35], we

1 ; 1 .
know that x 2 (p; )y (x) can be continuous up to x = 0 and (1 — x)2 (p;),(x) can be continuous up
tox =1. |

Let us first calculate lim, _, o+ x 2 (p;)x (x). For convenience, we set

. 1
Aj = lim x2(p;)x(x).
x—0t

Multiplying (3.1); by x2

2o
(p,-()pzli 7 yields

(p)3E; x?
pi+J pi—J

1
x2(pi)x =
Bearing in mind p; (0) = J and using L’Hospital’s rule, we have

1
A;j = lim x2(p;j)x
x—0t

3 3
— tim 22 im B lim
x—0t pi +J x>0+ x>0t pj — J
1
J2 lx_j
="_FE;0) lim 2
2 x—0+ (0i)x
J? 1
="E;(0)—.
1 i ( )A'

1
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The boundary behavior (3.4) prompts us to choose the positive root

A,’ = i\/ E,(O) > 0.

2

Next, we compute lim,_, ;- (1 — x)% (pi)x(x). Set

Bii= lim (1 - )2 (pi)x(x).

Multiplying (3.1); by (1 — x)3 (pl_()gf)_z 5 gives
1
(0 E; (1 —x)2

1
1 —x)2(pi)x = .
( )Z2(0i)x i+ pi—J

Bearing in mind p; (1) = J and using L’Hospital’s rule, we obtain

. 1
Bi = lim (1-x)2(pi);
x—

3 1
. 1_ 2
— tim 2 ym B ofim T
x—>1=pi+J x>1- x>1- pi—J
1
J? —la-—x):2
LB tim 200
x—1- (pi)x
B JZE(1)1
T4 7By

1

This together with the boundary behavior (3.13) implies that

J
B; = —5\/ —E;(1) <0,

which is negative. The proof of Lemma 3.3 is complete. O

Next, we establish the key comparison principle for the subsonic solution, which is the cor-
nerstone of monotonicity argument in proving structural stability.

Lemma 3.4 (Comparison principle). Let by, by € C[0, 1]. If b1(x) > by(x) on [0, 1], then
p1(x) = p2(x), ni(x) <na(x),  for x€l0,1]. (3.17)

Proof. For i = 1,2, let (p;, n;, E;)(x) denote the subsonic solution to (3.1) corresponding to
b;(x). By arguing similarly as in the proof of Theorem 1.1, we obtain

(w(p1) —w(p2))xx = (o1 — p2) — (n1 — n2) — (by — by), (3.18)
and
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w(p1) —w(p2) = w(nz) —wny), (3.19)

where w is defined in (2.3). Multiplying (3.18) by (w(p2) — w(p1))" and integrating the result-
ing equation over (0, 1) yield

1

1
/I(w(pz) - w(m));ﬂzdx+/(pz—m)(w(pz) —w(p)) " dx
0 0
1

- / (2 — n1) (w(p2) — w(pn)* dx (3.20)
0

1
= /(bz —by) (w(p2) — w(p1) T dx <0.
0

Bearing in mind (3.19) and the monotonicity of w, we get

1 1
/(,02 — p1) w(p2) — wpp) " dx — /(n2 — 1) (w(pa) — w(py)* dx
0 0

1 1 (3.21)
= /(m —p1) (w(p2) —w(pn)) " dx + /(nl —n2) (w(n) —w(n2) " dx > 0.
0 0
Inserting (3.21) into (3.20) and using Poincaré’s inequality imply
1 1
0< f |(w(p2) — w(oN)*|* dx < f |(w(p2) — w(o)i|* dx <. (3.22)
0 0

Therefore, we have w(p1) > w(p2). This together with the monotonicity of w and (3.19) gives
p1(x) = p2(x) and ny(x) < na(x) forx € [0,1]. O

Lemmas 3.1-3.4 enable us to establish the structural stability of subsonic solution to (3.1) at
the cost of adding an extra restriction by (x) > by (x). Since it is difficult to study the structural
stability of the solution directly on the entire interval [0, 1], we divide the interval [0, 1] into three
parts: (i) near the left endpoint x = 0; (ii) on the middle domain; (iii) near the right endpoint x =
1. We begin with the following lemma which establishes the local weighted structural stability
estimate on a neighborhood of the left endpoint x = 0.

Lemma 3.5 (Local weighted structural stability estimate near x =0). Let by, by € C[0, 1] and
b1 (x) = by(x) on [0, 1]. Then there exist two constants 8g € (0, %) and C > 0 independent of
b1 — ballcpo,1) such that
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1 1
x 2 — + ||x2 -
72 (o1 = P2 llcr0.60) + X2 (o1 = p2)x | cl0,50) (3.23)

+ lIn1 —n2llcip,sy) + 1E1 — E2llcifo,50) = Cllb1 = b2llcro, 13-
Proof. We first claim that
Ei(1) < Ex(1) <0 < E2(0) < E1(0). (3.24)

In fact, since b (x) > by(x) on [0, 1], Lemma 3.4 gives p1(x) > pa2(x) on [0, 1]. Bearing in mind
01(0) = p2(0) = J, it follows from L'Hospital’s rule and (3.15) that

0< lim (p1 — p2)(x)
T x—0t x%
_ (o1 — JN)x) . (2 — J)(x)
= lim ———— — lim ————
x—0 x2 x—0 x2 (325)

=2 1im x2(p1)s —2 lim x2 (o)
—J (,/El(O) _ \/E2(0)>.

Thus, E1(0) > E»(0) > 0. Similarly as above, combining p;(1) = p2(1) = J, L’Hospital’s rule
and (3.16) yields

0< lim (o1 —,02)1(36)
x—1- (1_x)§
_ (o1 — J)(x) . (o2 —Nx)
= lim ———— - lim —————
=T (1-x2 2l (1-x)2 (3.26)

1 1
=-2 lir? (I—=x)2(p)x+2 lirrll (I —x)2(p2)x
x—>1- x—1-
=1 (V=Ei(D) - V=E2(D).
which implies E1(1) < E»(1) < 0. Therefore, we obtain (3.24).

Next, we show that there exist two constants 8¢ € (0, %) and M, > 0 independent of ||b; —
b2l cro,17 such that

(p1 — p2)(x)
1

X2

< Mollby — balicro,13.  x €10, o). (3.27)

Otherwise, for any § € (0, %) and M > 0, there exists x5 € [0, 8p) such that

(o1 — p2)(x5)

(xs)2

> M||b1 — ballcro.11- (3.28)

By the arbitrariness of §, we could take 6 = % with h =3,4,5, ---. Hence, for any M > 0, there
exists x; € [0, %) such that
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(o1 — p2)(xp)
1

(xn)2

> M||b1 — b2llclo,1] (3.29)

which yields

I (o1 — p2)(xn)
1m e

xh—>0+ (.Xh) 2

> M| by — b2|lco,17- (3.30)

Indeed, combining (3.1)3, (3.24), (3.25) and Lemma 3.4, we deduce

lim LI (\/El(o) - \/Ez(O))

x—0F x2

= Co (E1(0) — E2(0))

= Co(((E1(0) = E(1) = (E20) = E2(1)) )

1 1
=Cy /(bl +ny — pdx —/(b2+n2 — p2)dx
0 0 (3.31)

1 1 1
e / (b1 — bo)dx + / (n1 — na)dx — / (p1 — pr)dx
0 0 0

1
<Gy f (b1 — by)dx
0

< Collb1 — balicro, 115

J ~ . .
where Cop = TEOIED > 0 and Cp > 0 is a constant independent of ||b1 — b2||c[o,1]. Thus,

we get a contradiction to (3.30) by taking M = 2Co, which implies (3.27). It is worth noticing
that (3.31) gives

E1(0) — E2(0) < Cllby — ballcpo, 115 (3.32)

which indicates that the difference between the values of electric field at x = 0 can be controlled
by the perturbation of doping profiles.

Bearing in mind n; € c'1o, 1], the non-degeneracy of n; and the smoothness of w defined
in (2.3), by (3.19) and (3.27), we obtain

< Cllby — balicio, 11

C —
(12 — ) () = CQw(na) — wnn)) = Cw(pr) — wipn) < 2L L2

X2
(3.33)
for x € [0, &p).
With the preparations above, we are now in position to prove (3.23). By (3.1);, fori =1, 2,
we have
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(i) E;

(Pi)x=m-

(3.34)

Multiplying (3.34) by x7 and taking the difference of the resulting equations for i =1, 2, we
deduce

(p)PEr xI  (p)3E; «x?
or+J pr—J pp+J ;2= J
(m>3E1< x? x? >+<(91)3E1 (,02)3E2) Xt (335)

p1+J \o1—J p;m—1J p1+J  p+d ) pm—1J

1
x2(p1 — p2)x =

=11+ I.
Now, we estimate /1 and /5 near x = 0, respectively. It follows from (3.3) and (3.27) that

1 1
(P)3Er x2  x2 pr—pi

|| = 1
or+J pr=Jpp—J 3

p1 — P2
5C< l 1 >§C||bl—bzllcm,1]. (3.36)

X2

Combining (3.3), (3.17), (3.24), (3.27), (3.32), (3.33) and the mean-value theorem implies that

1
| = ((,01)3151 B (,02)3E2) x2
o1+J p2+J ) pp—J

(01)*E1 _ (p2)’E2
p1+J ;m+J
3 3 3

=C‘E1< (p1)° () )+ (p2)
p1+J pa+J p2+J

<C

(E1 — Ey)

< Clp1 = pal() + C |(E1 0) = E2(0)) + f [(p1 = p2) — (1 — n2) — (b1 — ba)]dy
0
< Clp1 — p2)(x) + C(E1(0) — E2(0)) + C / (p1 — p2)dy
0

X
+ C/(nz ~n)dy + Cllbr — ballepoy
0

I +
x2 ;;-‘7

e ((m — () | (p1— /1?2)(5)> + C(E1(0) — E2(0))

+ C(na —n1)(€) +Clb1 — ballcpo1y,  3&,& €[0,x]

< Clby = balicpo, 13-
(3.37)
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Inserting (3.36) and (3.37) into (3.35) yields
1
x2[(p1 — p2)x|(x) < Cllb1 = ballco, 1, x €10, So). (3.38)
By (3.1),, fori =1, 2, we have

(ni)3E;

“n (3.39)

(ni)x =

Taking the difference of (3.39)|;=1 and (3.39)|;=> and using the mean-value theorem, we get

(n1 —ny)y = (n2)° E» _ (n1)°E,
R 2 LI E R T C
- (n)’ (n2)° (1)} (3.40)
-oh ((711)2 —J2 ()2 - 12) T )= J2 (E1 — E2)

=—Ei1f'(¢)(n1 —n2) — f(m2)(E1 — E2), 3¢ € (ny,ny),
where

3

s
In addition, taking the difference of (3.1);|;=1 and (3.1)3];=> gives
(E1 — E2)x = (p1 — p2) — (n1 —n2) — (b1 — by). (3.42)

Multiplying (3.40) by (n1 — n2) and (3.42) by (E1 — E»), using Cauchy’s inequality and (3.27),
we deduce

(01 =n2? + (&1 = E2?) @)
=C (o1 = p2)% + (11 = m2)* + (Ey = E2)?) (1) + Cllby = baligo

c <(m - ;1)2)(x)

X2

(3.43)

A

2
) +C (1= m)* + (B = E2)?) (1) + Cllby = bali2go
<C ((m —n)* + (E1 — Ez)z) (x) 4+ Cllb1 — ballgpo.q). X €10.80).
Applying Gronwall’s inequality to (3.43), bearing in mind n1(0) = n2(0) = o¢ and (3.32), we

obtain

(0 = 4+ (B4 = E2) (1 =€ | (E1 = B2 + [ o1 = bali
J (3.44)

<Cl|b1 — b2||%‘[0,1]7 x €0, dp).
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Therefore,
[n1 —na|(x) +|E1 — E2|(x) < Cllb1 — balicro,13,  x €10, 8p). (3.45)
Further, (3.40) and (3.42), together with the estimates (3.27) and (3.45), yield
[(n1 —n2)x|(x) + [(E1 — E2)«|(x) < Cllb1 — balicio,11,  x €10, o). (3.46)

Finally, combining (3.27), (3.38), (3.45) and (3.46) leads to the local weighted structural sta-
bility estimate (3.23), which completes the proof. O

Next, we are able to establish the local structural stability estimate on the middle non-singular
domain. The proof is based on the continuation argument.

Lemma 3.6 (Local structural stability estimate on the middle domain). Let by, by € C[0, 1] and

b1(x) = ba(x) on [0, 1]. Then there exists a constant C > O independent of |b1 — balIc|o,1] such
that

o1 = p2llcips, 1-5,1 + It —n2llcrgs, 1—s,1 1 E1— E2ll iy 1—s,1 < Cllb1 — b2licrong, (3.47)
where 81 € (0, 80) and b is determined by Lemma 3.5.

Proof. Taking the difference of (3.34)|;—; and (3.34)|;—> and using the mean-value theorem
yield

(01— p2)e = (e*E1 (0)*Er
T2 —Jr ()22
B (p1)? (p)? (p2)? (3.48)
=5 ((m)z 72 ()2 - ﬂ) 22 )

=Eif'(n)(p1 — p2) + f(p2)(E1 — E2),  3n€ (02, p1).

where f(s) is defined in (3.41). Multiplying (3.48) by (o1 — p2), (3.40) by (n1 — n3) and (3.42)
by (E; — E3), using Cauchy’s inequality and summing the resulting estimates, we deduce

((,01 —p2)? + (n1 —n2)? + (Ey — Ez)z)x (x)

= C (o1 = p2)? + (11 =) + (Ey = E2?) (0 + b1 = balidyo, x € (61,151
(3.49)
Applying Gronwall’s inequality to (3.49), we have

(o1 = 920 + (1 =) + (E1 = E2)?) (@)

= [((or = p2)? + (11 = m2)? + (E1 = E2?) 1) + b1 = baliEpo |- €181, =811,
(3.50)
Bearing in mind §; < §p, Lemma 3.5 gives
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2 2 E EN2) (5
(01— p2)” + (n1 —n2)” + (E1 — E2)7) (81)

<

((m — 02)(51)
61)2

<Ilby = b2l g go.11-

2
) + (n1 —n2)*(81) + (E1 — E2)*(81) (3.51)

which together with (3.50) yields

lo1 — p2|(x) + |n1 — nal(x) + |E1 — E2|(x) < Cllby — b2llclo,17,  x €[81,1—=681]. (3.52)

Moreover, by (3.40), (3.42), (3.48) and (3.52), we obtain

[(p1 — p2)x|(x) + [(n1 — n2)x|(x) + [(E1 — E2)x|(x) < Cllb1 — b2licro,11, x €81, 1 =61
(3.53)
Combining (3.52) and (3.53) implies the local structural stability estimate (3.47) on the middle
non-singular domain [§1, 1 —81]. O

Finally, we establish the local weighted structural stability estimate near the right endpoint
x=1.

Lemma 3.7 (Local weighted structural stability estimate near x = 1). Let by, by € C|[0, 1] and
b1(x) = ba(x) on [0, 1]. Then there exists a constant C > O independent of b1 — balIc|o,1] such
that

1 1
1—x)"2(p1 — —so.11 1L =x)2 (o1 — B
I =x)72 (o1 = p2)llca—so.11 + 11 = x)2 (o1 = P2)xllc1-8.11 (3.54)

+lln1 —n2llerg—sy. 11 + 1E1 = E2llc1 (155,17 = Cllb1 — b2llcr0,11
where 8 is determined by Lemma 3.5.

Proof. We first claim that there exists a constant M; > 0 independent of [|b1 — b2||c(o0,1] such
that

(o1 — p2)(x)
(1—x)?

<Mlby = balicio,13,  x € (1 —do, 11. (3.55)

Otherwise, by a reasoning similar to that in the proof of Lemma 3.5, for any M > 0, there exist
x;e(1—1 11withi=3,4,5, -, such that

. (p1 — p2)(x1)
m —F

lim = > M|b — b2llcpo.1)- (3.56)
x—1- (1 —X[)§

In fact, by (3.1)3, (3.24), (3.26) and Lemma 3.4, we obtain
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tim L2 (D - VD)

_ 1
x—1 (1—)6)7

=Co (—Ei1(1) + E2(1))

= Co(((E1(0) = Ev(1) = (E2(0) = Ex(1)) )

1 1
—¢ /(bl—i—nl—pl)dx—/(bz—i-nz—pz)dx
0 0 (3.57)

1 1 1
— ¢y / (b1 — ba)dx + / (1 — no)dx — / (p1 — p)dx
0 0 0

1
<G f (b1 — b)dx
0

<Collb1 — b2l cro.17,

] o . .
where Cyp = NN OrNEZ) > 0 and Cp > 0 is a constant independent of ||b1 — b2 || c1o,17- There-

fore, taking M = 2Cy yields a contradiction to (3.56), which implies (3.55). Analogous to (3.32),
it is also worth mentioning that (3.57) shows

E>(1) — E1(1) < C|lby = balicpo, 13 (3.58)

that is, the difference between the values of electric field at x = 1 can be controlled by the
perturbation of doping profiles. Moreover, by arguing similarly as in (3.33), for x € (1 — §p, 1],
we deduce

C —
(n2 —np)(x) = C(w(ng) —wny)) =Cw(p) —w(p2) < (/017/)12) < Cllb1 = ballcro,11-

(I=x)2
(3.59)
1
Now, we are ready to prove (3.54). Multiplying (3.34) by (1 — x)2 and taking the difference
of the resulting equations for i = 1, 2, we have

1 1
1 P)3E1 (1-x)7  (02)3E2 (1 —x)2
(I=x)2(p1 — p2)x = -

pr+J p1—J m+J pp—J

RCOR ((1 -0 (1 —x>i> . ((m)3E1 ~ (pz>3Ez> (1-x)3

o1+J p1—J p—J p1+J o2+J p—J

=: K1+ K>».
(3.60)
Using (3.12) and (3.55) yields

(pPE; (1—x)2 (1=x)2 py— py

K1 = ;
pr+J p1—=J pp—=J (1—yx)2

Pl — P2
<C|———— ) =Clb1 —baliclo,13- (3.61)
(1-x)2
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Combining (3.12), (3.17), (3.24), (3.55), (3.58), (3.59) and the mean-value theorem, we get

1
Kol = <(p1)3E1 ~ (pz)3Ez) (1-x)2
p1+J m+J ) pp—=J

<C (01)3E, B (02)E>
T ol +J ;m+J
0)? ()} > (p2)? ‘
— E — Ei—E
C‘ 1(lerJ ,m+J +pz+1( : ?)
1
< Clp1 = pal(x) +C (El(l)—Ez(l))—/[(,Ol—pz)—(nl—nz)—(bl—bz)]dy

X

1
< Clo1 = p)(x) + C(E2(1) = Ey(1)) + C / (o1 — pa)dy

1
+ C/(nz —n1)dy + Cllby — balico,1
X

- — )0
<c (o1 pz)fX) n (o1 ,02)1( )
(1—-x)2 (1-06)2
+ C(ny —n1)(@) + Cllby — balico.n, 36,0 €x, 1],
< C|by = balicpo, 13-

) + C(Ex(1) — Er(D)

(3.62)
Inserting (3.61) and (3.62) into (3.60) implies that
1
(I =x)21(p1 — p2)x|(x) = Cllb1 = b2licro,17. x € (1 = o, 1. (3.63)
Analogous to (3.43), we obtain
(11 =n)? + (B = E2?) @
= C (o1 = p2)? + (11 = m2)? + (B = E2)?) (1) + Cllbt = baliEyo
(3.64)

c ((m — p2)(x)

2
Ty ) +C (01 =2+ (By = E2)?) (1) + Cllby = baligo
—x)2

= € ((m =m)? + (Ei = E?) () + Cllb1 = ballgo,ye x € (1= o, 1.

An application of Gronwall’s inequality to (3.64) gives
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(011 =%+ (B = E2?) @)

= € [011 =) (1 = 80) + (Ey = E2*(1 = 80) + b1 = ballo,y | x € (1 =0, 11,

(3.65)
Since 1 — §p < 1 — &1, by Lemma 3.6, we have
(1 —n2)*(1 = 80) + (E1 — E2)*(1 = 80) < Cllb1 — ballgo.1;- (3.66)
which together with (3.65) yields
Ini —na|(x) + |E1 — E2l(x) = Cllb1 — b2llcpo,17, x € (1 = 8o, 1]. (3.67)
Combining (3.40), (3.42), (3.55) and (3.67) implies that
[(n1 —n2)x[(x) + [(E1 — E2)x|(x) = Cllb1 = ballcro,13,  x € (1 =80, 1]. (3.68)

Hence, the local weighted structural stability estimate (3.54) follows from (3.55), (3.63), (3.67)
and (3.68). O

Based on Lemmas 3.5-3.7, we are now in position to construct the structural stability of sub-
sonic solution to (3.1) under a monotonicity condition on doping profiles.

Proposition 3.1. Let by, by € C[0, 1] and b1 (x) > by (x) on [0, 1]. Fori =1, 2, let (p;, n;, E;)(x)
denote the subsonic solution to (3.1) corresponding to b;(x). Then there exist two constants
8o € (0, %) and C > 0 independent of ||b1 — b2 || c|o,1] such that

1
llor — p2llcro, 1 + 11X 2 (o1 — p2)xllcro,80) + 11001 — P2)x Il Cl80,1—80]

1
+ 11 = x)Z(p1 — p2)x llc1-50.1] (3.69)
+ In1 —nallerpo, 1 + 1E1 — Exllcipo 1y < Cllb1 — bz2llcro.1-

Proof. Combining (3.23), (3.47) and (3.54), we obtain (3.69), as desired. O

Now, we are ready to prove Theorem 1.2, which removes the monotonicity restriction by (x) >
b>(x) on [0, 1] in Proposition 3.1 by the squeezing skill.

Proof of Theorem 1.2. Let (o, N, £)(x) denote the subsonic solution to (3.1) corresponding to
the doping profile B(x) :=max{b;(x), b2(x)}. Then, it follows from Proposition 3.1 that
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o1 — p2licron + IIX%(,Ol — p2)xllcro.50) + 1(P1 = p2)x 89,1501
+ I = x)%(,@l = p2)xllca=-so.11 + ln1 — n2llcrjo. 1 + 1E1 — E2llerpo, 1
<llp1 —ellcro,n + Ix3 (o1 — 0)xllcro,60) + 11 — 0)xllcrso, 1-80]
+ 1 —X)%(,Ol —0)xllca—so.11 4+ In1 =Nl + I1E1 = Ellcrjo.n (3.70)
+lle — p2licro + % (0 — p2)xlicro.60) + 1@ — p2)x Il 89,1501
+ I = x)%(Q — pxllca—so.11 + IN =n2licijo.) + 1€ = Exllcio. 1
< CI|IB =bilicio.1+ ClIB = bzllcro.1
< Cllbi = ba2licio.1-

This completes the proof of Theorem 1.2. O
4. Numerical simulations

This section presents some numerical simulations with respect to different types of doping
profiles. Owing to the degeneracy of electrons at the boundary, the numerical simulations to
(1.3)-(1.4) cannot be carried out directly. An alternative is to consider the following subsonic-
current-approximation system:

__rE
T
nk
T T 2 x€(0,1), 4.1)

Ex :,o—n—b(x),
p(O)y=p()=J, n0)=o00>J,

where 0 < j < J. Fori =1, 2, let (p;, n;, E;)(x) denote the numerical solution to (4.1) corre-
sponding to b; (x). In order to facilitate numerical calculations, we set j = 0.9, J =1 and op =5.
The following three different types of doping profiles will be considered separately:

(i) Subsonic doping profiles: b1(x) = 3.1 + sin(zrx) and by (x) = 3 + sin(rx);
(i1) Supersonic doping profiles: b1 (x) = 0.6 4+ 0.3 sin(;rx) and by (x) = 0.5 + 0.3 sin(7x);
(iii) Transonic doping profiles: b1(x) = 1.1 + 0.5sin(zx) and br(x) = 1 4 0.5sin(mx).

The numerical simulations are performed in Figs. 1-3.

Let us take the type (i) as an example; see Fig. 1 for the corresponding numerical simulations.
Fig. 1(a) and (b) indicate that the comparison principle in Lemma 3.4 holds. From Fig. 1(c), it
can be seen that E1(1) < E>(1) < 0 < E»(0) < E{(0), which is consistent with (3.24). From
Fig. 1(a), (b), (c), (e) and (f), we observe that [|p1 — p2llcio,1] + ln1 — nallcipo,; + 1E1 —
E2||C1[0,1] can be controlled by ||b1 — b2||co.1]- Further, Fig. 1(d) suggests that the first order
derivative of the electron density blows up near x =0 and x = 1 (i.e., (3.14)), which coincides
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Fig. 1. Structural stability between (p1,n1, E1)(x) and (pp,n3, E7)(x) corresponding to subsonic doping profiles
b1 (x) =3.1+sin(rx) and by (x) =3 + sin(7w x).
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Fig. 2. Structural stability between (p1,n1, E1)(x) and (pa,n7, E2)(x) corresponding to supersonic doping profiles

b1(x) =0.6+0.3sin(;rx) and by (x) = 0.5+ 0.3 sin(;wrx).
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Fig. 3. Structural stability between (p1,n1, E1)(x) and (p,n3, E2)(x) corresponding to transonic doping profiles
b1(x) =1.14+0.5sin(;rx) and by (x) = 1 4+ 0.5sin(rx).
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1
with Lemmas 3.1-3.3. Hence, it is quite reasonable to introduce the x2-weight to control the

singularity near x = 0 and the (1 — x) 2 -weight to control the singularity near x = 1.

Consequently, the numerical simulations performed sufficiently support our theoretical re-
sults, confirming the structural stability of the subsonic solution to (1.3)-(1.4). Furthermore, as
can be seen from Figs. 1-3, the structural stability for the bipolar model can be established re-
gardless of the type of doping profile, which is different from the unipolar case.
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