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Abstract. This paper focuses on the phase transitions of a 2×2 system of

mixed type for viscosity-capillarity with periodic initial-boundary condition
in a viscoelastic material. By the Liapunov functional method, we prove the

existence, uniqueness, regularity and uniform boundedness of the solution. The

results are correct even for large initial data.

1. Introduction and main theorem. This work is concerned with the viscous-
capillarity system of mixed type in the viscoelastic material dynamics (resp. the
compressible van der Waals fluids):{

vt − ux = ε1vxx,

ut − σ(v)x = ε2uxx,
(x, t) ∈ R×R+. (1)

We study the coupled system with the initial condition

(v, u)|t=0 = (v0, u0)(x), x ∈ (−∞,∞) (2)

and the 2L-periodic boundary condition

(v, u)(x, t) = (v, u)(x + 2L, t), (x, t) ∈ (−∞,∞)× (0,∞) (3)

where L > 0 is a given constant. Note that from the compatibility condition, we
have

v0(x) = v0(x + 2L), u0(x) = u0(x + 2L). (4)
Here v(x, t) is the strain (resp. specific volume), u(x, t) the velocity, ε1 > 0 and
ε2 > 0 the viscous constants, σ(v) the stress function (resp. pressure function),
which is assumed to be sufficiently smooth and non-monotonic. The stationary
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solutions of (1)-(4) has been reported in [24], in which the nonlinearity is taken as
the simplest prototype:

σ(v) = v3 − v. (5)

This function captures the basic features for the phase transition models. For such
a stress function σ(v), there are only two critical points ± 1√

3
such that σ′(± 1√

3
) =

0, and σ′(v) > 0 for v ∈ (−∞,− 1√
3
) ∪ ( 1√

3
,∞), σ′(v) < 0 for v ∈ (− 1√

3
, 1√

3
).

Physically, this determines three phases, for example, soft material, hard material,
and soft-hard mixed material in the viscoelastic dynamics; or water, gas, and water-
gas mixture phases in the van der Waals fluids (in this case, the pressure is taken
as −σ(v) = Rθ

v−b − a
v2 with positive constants R, θ, a and b satisfying Rθb/a <

(2/3)3 and v > b). Mathematically, Eq.(1) with ε1 = ε2 = 0 is hyperbolic in
(−∞,− 1√

3
) ∪ ( 1√

3
,∞) and elliptic in (− 1√

3
, 1√

3
), therefore, v = ± 1√

3
are the two

phase boundaries.
Since the periodic solutions (v, u)(x, t) of (1)-(3) in the entire space (−∞,∞) can

be regarded as 2L-periodic extensions of that on [0, 2L], we only need to consider
the system (1) on the bounded interval [0, 2L]. Integrating (1) over [0, 2L] × [0, t]
and using the periodic boundary condition (3), we obtain

∫ 2L

0

v(x, t)dx =
∫ 2L

0

v0(x)dx,

∫ 2L

0

u(x, t)dx =
∫ 2L

0

u0(x)dx. (6)

Let

m0 :=
1

2L

∫ 2L

0

v0(x)dx, m1 :
1

2L

∫ 2L

0

u0(x)dx, (7)

then ∫ 2L

0

[v(x, t)−m0]dx = 0,

∫ 2L

0

[u(x, t)−m1]dx = 0. (8)

The solution to system (1) with different types of initial or initial-boundary
values has been widely studied, see [1]-[9], [11]-[16], [18]-[30], [33] and the references
therein. Among them, Eden et al [6] studied (1) with the periodic initial-boundary
value for the van der Waals model with pressure function: p(v) = −σ(v) = Rθ

v−b− a
v2 ,

and proved the global existence and boundedness of the solution in the weak sense.
To prevent the pressure to blow up, namely, to guarantee the solution v(x, t) > b,
they required that the initial data v0 and u0 are sufficiently small and that the non-
convexity of the state function p(v) is not too strong. Under the assumption of small
initial data, by using the Galerkin approximation method, it is standard to show the
existence, uniqueness and boundedness of the solution (v, u)(x, t). The role of the
smallness of the initial data is essential for obtaining the global existence as well as
the stability. See also the stability of traveling waves with small initial perturbation
in [16], [18]-[23]. However, for any large initial data, the uniform boundedness of
the solution with respect to the given initial datum usually are not expected, even
for the global existence of the solution. Hence, the present study on the solution
with large initial data is of significant interest to researchers in the mathematics
and physics community. In this paper, by considering the nonlinearity of the form
σ(v) = v3 − v, we show that, even for any large initial data, the global solution
(v, u)(x, t) to (1)-(3) in the strong sense exists uniquely and is uniformly bounded.
This result improves the previous work [6]. To obtain the uniform boundedness
of the solution for a given large initial data, we find that the standard energy
method together with the Liapunov functional cannot be directly applied to the
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original equations (1), because σ′(v) changes signs in different regions (hyperbolic
and elliptic). In order to overcome this difficulty, we first transform the original
periodic IBVP (1)-(3) into a new system (see (16) and (20)), and then show the
uniform boundedness of the solution by selecting a suitable Liapunov functional for
the new system.

The existence of the stationary solutions to (1)-(3) have been studied in our
previous paper [24] by use of the energy method in [31] and the transversality ar-
guments in [10] for Cahan-Hilliard equation. We proved that when the product of
the viscosities ε1ε2 is large, there exists only one trivial solution (no phase tran-
sition), and when ε1ε2 is small, there exists some non-trivial solutions, in which
phase transitions occur through the three phases periodically. Furthermore, we
found that the number of non-trivial solutions depends on the size of m0. However,
an interesting and important continuation on this topic are to study the stability
of these stationary solutions, i.e., the convergence of the solution of (1)-(3). This
will be reported in our following paper [25]. In order to show the convergence by
the compactness arguments and the energy method, it is essential for us firstly to
establish the existence, the uniqueness, and in particular, the uniform boundedness
of the solution (v, u)(x, t) of (1)-(3), which is the goal and the contribution of the
present study.

Notation. Before stating our main results, we introduce the following notations.
Throughout the paper, C > 0 denotes a generic constant, while Ci > 0 (i =
0, 1, 2, · · · ) represents a specific constant, R = (−∞,∞). Since solutions (v, u)(x, t)
of (1)-(3) are periodic, we introduce spaces of periodic functions. Letting p denote
the period, we introduce the Hilbert space L2

per(R) of locally square integrable
functions that are periodic with period p,

L2
per(R) =

{
v(x) | v(x) = v(x+p) for all x ∈ R, and v(x) ∈ L2(0, p) for x ∈ [0, p]

}
,

with the norm given by the integral over [0, p] (or over any other interval of length
p), denoted by ‖ · ‖,

‖v‖ =
( ∫ p

0

v2(x)dx
)1/2

.

We define the Sobolev space Hk
per(R) (k ≥ 0) to be the space of functions v(x)

in L2
per(R) whose derivatives ∂i

xv, i = 1, · · · , k belong to L2
per(R) with the norm

denoted by ‖ · ‖k,

‖v‖k =
( k∑

i=0

∫ p

0

|∂i
xv(x)|2dx

)1/2

,

where ‖v‖0 = ‖v‖. We use the simplified notation ‖(f, g)‖2 = ‖f‖2 + ‖g‖2 and
‖(f, g)‖2k = ‖f‖2k + ‖g‖2k. The periodic spaces L∞per(R) and Lk

per(R), where k is
a positive integer, are similarly defined. Let T > 0 be a number and B be a
Banach space. The space of B-valued continuous functions on [0, T ] is denoted by
C0([0, T ];B). The corresponding spaces of B-valued functions on [0,∞) are defined
similarly.

We now state our main result.

Theorem 1.1 (Existence, Uniqueness, Uniform Boundedness). Let (v0, u0)(x)
∈ H2

per(R). Then there exists a unique and global solution (v, u)(x, t) ∈ C([0,∞);
H2

per(R)) for the periodic IBVP (1)-(3). In particular, the solution (v, u)(x, t) is
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uniformly bounded in H2
per, i.e.,

‖(v, u)(t)‖2 ≤ C0, t ≥ 0 (9)

for some constant C0 > 0.

2. Existence, uniqueness and uniform boundedness. In this section, we prove
the global existence and uniqueness of the solution (v, u) to system (1)-(3). It is im-
portant to note that there is no restriction on the amplitude of the initial data. The
uniform boundedness of the solution (v, u)(x, t) plays a key role in the study, and it
leads to the global existence, in particular, the convergence to certain steady-state
solution (see [24, 25]).

First, by using the fixed-point iteration, we can prove the local existence. The
detail of the proof is omitted.

Proposition 2.1 (Local Existence). Given (v0, u0)(x) ∈ H2
per(R), there exists t0 =

t0(v0, u0) > 0 such that system (1)-(3) has a unique solution (v, u)(x, t) ∈ C0([0, t0];
H2

per(R)).

Let [0, Tmax) be the life-span of the solution (v, u)(x, t), we then have the follow-
ing well-known alternative result (for example, see [17, 32]).

Proposition 2.2 (Alternative). Let [0, Tmax) be the maximal interval of the ex-
istence and (v, u)(x, t) ∈ C0([0, Tmax);H2

per(R)), then either Tmax = +∞; or
Tmax < +∞ and limt→T−max

‖(v, u)(t)‖2 = ∞.

Now we are going to prove Tmax = ∞. The most important step is to show the
boundedness of the solution (v, u)(x, t). In fact, we will prove that not only the
solution is bounded but it also is uniformly bounded for any given initial datum.

It has been already shown that, the solution of (1)-(3) is bounded when the initial
datum is sufficiently small (see [5, 6, 16],[18]-[23]). But for large initial datum, it
is not trivial to get such a uniform boundedness directly from the equations (1)
because σ′(v) changes signs in different regions. To overcome the difficulty, we
transform the original system, so that we could find a suitable Liapunov functional
for the equivalent new system and the uniform boundedness can then be proved.

Let
v̄(x, t) := v(x, t)−m0, ū(x, t) := u(x, t)−m1. (10)

Then the system (1)-(3) can be rewritten as




v̄t − ūx = ε1v̄xx,

ūt − σ̄(v̄)x = ε2ūxx,

(v̄, ū)|t=0 = (v0(x)−m0, u0(x)−m1) =: (v̄0, ū0)(x),
(v̄, ū)(x, t) = (v̄, ū)(x + 2L, t),∫ 2L

0
(v̄, ū)(x, t)dx = (0, 0),

(11)

where
σ̄(v̄) = σ(v̄ + m0)− σ(m0).

We now technically set up




(a(t), b(t)) :=
(

1
2L

∫ 2L

0

∫ x

0
v̄(y, t)dydx, 1

2L

∫ 2L

0

∫ x

0
ū(y, t)dydx

)
,

(φ(x, t), ψ(x, t)) :=
( ∫ x

0
v̄(y, t)dy − a(t),

∫ x

0
ū(y, t)dy − b(t)

)
.

(12)
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It is easy to verify

(φx, ψx)(x, t) = (v̄, ū)(x, t),
∫ 2L

0

φ(x, t)dx = 0,

∫ 2L

0

ψ(x, t)dx = 0. (13)

We have also the periodic condition

(φ, ψ)(x + 2L, t) = (φ, ψ)(x, t). (14)

In fact, noting the zero-average of v̄ in (11), i.e.,
∫ x+2L

x
v̄(y, t)dy = 0, we have

φ(x + 2L, t) =
∫ x+2L

0

v̄(y, t)dy − a(t)

=
∫ x

0

v̄(y, t)dy +
∫ x+2L

x

v̄(y, t)dy − a(t)

=
∫ x

0

v̄(y, t)dy − a(t)

= φ(x, t).

Similarly, ψ(x + 2L, t) = ψ(x, t) can be proved.
Thus, substituting (v̄, ū)(x, t) = (φx, ψx)(x, t) into (11), we have




φxt − ψxx = ε1φxxx,

ψxt − σ̄(φx)x = ε2ψxxx,

(φ, ψ)|t=0 =
( ∫ x

0
v̄0(y)dy − a(0),

∫ x

0
ū0(y)dy − b(0)

)
=: (φ0, ψ0)(x),

(φ, ψ)(x, t) = (φ, ψ)(x + 2L, t),∫ 2L

0
(φ, ψ)(x, t)dx = (0, 0),

(15)

where
σ̄(φx) = σ(φx + m0)− σ(m0) = φ3

x + 3m0φ
2
x + (3m2

0 − 1)φx.

Integrating (15) over [0, x], we then have




φt − ψx = ε1φxx + c(t),
ψt − σ̄(φx) = ε2ψxx + d(t),

(φ, ψ)|t=0 =
( ∫ x

0
v̄0(y)dy − a(0),

∫ x

0
ū0(y)dy − b(0)

)
=: (φ0, ψ0)(x),

(φ, ψ)(x, t) = (φ, ψ)(x + 2L, t),∫ 2L

0
(φ, ψ)(x, t)dx = (0, 0),

(16)

where c(t) and d(t) are integral constants

c(t) = φt(0, t)− ψx(0, t)− ε1φxx(0, t),
d(t) = ψt(0, t)− σ̄(φx(0, t))− ε2ψxx(0, t).

Lemma 2.3. It holds

c(t) ≡ 0, d(t) ≡ 0, for all t ≥ 0. (17)

Proof. Integrating the equations of (16) with respect to x over [0, 2L], and noting
the periodicity, we have

{∫ 2L

0
φt(x, t)dx = 2Lc(t),∫ 2L

0
ψt(x, t)dx = 2Ld(t).

(18)



830 MING MEI, YAU SHU WONG AND LIPING LIU

By using the zero-averages
∫ 2L

0
(φ, ψ)(x, t)dx = (0, 0), we prove

{
c(t) = 1

2L
d
dt

∫ 2L

0
φ(x, t)dx = 0,

d(t) = 1
2L

d
dt

∫ 2L

0
ψ(x, t)dx = 0.

(19)

The proof is complete.

Thus, we finally have




φt − ψx = ε1φxx,

ψt − σ̄(φx) = ε2ψxx,

(φ, ψ)|t=0 =
( ∫ x

0
v̄0(y)dy − a(0),

∫ x

0
ū0(y)dy − b(0)

)
=: (φ0, ψ0)(x),

(φ, ψ)(x, t) = (φ, ψ)(x + 2L, t),∫ 2L

0
(φ, ψ)(x, t)dx = (0, 0).

(20)

Differentiating the second equation of (20) with respect to x and substituting the
first equation of (20) to this resultant equation, we obtain a scalar equation on φ





φtt − (ε1 + ε2)φxxt − σ̄(φx)x + ε1ε2φxxxx = 0,

(φ, φt)|t=0 = (φ0, ψ0x + ε1φ0xx)(x),
φ(x, t) = φ(x + 2L, t),∫ 2L

0
φ(x, t)dx = 0.

(21)

Before proving the uniform boundedness of the solution, we introduce the fol-
lowing Poincaré inequality.

Lemma 2.4. Let φ(x, t) be the solution of (21). It holds for all t ≥ 0 that

‖(∂k
xφ, ∂k

xψ)(t)‖ ≤ L

π
‖(∂k+1

x φ, ∂k+1
x ψ)(t)‖, k = 0, 1, 2, · · · . (22)

Proof. Consider the following eigenvalue problem




−ṽxx = β2ṽ,

ṽ(x) = ṽ(x + 2L),∫ 2L

0
ṽ(x)dx = 0.

(23)

The eigenvalues are

βk =
kπ

L
, k = 1, 2, 3, · · · , (24)

and the corresponding eigenfunctions are

ṽ1,k(x) =
1√
L

sinβkx, ṽ2,k(x) =
1√
L

cos βkx, k = 1, 2, 3, · · · (25)

which satisfy

〈ṽi,k, ṽj,l〉
{

1, i = j, k = l

0, otherwise,
(26)

where

〈ṽi,k, ṽj,l〉 =
∫ 2L

0

ṽi,k(x)ṽj,l(x)dx
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is the inner product of L2
per. It is known that the sequence {ṽi,k(x)} (i = 1, 2 and

k = 1, 2, 3, · · · ) forms an orthonormal basis for the space

L2
per,0 =

{
ṽ(x)|ṽ(x) ∈ L2

per and
∫ 2L

0

ṽ(x)dx = 0
}

.

Therefore, as a periodic function satisfying φ(x, t) = φ(x+2L, t) and
∫ 2L

0
φ(x, t)dx =

0, φ(x, t) is in the space L2
per,0, and can be expressed in the Fourier form

φ(x, t) =
∞∑

k=1

(Ak(t)ṽ1,k(x) + Bk(t)ṽ2,k(x)),

where the coefficients Ak(t) and Bk(t) are determined by

Ak(t) = 〈φ(x, t), ṽ1,k(x)〉, Bk(t) = 〈φ(x, t), ṽ2,k(x)〉.
The derivative of φ(x, t) in x is

φx(x, t) =
∞∑

k=1

βk[Ak(t)ṽ2,k(x)−Bk(t)ṽ1,k(x)].

Making the inner products leads to

‖φ(t)‖2 =
∫ 2L

0

φ2(x, t)dx

=
∫ 2L

0

∞∑

k=1

∞∑

l=1

[
Ak(t)ṽ1,k(x) + Bk(t)ṽ2,k(x)

]

·
[
Al(t)ṽ1,l(x) + Bl(t)ṽ2,l(x)

]
dx

=
∞∑

k=1

∞∑

l=1

[
Ak(t)Al(t)

∫ 2L

0

ṽ1,k(x)ṽ1,l(x)dx

+Ak(t)Bl(t)
∫ 2L

0

ṽ1,k(x)ṽ2,l(x)dx

+Bk(t)Al(t)
∫ 2L

0

ṽ2,k(x)ṽ1,l(x)dx

+Bk(t)Bl(t)
∫ 2L

0

ṽ2,k(x)ṽ2,l(x)dx
]

=
∞∑

k=1

[A2
k(t) + B2

k(t)] (27)

and

‖φx(t)‖2 =
∫ 2L

0

φ2
x(x, t)dx

=
∫ 2L

0

∞∑

k=1

∞∑

l=1

βkβl

[
Ak(t)ṽ2,k(x)−Bk(t)ṽ1,k(x)

]

·
[
Al(t)ṽ2,l(x)−Bl(t)ṽ1,l(x)

]
dx

=
∞∑

k=1

β2
k[A2

k(t) + B2
k(t)]. (28)
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Since βk ≥ β1 = π
L for k = 1, 2, · · · , then (27) and (28) imply

‖φx(t)‖2 =
∞∑

k=1

β2
k[A2

k(t) + B2
k(t)] ≥ β2

1

∞∑

k=1

[A2
k(t) + B2

k(t)]
π2

L2
‖φ(t)‖2,

namely,

‖φ(t)‖ ≤ L

π
‖φx(t)‖. (29)

This can be extended to

‖∂k
xφ(t)‖ ≤ L

π
‖∂k+1

x φx(t)‖, k = 0, 1, 2, · · · . (30)

Similarly, we can show for the periodic function ψ(x, t):

‖∂k
xψ(t)‖ ≤ L

π
‖∂k+1

x ψx(t)‖, k = 0, 1, 2, · · · . (31)

Combining (30) and (31), we prove (22).

Instead of dealing with the original system (1)-(3), we focus on the new system
(20) (or equivalently, (21)). Let (φ, ψ)(x, t) ∈ C([0, Tmax);H3

per,0(R)) and φt(x, t) ∈
C([0, Tmax);H2

per,0(R)), where Hq
per,0(R) (the integer q ≥ 0) is the space whose

functions are in Hq
per with the zero-average

∫ 2L

0
φ(x)dx = 0, i.e.,

Hq
per,0(R) =

{
φ(x) ∈ Hq(R)

∣∣∣φ(x) = φ(x + 2L),
∫ 2L

0

φ(x)dx = 0
}

,

we then have the following uniform boundedness.

Lemma 2.5 (Key). It holds uniformly

‖φt(t)‖ ≤ C, ‖φx(t)‖1 ≤ C, ‖ψx(t)‖ ≤ C, for t ∈ [0, Tmax), (32)

where C is a positive constant independent of Tmax.

Proof. Define an energy functional, the so-called Liapunov functional

E(t) =
∫ 2L

0

[
1
2
φ2

t + H(φx) +
1
2
ε1ε2φ

2
xx]dx, (33)

where

H(φx) =
∫ φx

0

σ̄(s)ds =
1
4
φ4

x + m0φ
3
x +

1
2
(3m2

0 − 1)φ2
x.

Differentiating E(t) with respect to t, and using integration by parts and the equa-
tion of (21), we have

dE(t)
dt

=
∫ 2L

0

[φttφt + σ̄(φx)φxt + ε1ε2φxxφxxt]dx

=
∫ 2L

0

[φtt − σ̄(φx)x + ε1ε2φxxxx]φtdx

=
∫ 2L

0

(ε1 + ε2)φxxtφtdx

= −
∫ 2L

0

(ε1 + ε2)φ2
xtdx ≤ 0. (34)
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Integrating (34) with respect to t over [0, t] yields E(t) ≤ E(0) =: C3, i.e.,

‖φt(t)‖2 + 2
∫ 2L

0

H(φx)dx + ε1ε2‖φxx(t)‖2 ≤ 2C3. (35)

Notice that
∫ 2L

0

H(φx)dx =
∫ 2L

0

[1
4
φ4

x + m0φ
3
x +

3m2
0 − 1
2

φ2
x

]
dx, (36)

and by the Cauchy-Schwartz inequality (ab ≤ ηa2 + (1/4η)b2 for any η > 0)
∣∣∣m0

∫ 2L

0

φ3
xdx

∣∣∣ =
∣∣∣
∫ 2L

0

(m0φx)φ2
xdx

∣∣∣

≤
∫ 2L

0

(
2m2

0 +
1
8
φ2

x

)
φ2

xdx

=
1
8

∫ 2L

0

φ4
xdx + 2m2

0

∫ 2L

0

φ2
xdx, (37)

then substituting (37) on (36), we obtain
∫ 2L

0

H(φx)dx ≥ 1
8
‖φx(t)‖4L4

per
− 1

2
(m2

0 + 1)‖φx(t)‖2. (38)

In the same way, we obtain

− 1
2
(m2

0 + 1)‖φx(t)‖2 = −
∫ 2L

0

φ2
x ·

1
2
(m2

0 + 1)dx

≥ − 1
16

∫ 2L

0

φ4
xdx− 4

∫ 2L

0

(1
2
(m2

0 + 1)
)2

dx

= − 1
16
‖φx(t)‖4L4

per
− 2L(m2

0 + 1)2. (39)

Thus, (39) and (38) give
∫ 2L

0

H(φx)dx ≥ 1
16
‖φx(t)‖4L4

per
− 2L(m2

0 + 1)2. (40)

Applying (40) into (35), we finally prove the boundedness of φ in the form

‖φt(t)‖2 +
1
8
‖φx(t)‖4L4

per
+ ε1ε2‖φxx(t)‖2 ≤ C4, (41)

where C4 = 2C3 + 4L(m2
0 + 1)2. Using the Poincaré inequality

‖φx(t)‖ ≤ L

π
‖φxx(t)‖ (42)

and (41), we then prove the uniform boundedness for φ in the form

‖φt(t)‖ ≤ C, ‖φx(t)‖1 ≤ C, t ∈ [0, Tmax).

Furthermore, from the first equation of (20), i.e., φt − ψx = ε1φxx, we can easily
prove

‖ψx(t)‖ ≤ ‖φt(t)‖+ ε1‖φxx(t)‖ ≤ C, t ∈ [0, Tmax).

Thus, the proof of this Lemma is completed.
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Lemma 2.6 (Key). It holds uniformly

‖φxt(t)‖1 ≤ C, ‖φx(t)‖3 ≤ C, ‖ψx(t)‖2 ≤ C, for t ∈ [0, Tmax), (43)

where C > 0 is a constant independent of Tmax.

Proof. Differentiating (21) with respect to x, multiplying it by φxt + λ3φx, where
λ3 = (ε1 + ε2)π2/(4L2), and then integrating the resultant equation over [0, 2L]
with respect to x, we obtain

d

dt
E1(t) + E2(t) = 0, (44)

where

E1(t) =
1
2
‖φxt(t)‖2 +

ε1ε2

2
‖φxxx(t)‖2

+λ3

∫ 2L

0

φxtφxdx +
ε1 + ε2

2
λ3‖φxx(t)‖2, (45)

E2(t) = (ε1 + ε2)‖φxxt(t)‖2 − λ3‖φxt(t)‖2 + ε1ε2λ3‖φxxx(t)‖2

+
∫ 2L

0

σ̄(φx)xφxxtdx + λ3

∫ 2L

0

σ̄(φx)xφxxdx. (46)

By using the Sobolev’s inequality and Lemma 2.5

‖φx(t)‖L∞per
≤ ‖φx(t)‖1 ≤ C, t ∈ [0, Tmax).

Using the Cauchy-Schwartz inequality and the above inequality, we have
∣∣∣
∫ 2L

0

σ̄(φx)xφxxtdx
∣∣∣

≤ ε1 + ε2

2
‖φxxt(t)‖2 +

1
2(ε1 + ε2)

∫ 2L

0

[σ̄(φx)x]2dx

=
ε1 + ε2

2
‖φxxt(t)‖2 +

1
2(ε1 + ε2)

∫ 2L

0

[3(φx + m0)2 − 1]2φ2
xxdx

≤ ε1 + ε2

2
‖φxxt(t)‖2 +

1
2(ε1 + ε2)

[3(‖φx(t)‖L∞per
+ m0)2 + 1]2‖φxx(t)‖2

≤ ε1 + ε2

2
‖φxxt(t)‖2 + C. (47)

Similarly, we can prove
∣∣∣λ3

∫ 2L

0

σ̄(φx)xφxxdx
∣∣∣ = λ3

∣∣∣
∫ 2L

0

σ̄′(φx)φ2
xxdx

∣∣∣

≤ λ3[3(‖φx‖L∞per
+ m0)2 + 1]‖φxx‖2 ≤ C. (48)

Substituting (47) and (48) into (46), using the following Poincaré inequality

‖φxt(t)‖2 ≤ L2

π2
‖φxxt(t)‖2,

and noting λ3 = (ε1 + ε2)π2/(4L2), we get

E2(t) ≥ ε1 + ε2

4
‖φxxt(t)‖2 + ε1ε2λ3‖φxxx(t)‖2 − C. (49)

By substituting (49) into (44), it yields
d

dt
E1(t) +

ε1 + ε2

4
‖φxxt(t)‖2 + ε1ε2λ3‖φxxx(t)‖2 ≤ C. (50)
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Multiplying (50) by eλ4t, where λ4 > 0 is a small constant which will be determined
later, we obtain

d

dt
{eλ4tE1(t)} − λ4e

λ4tE1(t)

+eλ4t
(ε1 + ε2

4
‖φxxt(t)‖2 + ε1ε2λ3‖φxxx(t)‖2

)

≤ Ceλ4t. (51)

Similarly, applying the Cauchy-Schwartz inequality and the Poincaré inequality, we
can estimate

−λ4e
λ4tE1(t) ≥ −λ4e

λ4t(C̄1‖φxxt(t)‖2 + C̄2‖φxxx(t)‖2), (52)

where

C̄1 = (
1
2

+
λ3

2
)
L2

π2
, C̄2 =

ε1ε2

2
+

λ3L
4

2π4
+

(ε1 + ε2)λ3L
2

2π2
.

Substituting (52) into (51), we have
d

dt
{eλ4tE1(t)}

+eλ4t
[(ε1 + ε2

4
− λ4C̄1

)
‖φxxt(t)‖2 + (ε1ε2λ3 − λ4C̄2)‖φxxx(t)‖2

]

≤ Ceλ4t. (53)

Now let λ4 be sufficiently small such that
ε1 + ε2

4
− λ4C̄1 > 0 and ε1ε2λ3 − λ4C̄2 > 0,

(53) is then reduced to
d

dt
{eλ4tE1(t)} ≤ Ceλ4t. (54)

Integrating (54) over [0, t] (t < Tmax), we have

eλ4tE1(t) ≤ E1(0) + C

∫ t

0

eλ4sds = E1(0) +
C

λ4
(eλ4t − 1),

i.e.,

E1(t) ≤ E1(0)e−λ4t +
C

λ4
(1− e−λ4t) ≤ C, t ∈ [0, Tmax). (55)

Since the Cauchy-Schwartz inequality gives
∣∣∣λ3

∫ 2L

0

φtxφxdx
∣∣∣ ≤ 1

4
‖φxt‖2 + λ2

3‖φx‖2 ≤ 1
4
‖φxt‖2 + C,

then E1(t) (see (45)) can be estimated as follows

E1(t) ≥ 1
4
‖φxt(t)‖2 +

ε1ε2

2
‖φxxx(t)‖2 +

ε1 + ε2

2
λ3‖φxx(t)‖2 − C.

Substituting the above inequality into (55), we finally prove
1
4
‖φxt(t)‖2 +

ε1ε2

2
‖φxxx(t)‖2 +

ε1 + ε2

2
λ3‖φxx(t)‖2 ≤ C.

Hence, we prove

‖φxt(t)‖ ≤ C, ‖φxxx(t)‖ ≤ C, t ∈ [0, Tmax). (56)

Notice that ψx = φt + ε1φxx, we then further prove

‖ψxx(t)‖ ≤ C, t ∈ [0, Tmax). (57)
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Furthermore, differentiating (21) with respect to x twice, multiplying it by φxxt+
λ3φxx, and integrating the resultant equation over [0, 2L] × [0, t], and then using
(56), we can similarly prove

‖φxxt(t)‖ ≤ C, ‖φxxxx(t)‖ ≤ C, ‖ψxxx(t)‖ ≤ C, t ∈ [0, Tmax). (58)

Thus, combing (56), (57) and (58), we finally prove (43).

Noting v−m0 = v̄ = φx and u−m1 = ū = ψx, from Lemma 2.5 and Lemma 2.6
we obtain immediately the uniform boundedness of (v, u) in H2

per(R) as follows.

Proposition 2.7. It holds uniformly

‖(v, u)(t)‖2 ≤ C for t ∈ [0, Tmax). (59)

Proof of Theorem 1.1. By Proposition 2.1, Proposition 2.2 and Proposition 2.7, we
immediately prove Tmax = ∞, and ‖(v, u)(t)‖2 ≤ C for all t ≥ 0.
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