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1. Introduction

The fast development of the semiconductor industry raises a series of interesting issues, both for theoreti-
cal and numerical researchers. One of the major challenges is how to properly model the quantum effect
inside a device, reducing the numerical costs. The hybrid strategy is one of the most promising methods
to reach such an objective. Simply put, the word hybrid indicates a theoretical and/or numerical
approach requiring the partition of the device domain into classical and quantum parts, and the usage of
a classical model in the largest part of the domain, reducing significantly the numerical costs. However,
this approach poses a further problem: which kind of transmission conditions must be selected at the
interface between the classical and quantum domains? Many solutions have been proposed in recent
decades. For example, in the pioneering work of Ben Abdallah [1] the author presents, in the one-
dimensional setting, a set of interface conditions obtained from an asymptotic analysis of the Wigner
transform. These conditions manage to connect the Boltzmann equation and a set of Schrödinger equa-
tions, modeling respectively, the classical and the quantum domains.

In order to reduce the computational costs, macroscopic equations, such as the drift diffusion and
hydrodynamical ones, can be employed to model the classical and quantum zones [2–7]. A similar strat-
egy was also employed in Di Michele et al. [8] with application to electrolyte-oxide-semiconductor
(EOS) devices. In the present paper, instead of using two different models in the classical and in the
quantum domain, we adopt the fully hybrid approach firstly introduced in Chiarelli et al. [9] and then
developed in Di Michele et al. [10–12]. In particular, we improve the results in Di Michele et al. [10]
allowing some parameters of the problem, namely the temperature T and the relaxation time t, to be
non-constant, assuming different values within the classical and quantum domains.

This work is divided into four sections. In the first one we recall the model introduced in Chiarelli
et al. [9] for a quantum drift–diffusion model, and derive the new hybrid model taking into account the
discontinuous pressure functional and the relaxation time. In the second section we summarize the main
results, then in the third we discuss the existence of smooth solutions to the regularized problem called
the H�QqHD model. Finally we perform the limit q! 0 obtaining, under a suitable set of assumptions,
the existence of the weak solutions for the hybrid quantum hydrodynamic (H-QHD) model.

Finally let us recall, for the sake of completeness, that many important results have been obtained
concerning non-hybrid models for semiconductors [13–24, 27].

2. An H-QHD model with discontinuous pressure functional and relaxation time

In this section we present a new hybrid quantum hydrodynamic model accounting for a discontinuous
pressure functional and the relaxation time. The hybrid model has been basically derived using the
approach proposed in Ancona and Iafrate [25] for the standard fully quantum system, and recently used
in Chiarelli et al. [9] Michele et al. [10–12] in the context of quantum hybrid models for semiconductors.
In the present paper we introduce and study the one-dimensional case on the bounded domain O= ½0, 1�.
However, the model can be extended to the multi-dimensional case.

We recall the quantum effect function Q : O! ½0, 1�, introduced in Chiarelli et al. [9] and Di Michele
et al. [10,11], which is a smooth function that indicates where the internal energy depends on the gradient
of the charge density.

Let us introduce the stress tensor function as follows

s :¼ �P� n n
∂eQ

∂nx

� �
x

� e2

2

Z x

0

Q0
n2

x

n
,

where

P :¼ n n
∂eQ

∂n
+ nx

∂eQ

∂nx

� �
ð1Þ

is the pressure functional (according to Ancona and Iafrate [25]) and
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eQ :¼ TQ ln n� Q
e2

2

n2
x

n2
ð2Þ

is the internal energy. As usual, n is the electron density and e is the scaled Plank constant. The last term
in equation (1) models the interface contribution to the stress functional. It represents a sort of localized
contribution needed to transform a ‘classical’ electron into a ‘quantum’ one and vice versa. We remark
that this new term only acts on the interface region where Q0 6¼ 0. Then, in the special case in which Q(x)
is a regularization of a step function (or a composition of step functions) and x0 is an interface point (or
one of the interface points) where Q0 ! d(x0), interface pressure acts on the isolated point x0 of our inter-
val (or on a set of isolated points) and this new term does not appear in the standard formulation of the
hydrodynamical equation (4).

Moreover, TQ : O! ½Tc, Tq� and it is defined as TQ = Tc + DTQ, where DT = Tq � Tc. Tc and Tq repre-
sent the electron temperatures in the classical and quantum domains, respectively. We assume Tc . 0
and that there exists two positive constants TM and Tm such that Tm ł TQ ł TM . We only remark that a
priori DT can be positive, negative or zero. In comparison with the hybrid model presented in Chiarelli
et al. [9] and Di Michele et al. [10,12], in the present paper the electron temperature T can be different in
the quantum and classical sub-domains. In particular, we have Q = 0 and TQ = Tc in the classical region,
whereas in the quantum region we have Q = 1 and TQ = Tq. As explained in Di Michele et al. [10], the
transition region between the classical and quantum domains should be of order of magnitude approxi-
mately e. This allows a strong coupling between the classical and quantum domains.

In view of equations (1) and (2), the stress function equation (1) can be rewritten as

s =�TQn + Qe2nxx � Qe2 n2
x

n
+ Q0e2nx

� e2

2

Z x

0

Q0
n2

x

n
:

ð3Þ

We recall that the QHD system in the one-dimensional case reads as follows (see for example Gardner
[16]):

nt + Jx = 0

Jt +
J2

n
� s

� �
x

= nVx �
J

tQ

l2Vxx = n� C(x):

8>>><
>>>:

ð4Þ

Here V is the electrical potential, J is the current density (assumed to be strictly positive) and
tQ(x) . 0 is the scaled relaxation time, which is assumed to be a continuous, non-constant function. In
particular, we set tQ(x) = tc + DtQ, where Dt = tq � tc, and tc . 0 and tq . 0 are the relaxation times
in the classical and quantum domains, respectively. In what follows we assume there exists two positive
constants tm and tM , such that tm ł tQ ł tM : In this work we do not consider the evolution of the inter-
nal energy, but we focus our study on the steady states of the one-dimensional system above, assuming
isothermal conditions both in the quantum and classical domains. A jump of the scaled electron tem-
perature is allowed at the interface between the classical and quantum domains.

Observing that

e2 Qnxx � Q
n2

x

n
+ Q0nx �

e2

2

Z x

0

Q0
n2

x

n

� �
x

= 2ne2 Q
(
ffiffiffi
n
p

)xxffiffiffi
n
p + Q0

(
ffiffiffi
n
p

)xffiffiffi
n
p

� �
x

,

ð5Þ

we can write the hybrid stationary hydrodynamic system as follows

2098 Mathematics and Mechanics of Solids 24(7)



2ne2 Q

ffiffiffi
n
p

xxffiffiffi
n
p + Q0

ffiffiffi
n
p

xffiffiffi
n
p

� �
x

�

TQn +
J2

n

� �
x

+ nVx =
J

tQ

,

J = constant,

l2Vxx = n� C,

8>>>>>>>><
>>>>>>>>:

ð6Þ

where the last equation is the usual self-consistent Poisson equation, which models the effects of the elec-
tric potential V : The parameter l . 0 is the scaled Debye length. The function C(x), appearing in the
Poisson equation, models the doping profile, which is the background fixed charge of ions in the semi-
conductor crystal. From the mathematical point of view, we assume C(x) 2 L2(0, 1) and C(x) ø C0 . 0
for all x in ½0, 1�.

The main purpose of this paper is to prove the existence of a weak solution to the following problem

(S)

2e2 Q
(
ffiffiffi
n
p

)xxffiffiffi
n
p + Q0

(
ffiffiffi
n
p

)xffiffiffi
n
p

� �
x

�

TQ +
J 2

2n2

� �
x

� TQ( ln n)x + Vx =
J

tQn
,

l2Vxx = n� C,

n(0) = n(1) = 1, nx(0) = nx(1) = 0,

V (0) = V0, J = J0,

8>>>>>>>>>>><
>>>>>>>>>>>:

where Sð Þ1 has been obtained by dividing equation (6)1 by n, and Sð Þ2 is the Poisson equation. The
choice of the boundary condition is often employed in these kinds of problems and will be tackled at
the beginning of the next section. Here we only observe that there are many other possible choices,
which still make the problem well posed.

3. Working systems and main theorems

In this section we summarize the results presented in the whole paper. Let us differentiate Sð Þ1 with
respect to x. Then, in view of the Poisson equation, we derive the following fourth-order differential
equation for electronic density n, with the associated boundary conditions:

(P)

2e2 Q
(
ffiffiffi
n
p

)xxffiffiffi
n
p + Q0

(
ffiffiffi
n
p

)xffiffiffi
n
p

� �
xx

�

(TQ �
J2

n2
)

nx

n

� �
x

+
1

l2
(n� C)

= T 00Q +
J

tQn

� �
x

,

n(0) = n(1) = 1, nx(0) = nx(1) = 0,

V (0) = V0, J = J0:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

The first equation is a fourth–order differential equation, which for any fixed J = J0, is well posed
assuming n(0) = n(1) = 1, nx(0) = nx(1) = 0 as in Pð Þ2. Moreover, the behavior of the electrical potential
V can be reconstructed starting from the Poisson equation in view of the conditions in Pð Þ3 and

V0 =�2e2Q(0)(
ffiffiffi
n
p

)xx(0) +
J2

2
+ TQ(0), ð7Þ
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then, we get

V (x) =�2e2Q
(
ffiffiffi
n
p

)xxffiffiffi
n
p � 2e2Q0

(
ffiffiffi
n
p

)xffiffiffi
n
p +

J 2

2n2

+ TQ �
Z x

0

J

tQn
dx +

Z x

0

TQ( ln n)xdx:

ð8Þ

Therefore, the value of the electrical potential at x = 1 can be derived from equation (8) assuming Pð Þ2:

V1 =�2e2Q(1)(
ffiffiffi
n
p

)xx(1) +
J 2

2
+ TQ(1)

�J

Z 1

0

1

tQn
dx +

Z 1

0

TQ( ln n)xdx = V (1):

ð9Þ

This implies that it is completely equivalent to fix V (1) or J.

Remark 3.1. We say that the flow is sub-sonic when

jJ j
n

\
ffiffiffiffiffiffiffiffiffiffi
p0(n)

p
=

ffiffiffiffiffiffi
TQ

p
, ð10Þ

where p(n) = nTQ is the pressure.
Here we need a stronger sub-sonic condition, namely

jJ j
n

\

ffiffiffiffiffiffi
TQ

p
1 + 1

t2
Q

� � ł

ffiffiffiffiffiffi
TM

p

1 + 1
t2

M

� � : ð11Þ

Clearly equation (11) implies the uniform ellipticity of the operator
TQ

n
� J2

n3

� �
nx

� �
x
.

By the boundary conditions n(0) = n(1) = 1, the following compatibility condition for J0 and
ffiffiffiffiffiffi
TM

p
needs

to be satisfied:

jJ0j\
ffiffiffiffiffiffi
TM

p

1 + 1
t2

m

� � : ð12Þ

As usual, we introduce the new variable w =
ffiffiffi
n
p

, then (P) can be rewritten as

(Pw)

2e2 Q
wxx

w
+ Q0

wx

w

� �
xx
�

2 TQ �
J 2

w4

� �
wx

w

� �
x

+
1

l2
(w2 � C)

=
J

tQw2

� �
x

+ T 00Q,

l2Vxx = w2 � C,

w(0) = w(1) = 1, wx(0) = wx(1) = 0,

V (0) = V0, J = J0:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Here and after, we will mainly focus on the above system. Notice that the fourth-order elliptic equations
in (P) and (Pw) are regionally degenerate where Q = 0, and this can make it difficult to prove the exis-
tence of the solutions to this kind of boundary value problem (BVP). Therefore, we first look for the
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solution (wq,Vq)(x) to (Pw) where, instead of Q, we consider a strictly positive function Qq ø q . 0, such
that Qq ! Q when q! 0. Clearly, even the functions TQ and tQ are automatically regularized by defini-
tion and we call them TQq

and tQq
, respectively. Then, by taking the hybrid limit q! 0, we expect that

the solution (wq,Vq)(x) of the BVP (Pw) converges to the really hybrid solution (w,V )(x) in the weak
sense. Finally, we show that (n = w2,V ) is the weak solution to the BVP (P). The proof of these results
requires two steps: firstly, we introduce and study the mollified problem that we will call (Pq) (see below),
then we refocus on the original problems, namely (Pw) and (P).

Step 1

First of all, we consider a modified (Pw) system where we replace Q(x) by the strictly positive function
Qq(x) as explained above. Let (wq,Vq)(x) be the solutions to the following mollified problem

(Pq)

2e2 Qq

(wq)
xx

wq

+ Q0q
(wq)

x

wq

� �
xx

�

2 TQq
� J 2

w4
q

 !
(wq)

x

wq

 !
x

+

1

l2
(w2

q � C) = T 00Q +
J

Qt, qw2
q

 !
x

,

l2(Vq)
xx

= w2
q � C,

wq(0) = wq(1) = 1, (wq)
x
(0) = (wq)x(1) = 0,

Vq(0) = V0, J = J0:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

Let ~Tm be a strictly positive constant such that

TQq
= Tc + DTQq . ~Tm:

The following theorem establishes the existence of the solutions for (Pq).

Theorem 3.2. (Existence of solutions to problem (Pw). Under the sub-sonic conditions, equations (11) and
(12), assume that Qq(x) is a non-negative, smooth, and bounded function defined on O= ½0, 1� such that

0\q ł Qq ł 1

a :¼ max ( k Q0qk‘, k Q00qk‘)\‘ for all x 2 O,
ð13Þ

and

e2 max
x2O

jQ0qj
2

Qq

\4 TQ � 1 +
1

t2
Q

 !
J 2

0

n2

 !

\4 TM � 1 +
1

t2
M

� �
J2

0

n2

� �
:

ð14Þ

Then (Pq) admits one solution at least (wq,Vq) 2 H4(O)×H2(O):
The following theorem states the uniqueness of the solution just obtained.

Theorem 3.3. Uniqueness of solutions to H�QqHD. Assume equations (11), (13) and (14), then for e and
J small enough and independent of q, the BVP
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e2 Qq (uq)
xx

+
(uq)2

x

2

� �
+ Q0q(uq)

x

� �
xx

+

(J 2e�2uq (uq)
x
)

x
� (TQq

(uq)
x
)

x
+

euq � C(x)

l2
� J

tQq

e�uq

� �
x

� T 00Qq
= 0,

uq(0) = uq(1) = 0, (uq)
x
(0) = (uq)x(1) = 0

8>>>>>>>>><
>>>>>>>>>:

ð15Þ

has a unique solution.

Step 2

As a second step, using a vanish viscosity approach, we show the existence of a solution for (Pq), proving
the following theorem.

Theorem 3.4. Hybrid limits and existence of solutions to (Pq). Assume the sub-sonic conditions, equations
(11) and (12). For any given hybrid quantum effect function Q(x) 2 C1(0, 1) with 0 ł Q(x) ł 1, let us con-
struct a sequence fQqg satisfying the following properties for all x 2 ½0, 1�

fQq,Q
0
qg !

q!0
fQ,Q0g uniformly in O,

a :¼ max ( k Q0qk‘, k Q00qk‘)\‘ for all q

e2 max
x2O

jQ0qj
2

Qq

\4 TM � 1 +
1

t2
m

� �
J 2

0

n2

� �
:

8>>>>><
>>>>>:

ð16Þ

Let (wq,Vq)(x) be the sequence of solutions to the BVP (Pq) corresponding to these selected approximating
functions Qq. Then, there exists a pair of functions (w,V )(x) such that the sequence (wq,Vq)(x) converges to
(w,V ) as follows

wq * w in H1(O),
wq ! w in C0(O),
Vq * V in L2(O),

0
@ as q! 0: ð17Þ

In particular, such a pair of limits (w,V )(x) is the weak solution to the BVP (Pw).
Finally we prove the following theorem.

Theorem 3.5. Existence of solutions to problems (P) and (S). Under the assumptions of Theorem 3.4 the
problem (P) admits one solution (n,V )(x) at least such that n 2 H1(O) and V 2 L2(O). The same pair of
functions also solves the system (S).

3.1. Mollified quantum function

Since it is very important to properly define the regularized sequence fQqg, q 2 R+, in this section we
present an example for the hybrid quantum effect function Q, 0 ł Q ł 1, and for the approximating
sequence fQqg:
Remark 3.6. As noted in Di Michele et al. [10], we remark that equation 16ð Þ3 implies that jQ0qj

2=Qq can
be bounded also if Qq ! 0. A class of function that verifies this constrain is jx� x0jm, for all m ø 2, when
x! x0. One can show that the Qq � function proposed in Di Michele et al. [10], verifies equation (16).
Here, we present another example. Take

Q(x) =

0 0 ł x ł 1
2
,

4 x� 1

2

� �2
1

2
\x ł 1,

8<
: ð18Þ
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clearly 0 ł Q ł 1. Then, we may construct the approximating sequence fQqg as

Qq(x) =

q 0 ł x ł 1
2
,

q + 4(1� q) x� 1

2

� �2
1

2
\x ł 1,

8<
: ð19Þ

where 0\q\1.
Q0q(x) and Q00q(x) read, respectively as

Q0q(x) =

0 0 ł x ł 1
2
,

8(1� q) x� 1

2

� �
1

2
\x ł 1,

8<
: ð20Þ

and

Q00q(x) =
0 0 ł x ł 1

2
,

8(1� q)
1

2
\x ł 1:

8<
: ð21Þ

It easy to see that equation (16)1 is verified. Moreover, k Q0qk‘ = 4(1� q)\4 and k Q0qk‘ = 8(1� q)\8.

Therefore, even the second condition in equation (16) is verified for all a . 8. Finally, the last condition in
equation (16) implies that

jJ0j\nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TM � e2 max

x2O

jQq0 j2

4Qq

 !
1

1 + 1
t2

m

� �
vuuut ,

where nm = w2
m, introduced in Lemma 4.2.

4. Existence and uniqueness of H�QqHD solution and H-QHD

4.1. Step 1: Existence and uniqueness of solution to the BVP (Pq)

In this section we discuss the existence and the uniqueness of the solution of the BVP (Pq). In order to
prove Theorem 3.2, we need the following a priori estimates.

Lemma 4.1. a priori estimates. Assume the sub-sonic conditions, equations (11) and (12), and that the
sequence Qq satisfies equations (13) and (14). Then, the solution wq to problem (Pq) is bounded from above
by

jjwqkL‘(O) ł wM : ð22Þ

Moreover,

e2c1

Z 1

0

(wq)2
xxdx + c2

Z 1

0

(wq)2
xdx ł K, ð23Þ

where c1, c2, and K are strictly positive constants and therefore wq 2 H2(O).

Proof. Multiplying (Pq)1 by (wq � 1) 2 H1
0 (O) and integrating it over the whole domain, we have
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2e2

Z 1

0

Qq

(wq)2
xx

wq

dx + 2

Z 1

0

TQq
� J 2

w4
q

 !
(wq)2

x

wq

dx

+ 2e2

Z 1

0

Q0q
(wq)

x
(wq)

xx

wq

dx

=
1

l2

Z 1

0

(C � 1 + l2T 00Qq
)(wq � 1)dx

� 1

l2

Z 1

0

(w2
q � 1)(wq � 1)dx

�
Z 1

0

J

tQq
w2

q

(wq)
x
dx

= : I1 + I2 + I3:

ð24Þ

Proceeding as in Di Michele et al. [10], in view of equation 16ð Þ3, we have

I3 ł
1

8~c

Z 1

0

1

tQq

� �2

vqdx + 2~c

Z 1

0

J 2

w4
q

(wq)2
x

wq

dx

=
1

8~c

Z 1

0

1

tQq

� �2

(vq � 1)dx

+
1

8~c

Z 1

0

1

tm

� �2

dx + 2~c

Z 1

0

J 2

w4
q

(wq)2
x

wq

dx

ð25Þ

I1 + I2 + I3 =� 1

l2

Z 1

0

(w2
q � 1)(wq � 1)dx

+
1

8~c

Z 1

0

1

tm

� �2

dx + 2~c

Z 1

0

J 2

w4
q

(wq)2
x

wq

dx

+
1

l2

Z 1

0

C � 1 + l2T 00Qq
+

l2

8~c

1

tQq

� �2
 !

(wq � 1)dx

ł � 1

l2

Z 1

0

(wq � 1)2(wq + 1)dx

+
1

2l2

Z 1

0

(wq � 1)2dx

+
1

2l2

Z 1

0

C � 1 + l2T 00Qq
+

l2

8~c

1

tQq

� �2
 !2

dx

+
1

8~c

Z 1

0

1

tm

� �2

dx + 2~c

Z 1

0

J 2

w4
q

(wq)2
x

wq

dx:

ð26Þ

Accounting for equations (24) and (26), by setting ~c = 1=t2
m we get
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2e2

Z 1

0

Qq

(wq)2
xx

wq

dx + 2e2

Z 1

0

Q0q
(wq)

x
(wq)

xx

wq

dx

+ 2

Z 1

0

TQq
� 1 +

1

t2
m

� �
J2

w4
q

 !
(wq)2

x

wq

dx

+
1

l2

Z 1

0

(wq � 1)2 wq +
1

2

� �
dx

ł
1

8
+

1

2l2

Z 1

0

C + 1 + l2a +
l2

8

� �2

dx:

ð27Þ

We observe that the third term of the left-hand side in equation (27) is strictly positive in view of equa-
tion (11), then we construct a quadratic form using the first three terms of the left-hand side in equation
(27). Therefore we have Z 1

0

2e2Qq

(wq)2
xx

wq

+ 2e2Q0q
(wq)

x
(wq)

xx

wq

�

+ 2 TQq
� 1 +

1

tm

� �
J2

w4
q

 !
(wq)2

x

wq

#
dx

= :

Z 1

0

A1

(wq)2
xx

wq

+B1

(wq)
x
(wq)

xx

wq

+ C1

(wq)2
x

wq

� �
dx:

ð28Þ

The quadratic form we have obtained:

B2
1 � 4A1C1

= 4e2 e2jQq0 j2 � 4Qq TQq
� 1 +

1

t2
Qq

 !
J2

w4
q

 !" #
,

is strictly negative defined, in view of the condition equation (14).
Then, there exists two strictly positive constants k1 and k2 such that the following inequality holds

k1

Z 1

0

(wq)2
xx

wq

dx + k2

Z 1

0

(wq)2
x

wq

dx

+
1

l2

Z 1

0

(wq � 1)2 wq +
1

2

� �
dx

ł
1

8
+

1

2l2

Z 1

0

C + 1 + l2a +
l2

8

� �2

dx

= : K0:

ð29Þ

This inequality implies, proceeding as in Di Michele et al. [10], that k ffiffiffiffiffiffi
wq
p � 1k‘ ł

ffiffiffiffi
K0

k2

q
. Moreover,

setting wM = 1 +
ffiffiffiffi
K0

k2

q� �2

, we obtain equation (22), and then equation (23), which follows from equation

(29).
Finally, we have to show that the solution wq is bounded from below for all x 2 O.

Lemma 4.2. Under the assumption of Lemma 4.1, provided that

2
J

tM n

� �
+

Z 1

0

C(x)� n

l2
dx ø a

J

t2
mn

+ 1

� �
, ð30Þ
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there exists a constant wm . 0 such that

k wqk‘ ø wm: ð31Þ

Proof. The approach used in Di Michele et al. [10] to prove the strictly positiveness of wq is not immedi-
ately applicable due to the non-constant temperature and the relaxation time. Therefore, in the spirit of
Gamba and Jüngel [26], in the following we introduce a truncate form of problem Pq

2e2 Qq

(wq)
xx

wq

+ Q0q
(wq)

x

wq

� �
xx

�2 TQq
� J 2

w4
q

 !
(wq)

x

wq

 !
x

+
1

l2
(w2

q � C)

= T 00Q +
J

Qt, qt2
r

� �
x

,

l2(Vq)
xx

= w2
q � C,

wq(0) = wq(1) = 1, (wq)
x
(0) = (wq)x(1) = 0,

Vq(0) = V0, J = J0,

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð32Þ

where tr = max (r(x),w) and r(x) =
ffiffiffi
n
p

(2� x) for all x 2 ½0, 1�. Then, we multiply equation (32) by
(wq �

ffiffiffi
n
p

)� :¼ min (0,wq �
ffiffiffi
n
p

), observing that, by equation (23), (wq �
ffiffiffi
n
p

)� 2 H1
0 (O). We integrate

by parts and after some manipulation (see Di Michele et al. [10] for more details) we get

2e2

Z 1

0

Qq

((wq �
ffiffiffi
n
p

)�)2
xx

wq

dx

+

Z 1

0

TQ �
J 2

w4
q

 !
((wq �

ffiffiffi
n
p

)�)2
x

wq

dx

+ 2e2

Z 1

0

Qq0
((wq �

ffiffiffi
n
p

)�)
x
((wq �

ffiffiffi
n
p

)�)
xx

wq

dx

=� 1

l2

Z 1

0

((wq �
ffiffiffi
n
p

)�)(w2
q �

ffiffiffi
n
p 2)dx

+
1

l2

Z 1

0

(C(x)� n)(wq �
ffiffiffi
n
p

)�dx

+

Z 1

0

T
00

Q((wq �
ffiffiffi
n
p

)�)dx

+

Z 1

0

J

tQtr(x)2

 !
x

((wq �
ffiffiffi
n
p

)�)dx:

ð33Þ

Moreover, in view of the uniform upper bound for T
00

Q we have

I1 ł a

Z 1

0

((wq �
ffiffiffi
n
p

)�)dx, ð34Þ

whereas the last term can be estimated as follows
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I1 =�
Z 1

0

Jt0Q
t2

Qt2
r

((wq �
ffiffiffi
n
p

)�)dx

�
Z 1

0

2Jt0r
t2

Qt3
r

((wq �
ffiffiffi
n
p

)�)dx

=�
Z 1

0

Jt0Q
t2

Qt2
r

((wq �
ffiffiffi
n
p

)�)dx

+

Z 1

0

2J
ffiffiffi
n
p

t2
Qt3

r

((wq �
ffiffiffi
n
p

)�)dx:

ð35Þ

Proceeding as in the proof of Lemma 4.1, we can rearrange the three terms on the left-hand side as a
quadratic form which is strictly negative defined in view of the assumption equation (14). Then, account-
ing for the estimates, equations (34) and (35), we get

k1

Z 1

0

((wq �
ffiffiffi
n
p

)�)2
xxdx + k2

Z 1

0

((wq �
ffiffiffi
n
p

)�)2
xdx

+ k3

Z 1

0

((wq �
ffiffiffi
n
p

)�)2(wq +
ffiffiffi
n
p

)dx

ł

Z 1

0

f (n, x)(wq �
ffiffiffi
n
p

)�dx,

ð36Þ

where k1 and k2 are two strictly positive constants and

f (n, x) =
C(x)� n

l2
+

J

tQr2

2
ffiffiffi
n
p

r
�

t0Q
tQ

� �
+ T 00Q

� �
:

Therefore, under the assumption, equation (30), the inequality equation (36) implies (wq �
ffiffiffi
n
p

)�= 0
for all x in ½0, 1�, namely, wq ø

ffiffiffi
n
p

. 0 for all x 2 ½0, 1�, that is equation (31).
In the following Lemma we derive an a priori estimate for the variable uq = ln nq.

Lemma 4.3. Under the assumption of Lemmas 4.1 and 4.2, the variable uq, defined as uq = ln nq, verifies
the following estimate

k1 k (uq)xxkL2(O) + k2 k (uq)xkL2(O) ł K0, ð37Þ

and there exists a constant uM . 0 such that

k uqk‘ ł uM : ð38Þ

Proof. The proof follows by using the definition of u as a direct consequence of Lemmas 4.1 and 4.2.
Now we can prove Theorem 3.2, namely the existence of one solution, at least, to problem (Pq).

4.1.1. Proof of Theorem 3.2. Let uq = ln nq, then the BVP (Pq) becomes equation (15):

e2 Qq (uq)
xx

+
(uq)2

x

2

� �
+ Q0q(uq)

x

� �
xx

+ (J2e�2uq(uq)
x
)

x
� (TQq

(uq)
x
)

x

+
euq � C(x)

l2
� J

tQq

e�uq

� �
x

� T 00Qq
= 0,

uq(0) = uq(1) = 0, (uq)
x
(0) = (uq)x(1) = 0:

8>>>>>>>>><
>>>>>>>>>:
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Since Qq ø q . 0, equation (15) basically is a QHD model, therefore we can apply the standard
approaches based on the Leray–Shauder fixed point theorem [18,20,21]. Let us take n 2 X = C0, 1(O)
and consider the following linear problem

e2 Qq (uq)
xx

+
s

2
n2

x

� �
+ Q0q(uq)

x

� �
xx

+ sJ 2 e�2nnx

� 	
x

�(TQq
(uq)

x
)

x
+

s

l2

en � 1

n
uq + 1� C

� �

�s
J

tQq

(e�n)x � s
J

(tQq
)

x

(e�n) = 0,

ð39Þ

coupled with the boundary conditions equation 15ð Þ2, where s 2 ½0, 1�. For each uq,f 2 H2(O), the fol-
lowing bilinear form is continuous and coercive in H2(O) for f 2 H2(O):

a(uq,f) =

Z 1

0

e2 Qq(uq)
xx

+ Q0q(uq)
x

� �
fxx

� �
dx

+

Z 1

0

TQq
(uq)

x
)fx +

s

l2

euq � 1

n
uqf

� �
dx

and the functional F defined as

F(f) =�
Z 1

0

s
J

tQq

e�nk fx

� �
dx +

Z 1

0

T 0Qq
fxdx

Z 1

0

�Q
e2s

2
n2

xfxx + sJ 2e�2nk nxfx +
s

l2
(C � 1)fdx

is linear and continuous in H2(O) for f 2 H2(O). By using the Lax–Milgram Lemma, we get the exis-
tence of a unique solution u 2 H2(O) to the BVP equation (39)–(15)2. By doing so, we have defined a
continuous and compact fixed point operator on X [ H2

S : X × ½0, 1� ! X , (n,s)! uq ð40Þ

verifying

� S(n, 0) = 0 for all n 2 X ,
� there is a constant c . 0 such that

k ukX ł c, ð41Þ

for all (uq,s) 2 X × ½0, 1� satisfying S(uq,s) = uq.
For s = 1 the inequality equation (41) follows from the a priori estimates already discussed, whereas

for 0\s\1 it can be obtained proceeding in a similar way.
The existence of a fixed point uq follows applying the Leray–Schauder fixed point theorem.
Now we prove the uniqueness of the sub-sonic solution to equation (15) for sufficiently small values

of the current density J.

4.1.2. Proof of Theorem 3.3. As in Di Michele et al. [10], we prove the theorem by contradiction. Following
Brezzi et al. [14] and Gyi and Jüngel [18], let uq, vq 2 H2(O) be two solutions to equation (15), then the
difference between the two corresponding equations gives
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e2 Qq(uq � vq)
xx

� 	
xx

+ e2Qq

(uq)2
x

2
� (vq)2

x

2

� �
xx

+ e2(Qq0(uq � vq)
x
)

xx

� J2

2
(e�2uq � e�2vq)(uq)x

� 	
x

+
J 2

2
e�2vq (uq � vq)

x

� 	
x
� TQq

(uq � vq)
x

� 	
x

+
euq � evq

l2
� J

tQq

e�uq � e�vqð Þ
� �

x

= 0

ð42Þ

coupled with the following boundary conditions

(uq � vq)(0) = (uq � vq)(1) = 0

(uq � vq)
x
(0) = (uq � vq)x(1) = 0:

ð43Þ

Multiplying equation (42) by (uq � vq) 2 H2
0 (O) and integrating it by parts over the whole domain, we

get

e2

Z 1

0

Qq(uq � vq)2
xxdx +

Z 1

0

TQq
(uq � vq)2

xdx

+
e2

2

Z 1

0

Qq(uq + vq)x(uq � vq)x(uq � vq)xxdx

+
1

l2

Z 1

0

(euq � evq )(uq � vq)dx

= e2

Z 1

0

Q00q(x)(uq � vq)2
xdx

+ e2

Z 1

0

Q0q(x)(uq � vq)xx(uq � vq)xdx

+
J 2

2

Z 1

0

(e�2uq � e�2vq )(uq)x(uq � vq)xdx

+
J 2

2

Z 1

0

e�2vq (uq � vq)2
xdx

�
Z 1

0

J

tQq

(e�uq � e�vq )(uq � vq)xdx:

ð44Þ

We observe that

1

l2

Z 1

0

(euq � evq )(uq � vq)dx . 0

and, from the boundedness results (Lemmas 4.1, 4.3 and 4.2), we obtain uniform estimates for
uq, vq, (uq)x, (vq)x in L‘. Moreover, by equation (43) the Poincaré inequality jj(uq � vq)jjł cpjj(uq � vq)xjj
holds. Standard computations, by using also the mean value theorem, lead to the following estimates:
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J 2

Z 1

0

(e�2uq � e�2vq )(uq)x(uq � vq)xdx

ł C1J2

Z 1

0

j(uq � vq)xj2dx

and

J2

Z 1

0

e�2vq (uq � vq)2
xdx ł C2J2

Z 1

0

j(uq � vq)xj2dx:

Since TQq
. tm . 0, one has Z 1

0

J

tQq

(e�uq � e�vq )(uq � vq)xdx

ł
jJ j
tm

C3

Z 1

0

j(uq � vq)xj2dx:

Furthermore,

e2

2

Z 1

0

Qq(uq + vq)x(uq � vq)x(uq � vq)xxdx

ł
e2

4

Z 1

0

Qqj(uq � vq)xxj2dx

+ C4e
2

Z 1

0

j(uq � vq)xj2dx

and

e2

Z 1

0

Q0q(x)(uq � vq)xx(uq � vq)xdx

=
e2

2

Z 1

0

Q0q((uq � vq)2
x)xdx

=� e2

2

Z 1

0

Q00qj(uq � vq)xj2dx:

Introducing the previous estimates in equation (44) we obtain

e2q 1� 1

4

� �Z 1

0

(uq � vq)2
xxdx

+ k

Z 1

0

j(uq � vq)xj2dx ł 0,

where a has been defined in equation (13) and

k = ~Tm � C1J2 � C2J 2 � C3

jJ j
tm

� C4e
2 � e2a

2

� �
:

Then, taking e and jJ j small enough, the uniqueness follows.
Finally, we prove the main Theorem 3.4, following Gyi and Jüngel [18]. Since both functions Qq and

TQq
are smooth enough, one can show that there exists a solution uq 2 H4(O) to equation (15).
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Consequently, observing that w2
m ł nq = euq ł w2

M , the BVP (Pq) admits a unique solution nq 2 H4(O).
Finally, Vq 2 H2(O), thanks to the Poisson equation. This concludes the proof.

4.2. Step 2: Hybrid limit: existence of solution to the BVPs (Pw) and P

Let (w,V )(x) be the weak solutions to the problem (Pw) defined as follows.

Definition 4.4. (w,V )(x) is said to be a weak solution of (Pw), if for any f 2 C‘
0 (O) it holds

2e2

Z 1

0

Q
wxx

w
+ Q0

wx

w

� �
fxxdx

+ 2

Z 1

0

(TQ �
J 2

w4
)

wx

w

� �
fxdx

+

Z 1

0

1

l2
(w2 � C)fdx

+

Z 1

0

J

tQw2
� T 0Q

� �
fxdx = 0:

ð45Þ

In a similar way, from (S)1, for the electrical potential we get:Z 1

0

Vfxdx =� 2e2

Z 1

0

Q(x)
wxx

w
fxdx

� 2e2

Z 1

0

Q0(x)
wx

w
fxdx

+

Z 1

0

J 2

2w4
fxdx +

Z 1

0

TQfxdx

+ 2

Z 1

0

TQ lnwfxdx

+ 2

Z 1

0

T 0Q lnwfdx +

Z 1

0

J

tQ

1

w2
fxdx:

ð46Þ

In this section we show that even the limit problem (Pw) admits one solution at least, as explained in
Theorem 3.4, and we discuss its regularity. The hybrid problem is obtained from (Pq) for q! 0, namely
for the real hybrid case we have 0 ł Q ł 1. In particular, if Q = 0, we obtain the classical quantum
hydrodynamical equation. Moreover, the function TQq

= Tc + DTQq, for q! 0 reaches the electron tem-
perature TC in the classical domain and TQ in the quantum one. The same holds for the function
Qt, q = tQ + DtQq, namely Qt, q ! tc in the classical domain, and Qt, q ! tq in the quantum one. A tran-
sition limit between the classical and quantum regions is still admitted, indeed max (k Q0k‘, k Q00k‘) = a.

4.2.1. Proof of Theorem 3.4. Let fQqg be a sequence of approximating functions to the quantum function
Q 2 C1, satisfying equation (16). Let (wq,Vq)(x) be the solutions to (Pq) and �K or �ci all q-independent
constants. Following the approach already proposed by Di Michele et al. [10], we show that

jjwqjjH1(O) ł �K, jj
ffiffiffiffiffiffi
Qq

p
wq, xxjjL2(O) ł �K: ð47Þ

We proceed as in the proof of Lemma 4.1, until we obtain the inequality equation (27). Then, after some
calculations, we get
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Z 1

0

e2Qq

wq

wq
2
xx

+
2e2Q0q

wq

wqx
wqxx

"

+
TQq

wq

� 1 +
1

t2
m

� �
J2

wq
5

� �
wq

2
x



dx

+

Z 1

0

e2Qq

wq

wq
2
xx

+
TQq

wq

� 1 +
1

t2
m

� �
J 2

wq
5

� �
wq

2
x

� 

dx

= :

Z 1

0

(A2wq
2
xx

+B2wqx
wqxx

+ C2wq
2
x
)dx

+

Z 1

0

e2Qq

wq

wq
2
xx

+
TQq

wq

� 1 +
1

t2
m

� �
J2

wq
5

� �
wq

2
x
dx:

ð48Þ

We observe that the first term on the right-hand side can be seen as a positive-definite quadratic form
since B2

2 � 4A2C2\0 by equation (16). Moreover, by the same equation (16), the second term on the
right-hand side is positive. Therefore, equation (48) simply impliesZ 1

0

e2Qq

wq

wq
2
xx
dx

+

Z 1

0

TQq
� 1 +

1

t2
m

� �
J 2

wq
5

� �
wq

2
x
dx ł �K

ð49Þ

where
e2Qq

wq
wq

2
xx

ø 0: In view of equation (11),

Tm � 1 +
1

t2
m

� �
J 2

wq
5

ø �c1 . 0,

where �c1 is q-independent. Therefore, as in Lemma 4.1, we get

jjwqjjL‘(O) ł �K, ð50Þ

and

�c2e
2

Z 1

0

Qqwq
2
xx
dx +�c3

Z 1

0

wq
2
x
dx ł �K, ð51Þ

where the uniform upper and lower bound for wq and the assumption 0\Qq ł 1 have been used. The
estimate equation (47) follows directly from equations (50) and (51). According to the standard theory,
we can show that there exists a w(x) such that

wq * w in H1(O), ð52Þ

wq ! w in C0(O), ð53Þ

for q! 0. The last result can be obtained observing that H1(O),!C0(O). Finally, starting from the gen-
eral expression for the electrical potential given in equation (8), we obtain

Vq(x) =� 2e2Q
wqxx

wq

� 2e2Q0
wqx

wq

+
J 2

2w4
q

+ TQ

�
Z x

0

J

tQ

1

w2
q

dx + 2

Z x

0

TQ( lnwq)
x
dx:

ð54Þ

From equations (16) and (47), we get k VqkL2 ł �K. This implies the existence of a function V such that

2112 Mathematics and Mechanics of Solids 24(7)



Vq * V in L2(O): ð55Þ

Now we have to prove that (w,V ) are weak solutions to (Pw) and they satisfy equations (45) and (46),
respectively. Let f 2 C‘

0 (O) a given test function. We multiply the first equation in Pq by f. After inte-
gration by parts, in view of the boundary conditions, we get

2e2

Z 1

0

Qq

wqxx

wq

+ Q0q
wqx

wq

� �
fxxdx

+ 2

Z 1

0

TQq
� J2

wq
4

� �
wqx

wq

fxdx

�
Z 1

0

TQq

� 	
fxxdx +

Z 1

0

wq
2 � C

l2
fdx

+

Z 1

0

J

tQq
wq

2

� �
fxdx = 0:

ð56Þ

We have to show that equation (56) converges in L2 to the hybrid problem in the weak form, that is

2e2

Z 1

0

Q
wxx

w
+ Q0q

wx

w

� �
fxxdx

+ 2

Z 1

0

QT �
J 2

w4

� �
wx

w
fxdx

�
Z 1

0

QTð Þfxxdx +

Z 1

0

w2 � C

l2
fdx

+

Z 1

0

J

Qtw2

� �
fxdx = 0:

ð57Þ

This convergence can be obtained by means of equations (16), (31) and (47). Therefore, w is the weak
solution to (Pw).

We proceed in a similar way to prove that V is a weak solution to (Pw):We multiply equation (54) by
f, then after integration on O we obtain:Z 1

0

Vqfxdx =� 2e2

Z 1

0

Qq

wxx

w
fxdx

� 2e2

Z 1

0

Q0q
wx

w
fxdx

+

Z 1

0

J 2

2wq
4

fxdx +

Z 1

0

TQq
fxdx

+ 2

Z 1

0

TQq
lnwqfxdx

+ 2

Z 1

0

T 0Qq
lnwfdx +

Z 1

0

J

tQq

1

wq
2

fxdx:

ð58Þ

Now, as above, we have to show that equation (58) converges in L2 to the weak form for the potential
in the hybrid case, that is
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Z 1

0

Vfxdx =� 2e2

Z 1

0

Q(x)
wxx

w
fxdx

� 2e2

Z 1

0

Q0(x)
wx

w
fxdx

+

Z 1

0

J 2

2w4
fxdx +

Z 1

0

TQfxdx

+ 2

Z 1

0

TQ lnwfxdx

+ 2

Z 1

0

T 0Q lnwfdx +

Z 1

0

J

tQ

1

w2
fxdx:

ð59Þ

The thesis follows observing that Vq * V in L2 and that the limit potential V is a solution in the weak
sense of the Poisson equation.

4.2.2. Proof of Theorem 3.5. By definition, just observing that w =
ffiffiffi
n
p

.
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[20] Jüngel, A, and Li, H. On a one-dimensional steady-state hydrodynamic model. Arch Math 2004; 40: 435–456.
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