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STATIONARY SOLUTIONS TO HYBRID QUANTUM

HYDRODYNAMICAL MODEL OF SEMICONDUCTORS

IN BOUNDED DOMAIN

FEDERICA DI MICHELE, MING MEI, BRUNO RUBINO, AND ROSELLA SAMPALMIERI

Abstract. In this paper we study the behaviour of a micro-sized semiconductor device by means
of a hybrid model of hydrodynamic equations. First of all, taking into account the quantum effects

in the semiconductor device, we derive a new model called the hybrid quantum hydrodynamic
model (H-QHD) coupled with the Poisson equation for electric potential. In particular, we write
the Bohm potential in a revised form. This new potential is derived heuristically by assuming that
the energy of the electrons depends on the charge density n and on ∇n just in a restricted part
of the device domain, whereas the remaining parts are modeled classically. Namely, the device is
designed with some parts that feel the quantum effects and some parts do not. The main target
is to investigate the existence of the stationary solutions for the hybrid quantum hydrodynamic
model. Since the quantum effect is regionally degenerate, this will also makes the working equation
regionally degenerate regarding its ellipticity, and the corresponding solutions are weak only. This
paper seems the first framework to treat the equation with regionally degenerate ellipticity. In
order to prove the existence of such weak solutions, we first construct a sequence of smooth QHD
solutions, then prove that such a sequence weakly converges and its limit is just our desired weak
solution for the hybrid QHD problem. The Debye length limit is also studied. Indeed, we prove
that the weak solutions of the hybrid QHD weakly converge to their targets as the spacial Debye
length vanishes. Finally, we carry out some numerical simulations for a simple device, which also
confirm our theoretical results.

Key words. Hybrid quantum hydrodynamic model, 4th-order degenerate elliptic equations,
stationary solutions, existence, uniqueness, classical limit, hybrid limit.

1. Introduction

In the last decades, the characteristic size of semiconductor devices have gradu-
ally reduced up to few hundreds of nanometers. Under these conditions, quantum
effects can no longer be neglected, because they play an important role in the func-
tioning of the devices. However, quantum effects are usually localized in a small
region of the device, while the rest of the domain can be treated classically, with
remarkable reduction of the computational costs. Therefore, the hybrid models are
developed in order to provide a strictly quantum description wherever necessary.

Simply speaking, the word hybrid emphasizes a mathematical approach for which
one models a part of the device by using quantum equations (such as Schrödinger
equation, quantum drift-diffusion (QDD) or quantum hydrodynamic (QHD)), and
the other parts by using classical models, for example hydrodynamical (HD) or drift
diffusion (DD). The main problem is which kind of transmission conditions must be
prescribed at the interface between classical and quantum zones of the device. The
pioneering study in the hybrid coupling between quantum and classical systems
is the paper of N. Ben Abdallah [4], where a suitable set of transmission condi-
tions, linking classical Boltzmann equation and stationary Schrödinger equations,
is discussed. Since then, the relevant research has gradually become a hot spot.
In [7], Baro et al study a one-dimensional stationary Schrödinger drift-diffusion
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including collisions. To link quantum zone and classical region, they prescribe the
continuity of current density at the interface. In [5] Ben Abdallah, Méhats and
Vauchelet introduce a hybrid drift-diffusion-Schrödinger-Poisson (DDSP) model,
and later in [24] the optimal parallelization strategy of numerical solutions of the
same model is performed. In [3] and [17], the DDSP model is applied to study
the electrons transport in strongly confined structures, such as nanotubes. At the
interface between classical and quantum domains, they impose the continuity of
the total current. In [11], the hydrodynamic hybrid model is studied by prescribing
the continuity of the charge density, where a small jump of the current density is
accepted and justified from the physical point of view, by using scaling arguments.

As discussed above, many different strategies can be adopted to establish a physi-
cally reasonable set of interface conditions. The concept of hybrid model introduces
an error at the interface, due to the arbitrary choice to neglect the quantum effects
from a certain point on. Therefore, the choice of suitable transmission conditions
allows us to preserve the continuity of certain physical quantities while others have
to be sacrificed. Hence the great variety of conditions that can be found in the
related literature.
In this paper, we first propose a hybrid model matching classical and quantum hy-
drodynamical equations, that is derived by introducing a modified form of the Bohm
potential. As we know, both the classical and the quantum hydrodynamic models
have been extensively studied, see, for example [2,8,10,12–16,18–20,22,23] and ref-
erences therein. However, just very few results are presently available concerning
the hybrid approach to the hydrodynamic model. Therefore, it will be quite inter-
esting to theoretically study this hybrid quantum hydrodynamical model (H-QHD
model). We introduce a quantum effect function Q(x) where Q > 0 holds in the
region of the device with quantum effect and Q = 0 for the region without quantum
effect. As we will show later on, this makes the governing equations regionally de-
generated for its ellipticity and the solutions are necessarily weak. Therefore, when
studying the H-QHD case, compared with the regular cases of HD and QHD, some
peculiar difficulties will appear. More precisely speaking, the governing steady-state
equation of the H-QHD will be a 4th-order elliptic equation with regional degener-
acy, and its leading coefficients involve Q(x) ≥ 0 and Q′(x). That is, in some part
of the domain the equation is 4th-order elliptic, but in the other part it degenerates
to be 2nd-order elliptic. In particular, when Q(x) is the Heaviside function (the
physical case), Q′(x) = ∞ will be at the jump discontinuous points of Q(x). This
makes the theoretical study on the existence of the H-QHD solutions and their
regularity to be totally different from both the 4th-order uniform elliptic equation
(the QHD model) and the 2th-order uniform elliptic equation (the HD model), and
causes us some essential difficulties. To overcome such obstacles, we first introduce
a sequence of smooth approximating functions Qq(x) ≥ q > 0 satisfying Qq → Q
as q → 0, which modifies the governing equation to be uniformly elliptic, then
we prove the existence of the solutions to the modified H-QqHD equation, where,
when q = 0, we denote the H-Q0HD as the H-QHD. Then, by rigorously proving
the uniform boundedness of the solutions for the H-QqHD model with respect to
q and by carrying out compactness analysis, we may expect that the approximat-
ing (smooth) solutions of the H-QqHD model will weakly converge to their target
functions, which are just the weak solutions of the original H-QHD model. To the
best of our knowledge, this paper is the first framework to treat the equation with
regional degeneracy of ellipticity.
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The present work is divided into 7 sections. In Section 2 we recall the model
introduced in [9] for quantum drift-diffusion model, and derive the new model of
hybrid quantum hydrodynamic equation. In Section 3 we state our main theorems:
the existence of the smooth solutions to the H-QqHD model, the hybrid limit of
the H-QqHD solutions, the existence of the weak solutions for the H-QHD model;
and the zero-space-limit to the weak solutions of the H-QHD model. In Section
4 we prove the existence and uniqueness of the smooth solutions to the H-QqHD
problem. Furthermore, in Section 5 we show the convergence of the H-QqHD model
to the fully hybrid model as Qq → Q. In Section 6 we consider the zero-space-limit
as λ → 0. Finally, in Section 7 we present some numerical tests in order to validate
our model.

2. Derivation of hybrid quantum hydrodynamic (H-QHD) model

H-QHD model. Here we briefly summarize the result described in [9], in order
to justify the model and the results presented in this paper from the physical point
of view. For more details, see the original paper and the references therein. The
main assumption in [9] was that the energy of the electrons depends on ∇n (n is
the density of electrons) not in whole domain, as prescribed in [1], but just in a well
defined sub-domain. The equation of linear momentum balance for the electrons
(neglecting the inertia) reads

−∇ (V + F ) + Ee = 0.(1)

Here V is the electric potential, F is a generalized chemical potential, Ee is the
lowest order for the drag force, which is a function of the electrons velocity v, and
the mobility µ, namely

(2) Ee = − v

µ
.

To include the quantum lowest-order effect, we need to modify the expression of the
density energy e. In this general introduction of the model equations, we assume
Ω ⊂ R

3. We introduce the smooth function Q :Ω→ [0, 1], which indicates where the
internal energy depends on the gradient of the charge density. We call Q(x, y, z)
the quantum effect function. Therefore, e depends on the charge density n (as in
the classical model) and on ξ := ∇n, as follows

(3) eQ := eQ(n, ξ) = lnn−Q
ε2

2

ξ · ξ
n2

,

where ε is the scaled Plank’s constant.
Simply speaking, we have Q = 0 in the region without quantum effects (classical)

and Q > 0 in the quantum region. The size of the transition region between classical
and quantum domain should be approximately 1/ε in order to guarantee a strong
coupling between the two domains. Under this prescription, the transition between
classical and quantum regimes should be fast enough to not affect the electrons
behaviour in the classical and in the quantum domains. Note that, in the standard
mathematical approach to the hybrid models, there is no semiclassical zone, thus
Q becomes the Heaviside function.

The generalized chemical potential F can be written in terms of eQ as follows

F =
∂ (neQ)

∂n
−∇ ·

[

n
∂eQ
∂∇n

]

.(4)
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From (3), the first term on the right-hand side of (4) can be simply calculated as

∂ (neQ)

∂n
= (lnn) +

ε2

2
Q
∇n · ∇n

n2
+ 1,(5)

and the second term is

∇ ·
[

n
∂eQ
∂∇n

]

= ∇ ·
[

n
∂

∂∇n

(

lnn+
ε2

2
Q
∇n · ∇n

n2

)]

,(6)

where

∇ ·
[

n
∂

∂∇n
(lnn)

]

= ∇n · ∂

∂∇n
(lnn) + n

∂

∂∇n
(∇(lnn)) = 1,(7)

and

∇ ·
[

n
∂

∂∇n

(

ε2

2
Q
∇n · ∇n

n2

)]

= ε2
(

Q

(

∆n

n
− ∇n · ∇n

n2

)

+
∇Q · ∇n

n

)

.(8)

Summing up (5)-(8), we get

F = lnn− ε2
(

Q

(

∆n

n
− 1

2

∇n · ∇n

n2

)

+
∇Q · ∇n

n

)

,

or equivalently

(9) F = lnn+ 2ε2
(

Q

(

∆(
√
n)√
n

)

+
∇Q · ∇(

√
n)√

n

)

.

The formula above provides us with a new intrinsically hybrid representation of the
Bohm potential:

B[n](x) = 2ε2
(

Q

(

∆(
√
n)√
n

)

+
∇Q · ∇(

√
n)√

n

)

.(10)

Introducing (10) in the stationary hydrodynamical equation, we get

2ε2n∇
(

Q
∆
√
n√
n

+
∇Q · ∇(

√
n)√

n

)

− T∇n+∇ ·
(

J ⊗ J

n

)

+ n∇V =
J

τ
,(11)

where τ > 0 is the relaxation time and J is the current density.
From now on we restrict ourselves to the steady-state one-dimensional case, with

Ω = [0, 1]. Therefore the previous equation, already divided by n, reads like

(12)







2ε2
(

Q
(
√
n)xx√
n

+Q′ (
√
n)x√
n

)

x

−
(

T lnn+
J2

2n2

)

x

+ Vx =
J

τn
,

J = constant.

The above equation is called the hybrid quantum hydrodynamical equation (H-
QHD). We consider (12) coupled with the Poisson equation:

λ2Vxx = n− C,(13)

which provides a description of the self-consistent electrical potential V . As usual
τ > 0, λ > 0 and T > 0 are the parameters for the scaled relaxation time, the scaled
Debye length, and the scaled temperature respectively. Finally, C ∈ L2(Ω) models
the fixed charge background ions in the semiconductor crystal and it is assumed
C(x) ≥ C0 > 0 for all x in [0, 1].
Boundary conditions. The boundary conditions for the stationary problem (12)-
(13) are supplemented as follows

contact boundary : n(0) = n(1) = 1,(14)

insulation boundary : nx(0) = nx(1) = 0,(15)
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Figure 1. Quantum effect function Q(x).

and

electric potential condition : V (0) = V0, V (1) = V1,(16)

where

(17) V0 = −2ε2Q(0)(
√
n)xx(0) +

J2

2
.

These conditions, as shown in the previous studies for the classical HD model
[10, 13, 20] with (14) (or (15)) and (16), and the QHD model [14, 18, 19, 23] with
(14)-(16), are necessary to make the steady-state system (12)-(13) well-posed. Let
us integrate (12) with respect to x. Then, in view of (16) and (17), we have

V (x) = −2ε2Q
(
√
n)xx√
n

− 2ε2Q′ (
√
n)x√
n

+
J2

2n2
+ T lnn

−J

τ

∫ x

0

1

n
dx,(18)

and we further obtain, by using the boundary conditions (14) and (16), that

(19) V1 = V (1) = −2ε2Q(1)(
√
n)xx(1) +

J2

2
− J

τ

∫ 1

0

1

n
dx.

So, for a fixed constant J , the boundary valueV (1) = V1 can be explicitly obtained
from (19). In this study, we propose the constant J as a parameter and leave V (1)
to be a number automatically determined by (19). Namely, throughout the paper,
we consider the following boundary problem to the steady-state H-QHD model
(12)-(13):

(20)



















2ε2
(

Q
(
√
n)xx√
n

+Q′ (
√
n)x√
n

)

x

−
(

T lnn+
J2

2n2

)

x

+ Vx =
J

τn
,

λ2Vxx = n− C,

n(0) = n(1) = 1, nx(0) = nx(1) = 0, V (0) = V0, J = J0.

Here, we treat the really hybrid case: Q = 0 in some part of the region and Q > 0
in the other part of the region. An example for Q is shown in Figure 1 and in this
case the semiconductor device looks like what presented in Figure 2. This is the
most physically significant but also mathematically challenging case, and it will be
our main target.
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Figure 2. Device.

3. Main results

In this section, we are looking for the solution to the hybrid QHD (20) under
consideration, with Q = 0 in the classical region and Q > 0 in the quantum region.

Differentiating (20)1 with respect to x and substituting Vxx = (n− C)/λ2 from
(20)2 to the resultant equation, we first have the following fourth-order differential
equation for electronic density n:

(21)































2ε2
(

Q
(
√
n)xx√
n

+Q′ (
√
n)x√
n

)

xx

−
(

(T

n
− J2

n3

)

nx

)

x

+
1

λ2
(n− C) = − J

τn2
nx,

λ2Vxx = n− C,

n(0) = n(1) = 1, nx(0) = nx(1) = 0, V (0) = V0, J = J0.

As mentioned before, instead of V (1) = V1, we consider J = J0 as an equivalent
boundary condition. Throughout the paper, we always assume ε < 1. Here and
after, we pay our attention to the case of subsonic flow. To keep the flow subsonic,
we need the uniform ellipticity for the above equation, that is, we must restrict it
by setting:

(22) velocity of the flow :=
|J |
n

<
√

p′(n) =
√
T =: sound speed,

where p(n) = nT is the pressure. This is equivalent to have

(23)
T

n
− J2

n3
> 0, i.e., T >

J2

n2
, for n under consideration,

which implies the uniform ellipticity of the operator ((Tn − J2

n3 )nx)x. Both (22) and
(23) are equivalent to

(24) subsonic condition: n >
|J0|√
T

=: n⋆.

Here J ≡ J0 (a constant).
For the subsonic boundary

n(0) = n(1) = 1 >
|J0|√
T
,

we need the following compatibility condition:

(25) |J0| <
√
T .

Similarly, we also need a subsonic condition for the doping profile C(x):

(26) C0 := min
x∈[0,1]

C(x) > n⋆ =
|J0|√
T
.
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Notice that, Q = 0 in some part of the domain [0, 1]. This makes the 4th order
elliptic equation (21) to be degenerate regionally, and causes us a real difficulty to
prove the existence of the solution. In order to overcome such an obstacle, for fixed
Debye parameter λ > 0, we first look for the solution (nq, Vq)(x) to (21) where,
instead of Q, we consider a strictly positive function Qq ≥ q > 0, such that Qq → Q
when q → 0 (see Theorem 3.1 for a complete list of the properties that Qq must
satisfy). Then, by taking hybrid limit q → 0, we expect that the solution (nq, Vq)(x)
of the modified QHD converges to the really hybrid solution (n, V )(x) in the weak
sense. Furthermore, we will look for the limit solution (n, V )(x) → (C, V̄ )(x) as
the Debye length λ → 0, for a fixed q.

Let w =
√
n, then (21) is reduced to

(27)































2ε2
(

Q
wxx

w
+Q′wx

w

)

xx
− 2

(

(

T − J2

w4

)wx

w

)

x

+
1

λ2
(w2 − C) = − 2J

τw3
wx,

λ2Vxx = w2 − C,

w(0) = w(1) = 1, wx(0) = wx(1) = 0, V (0) = V0, J = J0.

Here and after, we will mainly focus on the above system (27).
First of all, we consider the modified hybrid QHD equations (H-QqHD) where

we replace Q(x) by the strictly positive function Qq(x), and prove the existence of
solutions. For fixed λ > 0, let (wq, Vq)(x) be the solutions to the so-called H-QqHD
equations

(28)























2ε2
(

Qq
(wq)xx

wq
+Q′

q
(wq)x
wq

)

xx
− 2

((

T − J2

w4
q

)

(wq)x
wq

)

x

+ 1
λ2 (w

2
q − C) = − 2J

τw3
q
(wq)x,

λ2(Vq)xx = w2
q − C,

wq(0) = wq(1) = 1, (wq)x(0) = (wq)x(1) = 0, Vq(0) = V0, J = J0.

We first establish the existence and uniqueness of the solutions for the modified
H-QqHD equation (28).

Theorem 3.1 (Existence of H-QqHD solution). Under the subsonic conditions
(25) and (26), assume that Qq(x) is a non-negative, smooth, and bounded function
defined on Ω = [0, 1] such that

0 < q ≤ Qq ≤ 1, α := max(‖Q′
q‖∞, ‖Q′′

q‖∞) < ∞ for all x ∈ Ω,(29)

and

ε2max
x∈Ω

|Q′
q|2

Qq
< 4
(

T − J2
0

n2

)

,(30)

where n := min{1, C0}. Then the solution of (28) exists and (wq, Vq) ∈ H4(Ω) ×
H2(Ω).

Remark 3.2. To guarantee the condition (30), we may take ε ≪ 1. This is usually
verified by quantum devices, as ε ∝ L~√

mkBT
, where ~ is the reduced Plank’s constant

(1.055 ·10−34 J s), L is the device characteristic length (125 nm), m is the effective
electron mass ( ≈ 0.63 · 10−31 kg) and kB ( 1.380 · 10−23 J/K). Therefore, in many
physical situation, ε2 ≈ 10−3.

Theorem 3.3 (Uniqueness of H-QqHD solution). Assume (29), (30) and (22). Let
ε+ |J | ≪ 1, both are independent of q, then the boundary value problem (28) admits
a unique solution.
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The main purpose in this paper is to investigate the existence of the solution
to the really hybrid QHD model (27). Since Q = 0 in some part of the domain
Ω, this leads the H-QHD system (27) to be regionally degenerate in the 4th order
ellipticity as we mentioned before, and it cannot possess smooth solutions. We now
define its weak solutions as follows.

Definition 3.4. A pair of functions (w, V )(x) is said to be a weak solution of (27),
if it holds

2ε2
∫ 1

0

(

Q
wxx

w
+Q′wx

w

)

φxxdx+ 2

∫ 1

0

(

(

T − J2

w4

)wx

w

)

φxdx(31)

+

∫ 1

0

1

λ2
(w2 − C)φdx +

∫ 1

0

J

τw2
φxdx = 0,

and

∫ 1

0

V φdx =− 2ε2
∫ 1

0

Q
wxx

w
φdx− 2ε2

∫ 1

0

Q′wx

w
φdx

(32)

+

∫ 1

0

J2

2w4
φdx + 2T

∫ 1

0

(lnw)φdx − J

τ

∫ 1

0

(
∫ x

0

1

wq
2(s)

ds

)

φdx,

for any φ ∈ C∞
0 (Ω).

For the given hybrid quantum effect function 0 ≤ Q ≤ 1, we make the following
approximation: let {Qq}, q ∈ R+ be a q-dependent sequence satisfying:

(33)















Qq → Q, Q′
q → Q′ uniformly in Ω, for q → 0,

‖Q′
q‖L2 ≤ K̄, uniformly in q,

ε2|Q′
q|2 < Qq

(

T − J2

n2

)

for all x ∈ [0, 1] and for all q ∈ R+

where n > n⋆ = |J|√
T

, and n⋆ as introduced in (24).

Remark 3.5. Condition (33)3 essentially means that |Q′
q|2/Qq remains bounded

when Qq → 0. We observe that this condition is verified if Qq behaves at least as
|x − x0|m, for all m ≥ 2, when x → x0. Finally, we notice that the assumption
(33)3 is stronger than (30), required in the first part of the paper for q > 0.

Example 3.6. As an example of a given hybrid quantum effect function, we con-
sider

(34) Q(x) =











16(x− 1
4 )

2, 0 ≤ x < 1
4 ,

0, 1
4 ≤ x ≤ 3

4 ,

16(x− 3
4 )

2, 3
4 < x ≤ 1,

which satisfies 0 ≤ Q ≤ 1. Then we may construct a sequence {Qq} as

(35) Qq(x) =











q + 16(1− q)(x − 1
4 )

2, 0 ≤ x < 1
4 ,

q, 1
4 ≤ x ≤ 3

4 ,

q + 16(1− q)(x − 3
4 )

2, 3
4 < x ≤ 1,
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where 0 < q < 1. It can be easily verified that 0 < q ≤ Qq ≤ 1 and

|Qq(x) −Q(x)| =











q[1− 16(x− 1
4 )

2], 0 ≤ x < 1
4

q, 1
4 ≤ x ≤ 3

4

q[1− 16(x− 3
4 )

2], 3
4 < x ≤ 1

≤ q, for all x ∈ [0, 1]

and

|Q′
q(x)−Q′(x)| =











32q|x− 1
4 |, 0 ≤ x < 1

4

0, 1
4 ≤ x ≤ 3

4

32q|x− 3
4 |, 3

4 < x ≤ 1

≤ 8q, for all x ∈ [0, 1],

which imply the following uniform convergence

Qq → Q, Q′
q → Q′ uniformly in x ∈ [0, 1], as q → 0.

Moreover, ‖Q′
q‖L2 =

√

32
3 (1 − q) ≤

√

32
3 , and the condition (33)3 is equivalent to

ε2(1− q)2 < 1
64 (T − J2

n2 ). This holds automatically by taking ε2 < 1
64 (T − J2

n2 ).

Now we state the existence of the weak solution to the hybrid quantum hydro-
dynamic equation (27).

Theorem 3.7 (Hybrid limits and existence of H-QHD solution). Under the sub-
sonic conditions (25) and (26), for given hybrid quantum effect function Q ∈
C1(0, 1) with 0 ≤ Q ≤ 1, let us construct a sequence {Qq} satisfying (33), and
let (wq, Vq)(x) be the solutions to the equation (28) corresponding to these selected
approximating functions Qq. Then there exists a pair of functions (w, V )(x) such
that the sequence (wq , Vq)(x) converges to (w, V ) as follows

(36)











wq ⇀ w in H1(Ω),

wq → w in C0(Ω),

Vq ⇀ V in L2(Ω),

as q → 0.

In particular, such a pair of limits (w, V )(x) is the weak solution of the H-QHD
system (27).

Finally, we are looking for the zero-space-charge limits by taking the scaled
Debye length λ → 0. From (20), when we take λ → 0, we then formally expect

wλ(x) →
√

C(x). In fact, we have the following convergence result.

Theorem 3.8 (Zero-space-charge limits for H-QqHD). Let C, Q ∈ C2(Ω) be given
functions such that

(37)















C(0) = C(1) = 1, Cx(0) = Cx(1) = 0,

0 < q ≤ Q(x) ≤ 1,

ε2 maxx∈Ω
|Q′(x)|2
Q(x) <

(

1− ε2

8

)(

T − J2

n2

)/

4
(

1 + ε2

2

(

1− ε2

8

))

,

where n > n⋆ = |J |/
√
T . Let (wλ, Vλ) be the solution to the problem (28). Then

wλ(x) ⇀ w :=
√

C(x) in H2(Ω)

wλ(x) → w :=
√

C(x) in C1(Ω̄)

Vλ(x) ⇀ Ṽ (x) in L2(Ω),
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where

Ṽ (x) =− 2ε2

(

Q

√
Cxx√
C

+Q′
√
Cx√
C

)

+
J2

2C2
+ 2T lnC +

J

τ

∫ x

0

ds

C(s)
.(38)

4. Existence and uniqueness of H-QqHD solution

In order to get the existence of the weak solutions (w, V ) for the really hy-
brid quantum hydrodynamic equations (27), as mentioned before, we propose to
construct an approximating sequence (wq, Vq) for the modified hybrid quantum hy-
drodynamic equations (28). So, in this section, we discuss fixed-point arguments,
and prove the existence and uniqueness of the weak solutions to the stationary
model (28) with Q = Qq ≥ q > 0.

Notice that (28) can be written as

2ε2
(

Qq
(wq)xx
wq

+Q′
q

(wq)x
wq

)

xx

− 2T (lnwq)xx −
(

J2

2w4
q

)

xx

(39)

= −
w2

q − C

λ2
+

(

J

τw2
q

)

x

,

subjected to the following boundary conditions

(wq)x(0) = (wq)x(1) = 0, wq(0) = wq(1) = 1, J = J0.(40)

In order to get the existence of the solution, first of all let us prove the following
a priori estimates.

Lemma 4.1 (A priori estimates). Under the subsonic conditions (25) and (26),
assume that Qq satisfies (29) and (30). Let wq ∈ H2(Ω) be the solution of the
problem (39)-(40). Then the solution wq(x) is in the subsonic region

(41) wq(x) ≥
√
n >

√
n⋆ for x ∈ [0, 1],

and is bounded by

‖wq‖L∞(Ω) ≤ wM .(42)

Moreover

ε2c1

∫ 1

0

(wq)
2
xx dx+ c2

∫ 1

0

(wq)
2
x dx ≤ K,(43)

where wM ≥ √
n, c1 > 0, c2 > 0, and K > 0 are constants.
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Proof. Multiplying (39) by (wq − 1) ∈ H1
0 (Ω) and integrating it on the whole

domain, we have

2ε2
∫ 1

0

Qq
(wq)

2
xx

wq
dx + 2

∫ 1

0

(

T − J2

w4
q

)

(wq)
2
x

wq
dx(44)

+ 2ε2
∫ 1

0

Q′
q

(wq)x(wq)xx
wq

dx

= − 1

λ2

∫ 1

0

(w2
q − 1)(wq − 1) dx

+
1

λ2

∫ 1

0

(C − 1)(wq − 1) dx−
∫ 1

0

J

τw2
q

(wq)x dx

=: I1 + I2 + I3.

By using the Cauchy inequality, we further have

I1 + I2 ≤− 1

λ2

∫ 1

0

(wq − 1)2(wq + 1) dx+
1

2λ2

∫ 1

0

(C − 1)2 dx(45)

+
1

2λ2

∫ 1

0

(wq − 1)2 dx

≤− 1

λ2

∫ 1

0

(wq − 1)2
(

wq +
1

2

)

dx+
1

2λ2

∫ 1

0

(C − 1)2 dx.

Clearly,

I3 =

∫ 1

0

J

τw2
q

(wq)xdx =
J

τwq

∣

∣

∣

x=1

x=0
= 0.(46)

Combining (44)-(46), we obtain

2ε2
∫ 1

0

Qq
(wq)

2
xx

wq
dx+ 2ε2

∫ 1

0

Q′
q

(wq)x(wq)xx
wq

dx(47)

+ 2

∫ 1

0

(

T − J2

w4
q

)

(wq)
2
x

wq
dx+

1

λ2

∫ 1

0

(wq − 1)2
(

wq +
1

2

)

dx

≤ 1

2λ2

∫ 1

0

(C − 1)2 dx.

Obviously, the first three terms of the left hand side in (47) can be read as a
quadratic form

∫ 1

0

[

2ε2Qq
(wq)

2
xx

wq
+ 2ε2Q′

q

(wq)x(wq)xx
wq

+ 2
(

T − J2

w4
q

) (wq)
2
x

wq

]

dx(48)

=:

∫ 1

0

(A1
(wq)

2
xx

wq
+ B1

(wq)x(wq)xx
wq

+ C1
(wq)

2
x

wq
)dx

≥ c1

∫ 1

0

(wq)
2
xx

wq
dx+ c2

∫ 1

0

(wq)
2
x

wq
dx
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for some positive constants c1 and c2. It is positively definite because B2
1−4A1C1 <

0. In fact, from the condition (30), we have

B2
1 − 4A1C1 = 4ε2

[

ε2|Q′
q|2 − 4Qq

(

T − J2

w4
q

)

]

< 4ε2
[

ε2|Q′
q|2 − 4Qq

(

T − J2

n2

)

]

< 0, for wq ≥ √
n.

This is always true for a small ε > 0 and should make sense because the condition
ε ≪ 1 is usually verified by quantum devices.

Substituting (48) into (47), we obtain

(49) c1

∫ 1

0

(wq)
2
xx

wq
dx+ c2

∫ 1

0

(wq)
2
x

wq
dx ≤ 1

2λ2

∫ 1

0

[C − 1]2dx =: K0.

Moreover, from (47), as
(wq)

2
x

wq
= 4[(

√
wq)x]

2, we get

c2

∫ 1

0

[(
√
wq − 1)x]

2 dx ≤ K0.(50)

Recalling that for all x ∈ (0, 1) and f ∈ H1(Ω)

|f(x)| ≤ |f(0)|+
∫ x

0

|fx(s)|ds ≤ |f(0)|+ ‖fx‖L2,

then (50) easily implies ‖√wq−1‖∞ ≤ K1 where K1 =
√

K0

c2
. Thus, (42) is verified

by setting wM = (1 + K1)
2, and (43) follows from (49) in view of (42), where c1

and c2 are positive constants.
Finally, we prove wq ≥ √

n for all x ∈ Ω, where n = min{1, C0} is defined in
(30). Namely, we prove that the flow under consideration is, indeed, subsonic. Let
(wq −

√
n)− := min(0, wq −

√
n). Since wq|∂Ω = 1 >

√
n, so (wq −

√
n)−|∂Ω = 0,

and (wq −
√
n)− ∈ H1

0 (Ω). Now, let us consider again the weak formulation of the
problem (39) by using the test function (wq−

√
n)− = min(0, wq−

√
n), which gives

2ε2
∫ 1

0

Qq

((wq −
√
n)−)2xx

wq
dx+ 2

∫ 1

0

(

T − J2

w4
q

)

((wq −
√
n)−)2x

wq
dx(51)

+ 2ε2
∫ 1

0

Q′
q

((wq −
√
n)−)x((wq −

√
n)−)xx

wq
dx

= − 1

λ2

∫ 1

0

(w2
q −

√
n
2
)(wq −

√
n)− dx

+
1

λ2

∫ 1

0

(C − n)(wq −
√
n)− dx−

∫ 1

0

J

τw2
q

((wq −
√
n)−)x dx

=: L1 + L2 + L3.

One has

L1 + L2 ≤− 1

λ2

∫ 1

0

((wq −
√
n)−)2(wq +

√
n) dx(52)

+
1

λ2

∫ 1

0

(C − n)(wq −
√
n)− dx.

We observe that, Ω can be written as a disjoint union of Ω± and isolated points,
where Ω+ = ∪iΩi

+, Ω− = ∪iΩi
− and

Ωi
+ = {∀x ∈ Ω such that wq ≥ √

n}, Ωj
− = {∀x ∈ Ω such that wq <

√
n}.
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One has

L3 =−
∫ 1

0

J

τw2
q

((wq −
√
n)−)x dx

=−
∑

i

∫

Ωi
+

J

τw2
q

((wq −
√
n)−)x dx−

∑

j

∫

Ωj
−

J

τw2
q

((wq −
√
n)−)x dx.

Clearly the first sum is zero, therefore

L3 =−
∑

j

∫

Ωj
−

J

τw2
q

((w − k)−)x dx.

Consequently, we compute L3 on each interval Ωj
−. Without loss of generality we

just consider a single interval Ωj
− = (aj , bj), which is properly contained in the

open interval (0, 1). The inequality (43) implies wq ∈ H2(0, 1) ⊂ C0(0, 1), namely
wq is a continuous function in [aj , bj]. This implies that wq(aj) = wq(bj) =

√
n,

and thus

L3 = −
∫ aj

bj

J

τw2
q

(wq)x dx =
J

τwq(bj)
− J

τwq(aj)
= 0.(53)

Considering (52), and (53) and using (30), there exist non negative constants c1,
c2 and c3 such that

c1

∫ 1

0

((wq −
√
n)−)2xx dx + c2

∫ 1

0

((wq −
√
n)−)2x dx(54)

+ c3

∫ 1

0

((wq −
√
n)−)2(wq +

√
n) dx

≤ 1

λ2

∫ 1

0

(C − n)(wq −
√
n)− dx,

which implies (wq − √
n)− = 0 for all x ∈ [0, 1], namely, wq ≥ √

n > 0 for all
x ∈ [0, 1]. The inequality (41) follows from (54). �

Lemma 4.2. Under the assumption of Lemma 4.1, the variable uq, defined as
uq = lnnq, verifies the following estimate

ε
√
q‖(uq)xx‖L2(Ω) +

√

T − J2/n ‖(uq)x‖L2(Ω)

≤ ε‖
√

Qq(uq)xx‖L2(Ω) +
√

T − J2/n ‖(uq)x‖L2(Ω) ≤ K0.(55)

Proof. We write (28) in the new variable uq = 2 lnwq and we derive it with respect
to x

ε2
(

Qq

(

(uq)xx +
(uq)

2
x

2

)

+Q′
q(uq)x

)

xx

+ (J2e−2uq (uq)x)x(56)

− T (uq)xx +
euq − C(x)

λ2
−
(

J

τ
e−uq

)

x

= 0.

The equation (56) is coupled with

uq(0) = uq(1) = 0, (uq)x(0) = (uq)x(1) = 0.(57)
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Following [14], we introduce uq as a test function in the weak formulation of our
problem. Then we have

ε2
∫ 1

0

Qq(uq)
2
xx dx+

∫ 1

0

(

T − J2

e2uq

)

(uq)
2
x dx

= − 1

λ2

∫ 1

0

(euq − C)uq dx+
J

τ

∫ 1

0

e−uq (uq)x dx

+ ε2
∫ 1

0

Q′
q

(uq)
3
x

6
dx− ε2

∫ 1

0

Q′′
q (x)

(uq)
2
x

2
dx

=: N1 +N2 +N3 +N4.

Notice that the constant (e−1 + ‖C lnC‖L∞) is an upper bound for the function
u 7→ −u(eu − C), for all u ∈ R and x ∈ Ω, therefore we obtain

N1 ≤ 1

λ2
(e−1 + ‖C lnC‖L∞).

Moreover, it holds

N2 = 0,

because of the boundary conditions. Finally, we account for the last two integrals:

N3+N4 ≤
ε2

6
‖Q′

q‖∞‖(uq)x‖3∞+
ε2

2
‖Q′′

q‖∞‖(uq)x‖2∞ ≤ αε2

2
‖(uq)x‖2∞

(‖(uq)x‖∞
3

+ 1

)

.

In view of the estimate of the terms Ni, we conclude

ε2q

∫ 1

0

(uq)
2
xx dx+

(

T − J2

n

)
∫ 1

0

(uq)
2
x dx(58)

≤ ε‖
√

Qq(uq)xx‖L2(Ω) +
√

T − J2/n ‖(uq)x‖L2(Ω)

≤ K5,

and then (55). �

Theorem 4.3 (Existence of H-QqHD solutions). Assuming (22), there exists a
weak solution uq ∈ H2(Ω) to the boundary value problem (56)-(57).

Proof. Since Qq ≥ q > 0, equation (56) basically is a QHD model. So the methods
used in previous studies [14, 18, 19] are also available for us. Here we adapt the
results given by Gyi and Jüngel [14] to our problem. Let us define ν ∈ X = C0,1(Ω).
Consider the following linear problem

ε2
(

Qq

(

(uq)xx +
σ

2
ν2x

)

+Q′
q(uq)x

)

xx
+ σJ2

(

e−2ννx
)

x
(59)

− T (uq)xx +
σ

λ2

(

eν − 1

ν
uq + 1− C

)

− σ
J

τ
(e−ν)x = 0

coupled with the boundary conditions (57), where σ ∈ [0, 1]. For each uq, φ ∈
C0,1(Ω), the following bilinear form is continuous and coercive in C0,1(Ω) for φ ∈
C0,1(Ω):

a(uq, φ) =

∫ 1

0

(

ε2
(

Qq(uq)xx +Q′
q(uq)x

)

φxx + T (uq)xφx +
σ

λ2

eν − 1

ν
uqφ

)

dx
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and the functional F defined as

F (φ) =

∫ 1

0

(

−Q
ε2σ

2
ν2xφxx + σJ2e−2ννxφx +

σ

λ2
(C − 1)φ

)

dx

−
∫ 1

0

(

σ
J

τ
e−νφx

)

dx

is linear and continuous in H2(Ω) for φ ∈ H2(Ω). By using Lax Milgram Lemma,
we get the existence of a unique solution u ∈ H2(Ω) to the boundary value problem
(59)-(57). So we have defined a continuous and compact fixed point operator on X

S : X × [0, 1] → X, (ν, σ) → uq(60)

verifying

• S(ν, 0) = 0 for all ν ∈ X ,
• there is a constant c > 0 such that

(61) ‖u‖X ≤ c,

for all (uq, σ) ∈ X × [0, 1] satisfying S(uq, σ) = uq.

For σ = 1 the inequality (61) follows from the a priori estimates already discussed,
whereas for 0 < σ < 1 it can be obtained proceeding in a similar way.

The existence of a fixed point uq follows applying the Leray-Schauder fixed point
theorem. �

Now we prove the uniqueness of subsonic solution to (12)-(14), for sufficiently
small values of the current density J .

Theorem 4.4 (Uniqueness of H-QqHD solutions). Assume (29), (30) and (22).
Let ε+ |J | ≪ 1, both are independent of q, then the boundary value problem (56)-
(57) admits unique solution.

Proof. Let uq and vq be two solutions of the boundary problem (56)-(57). Then
uq − vq satisfies

ε2 (Qq(uq − vq)xx)xx +Qqε
2

(

(uq)
2
x

2
− (vq)

2
x

2

)

xx

+ ε2(Q′
q(uq − vq)x)xx(62)

− J2

2
(e−2uq − e−2vq )xx − T (uq − vq)xx +

euq − evq

λ2
+

J

τ

(

e−uq − e−vq
)

x
= 0

coupled with the following boundary conditions

(uq − vq)(0) = (uq − vq)(1) = 0, (uq − vq)x(0) = (uq − vq)x(1) = 0.(63)

We multiply (62) by (uq − vq) ∈ H2
0 (Ω) and integrate it by parts on the whole

domain

ε2
∫ 1

0

Qq(uq − vq)
2
xx dx +

ε2

2

∫ 1

0

Qq(uq + vq)x(uq − vq)x(uq − vq)xx dx(64)

− ε2

2

∫ 1

0

Q′′
q (x)(uq − vq)

2
x dx+ T

∫ 1

0

(uq − vq)
2
x dx

+
1

λ2

∫ 1

0

(euq − evq )(uq − vq) dx

= J2

∫ 1

0

e−2uq (uq − vq)
2
xdx+ J2

∫ 1

0

(e−2uq − e−2vq )vqx(uq − vq)xdx

+
J

τ

∫ 1

0

(e−uq − e−vq )(uq − vq)x dx.
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We note that

(65)
1

λ2

∫ 1

0

(euq − evq )(uq − vq) dx ≥ 0.

We recall the estimates (41), (42) for wq and uq = 2 lnwq, and the estimate (55)
that holds for uq and vq, namely,

ε‖
√

Qq(uq)xx‖L2(Ω) +
√

T − J2/n ‖(uq)x‖L2(Ω) ≤ K0.

From Poincaré inequality:

‖(uq − vq)‖ ≤ C‖(uq − vq)x‖,

and Sobolev inequality:

‖uq − vq‖L∞ ≤
√
2‖uq − vq‖1/2L2 ‖(uq − vq)x‖1/2L2 ,

we have

(66) J2

∫ 1

0

e−2uq (uq − vq)
2
xdx ≤ CJ2‖(uq − vq)x‖2,

J2

∫ 1

0

(e−2uq − e−2vq )vqx(uq − vq)xdx(67)

≤ J2
(

∫ 1

0

|(vq)x|2dx
)

1
2
(

∫ 1

0

|e−2uq − e−2vq |2|(uq − vq)x|2dx
)

1
2

≤ CJ2‖(vq)x‖
(

∫ 1

0

|uq − vq|2|(uq − vq)x|2dx
)

1
2

≤ CJ2‖uq − vq‖L∞‖(uq − vq)x‖
≤ CJ2‖uq − vq‖

1
2 ‖(uq − vq)x‖

1
2 ‖(uq − vq)x‖

≤ CJ2‖(uq − vq)x‖
1
2 ‖(uq − vq)x‖

1
2 ‖(uq − vq)x‖

= CJ2‖(uq − vq)x‖2,

and

J

τ

∫ 1

0

(e−uq − e−vq )(uq − vq)x dx(68)

≤ C|J |
∫ 1

0

|uq − vq||(uq − vq)x|dx

≤ C|J |(‖uq − vq‖2 + ‖(uq − vq)x‖2)
≤ C|J |‖(uq − vq)x‖2.

On the other hand, by the properties of the quantum function Qq(x), and noting
the L2-boundedness for (uq)x in (55), we have the following Sobolev inequality

‖
√

Qq(uq)x‖2L∞ ≤ C‖
√

Qq(uq)x‖‖
√

Qq(uq)xx‖
≤ C‖(uq)x‖‖

√

Qq(uq)xx‖
≤ C‖

√

Qq(uq)xx‖.
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This together with the boundeness of ε‖
√

Qq(uq)xx‖ ≤ K0 and ε‖
√

Qq(vq)xx‖ ≤
K0 can guarantee

ε2

2

∫ 1

0

Qq(x)(uq + vq)x(uq − vq)x(uq − vq)xx dx(69)

≤ ε2

4

∫ 1

0

Qq(x)|(uq − vq)xx|2dx+
ε2

4

∫ 1

0

|
√

Qq((uq + vq)x|2|(uq − vq)x|2 dx

≤ ε2

4

∫ 1

0

Qq(x)|(uq − vq)xx|2dx

+Cε2
(

‖
√

Qq(uq)x‖2L∞ + ‖
√

Qq(vq)x‖2L∞

)

‖(uq − vq)x‖2

≤ ε2

4

∫ 1

0

Qq(x)|(uq − vq)xx|2dx

+Cε2
(

‖
√

Qq(uq)xx‖+ ‖
√

Qq(vq)x‖
)

‖(uq − vq)x‖2

≤ ε2

4

∫ 1

0

Qq(x)|(uq − vq)xx|2dx+ Cε‖(uq − vq)x‖2.

Substituting (65)-(69) into (64), we obtain

(70)
ε2

2

∫ 1

0

Qq(uq−vq)
2
xx dx+

(

T −C1ε
2−C2ε−C3J

2−C4|J |
)

‖(uq−vq)x‖2 ≤ 0

for some positive constants Ci (i = 1, 2, 3, 4). Let ε ≪ 1 and |J | ≪ 1 be independent
of q such that

ε ≤ min
{

1,
T

2(C1 + C2)

}

, |J | ≤ min
{

1,
T

2(C3 + C4)

}

,

then (70) with Poincaré inequality implies the uniqueness:

‖uq − vq‖2 + ‖(uq − vq)x‖2 ≤ 0, namely uq − vq = 0.

The proof is complete. �

Proof of Theorem 3.1. Following [14] and using the regularity of the function
Qq, it is not difficult to show that there exists a solution uq ∈ H4(Ω) to (56)-(57).
Consequently, observing that w2

m ≤ nq = euq ≤ w2
M , the boundary value problem

(12)-(14) admits a unique solution nq ∈ H4(Ω). Finally, Vq ∈ H2(Ω), thanks to the
Poisson equation (13). This concludes the proof. �

Proof of Theorem 3.3. Theorem 4.4 immediately implies Theorem 3.3. �

5. Hybrid limit

In this section, we study the physical case of hybrid quantum hydrodynamic
model (27) with 0 ≤ Q ≤ 1, where the quantum effect function is Q = 0 for the
classical region and Q > 0 for the quantum region, just as indicated in Figure 1.
Here, we present the main result obtained within this paper: we perform the hybrid
limit, namely we study the behaviour of the solution to the problem (28) for q → 0.

Proof of Theorem 3.7. For a given quantum function Q ∈ C1, first of all, we
will construct the approximating functions {Qq} satisfying (33). Let (wq , Vq)(x) be
the solutions to (28) corresponding to Qq. From now on, all the q−independent con-
stants are indicated as K̄ or c̄i, and we briefly show that the following q−independent
a priori estimates hold:

‖wq‖H1(Ω) ≤ K̄, ‖
√

Qqwqxx‖L2(Ω) ≤ K̄.(71)
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We perform the estimates, as in the proof of Lemma 4.1, in order to obtain the
inequality (47). Now we rearrange the first three terms of the left hand side in (47)
in a different way, namely:

∫ 1

0

[ε2Qq

wq
wq

2
xx +

2ε2Q′
q

wq
wqxwqxx +

( T

wq
− J2

wq
5

)

wq
2
x

]

dx

+

∫ 1

0

[ε2Qq

wq
wq

2
xx +

( T

wq
− J2

wq
5

)

wq
2
x

]

dx

=:

∫ 1

0

(A2wq
2
xx + B2wqxwqxx + C2wq

2
x)dx

+

∫ 1

0

[ε2Qq

wq
wq

2
xx +

( T

wq
− J2

wq
5

)

wq
2
x

]

dx.

The first term on the right hand side is positive by (33). In fact, in this case
B2
2 − 4A2C2 < 0, where

B2
2 − 4A2C2 =

4

w2
q

[

|ε2Q′
q|2 − ε2Qq

(

T − J2

w4
q

)

]

<
4ε2

w2
q

[

ε2|Q′
q|2 −Qq

(

T − J2

n2

)

]

< 0, for n ≥ n.

Then, following the proof of Lemma 4.1, in view of (33), we obtain

∫ 1

0

ε2Qq

wq
wq

2
xxdx+

∫ 1

0

( T

wq
− J2

wq
5

)

wq
2
x dx ≤ K̄.(72)

We observe that
ε2Qq

wq
wq

2
xx ≥ 0. Moreover, by (22) we can find a positive constant

c̄1 q−independent, such that T
wq

− J2

wq
5 ≥ c̄1. Therefore, following Lemma 4.1, we

obtain

c̄1

∫ 1

0

[(
√
wq − 1)x]

2 ≤ K̄,(73)

and thus

‖wq‖L∞(Ω) ≤ K̄.(74)

Using the uniform upper bound for w and the assumption 0 < Qq ≤ 1, we can
rewrite (72) as

c̄2ε
2

∫ 1

0

Qqwq
2
xxdx+ c̄3

∫ 1

0

wq
2
x dx ≤ K̄(75)

which obviously implies (71), namely, wq is uniformly bounded in H1(Ω) and
√

Qqwqxx is uniformly bounded in L2(Ω). Therefore, there exists a w(x) as the
hybrid limit of the sequence wq :

wq ⇀ w in H1(Ω),(76)

for q → 0. Since H1(Ω) →֒ C0(Ω), we further have

wq → w in C0(Ω),(77)
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for q → 0. Now we prove that w is the weak solution of (27), namely, w satisfies
(31). Let us consider equation (39). Multiplying (39) by φ, where φ ∈ C∞

0 (Ω) is
any given test function, and integrating by parts we have

2ε2
∫ 1

0

(

Qq

wqxx

wq
+Q′

q

wqx

wq

)

φxxdx+ 2T

∫ 1

0

wqx

wq
φxdx

− 4

∫ 1

0

(

J2

2wq
4

)

wqx

wq
φxdx+

∫ 1

0

wq
2 − C

λ2
φdx +

∫ 1

0

(

J

τwq
2

)

φxdx = 0.(78)

Recalling (71) and that wq >
√
n > 0 (the subsonic condition), in view of (33), the

weak form (78) converges in L2 to the weak form of the limit problem, namely

2ε2
∫ 1

0

(

Q
wxx

w
+Q′wx

w

)

φxxdx+ 2T

∫ 1

0

wx

w
φxdx

− 4

∫ 1

0

(

J2

2w4

)

wx

w
φxdx+

∫ 1

0

w2 − C

λ2
φdx+

∫ 1

0

(

J

τw2

)

φxdx = 0.(79)

Thus, we have proved that w is the weak solution of (27).
Now we consider the expression for the electric potential Vq, obtained by inte-

grating (12) with respect to x and using (14):

Vq =− 2ε2Qq

wqxx

wq
− 2ε2Q′

q

wqx

wq
+

J2

2wq
4
+ 2T lnwq

− J

τ

∫ x

0

1

wq
2
dx.(80)

By using assumption (33) and the uniform estimates (71), one has that ‖Vq‖L2 ≤ K̄.
Therefore, there exists V such that

Vq ⇀ V in L2(Ω).(81)

Now, we have to prove that the limit V is the weak solution of the hybrid problem.
To this end, we multiply (80) by φ ∈ C∞

0 (Ω) and integrate it in Ω:
∫ 1

0

Vqφdx =− 2ε2
∫ 1

0

Qq
wqxx

wq
φdx − 2ε2

∫ 1

0

Q′
q

wqx

wq
φdx(82)

+

∫ 1

0

J2

2wq
4
φdx+ 2T

∫ 1

0

(lnwq)φdx

− J

τ

∫ 1

0

(
∫ x

0

1

wq
2
ds

)

φdx.

Due to the uniform estimate in (71) and to the properties of {Qq}, it is not difficult
to see that, for q → 0, we have

∫ 1

0

V φdx =− 2ε2
∫ 1

0

Q
wxx

w
φdx− 2ε2

∫ 1

0

Q′wx

w
φdx(83)

+

∫ 1

0

J2

2w4
φdx + 2T

∫ 1

0

(lnw)φdx

− J

τ

∫ 1

0

(
∫ x

0

1

wq
2
ds

)

φdx.

Thus, we prove Vq ⇀ V in L2 and the limit potential V verifies the Poisson equation
in the weak sense. From (81) and nq = w2

q , we prove (36). The proof of Theorem
3.7 is complete. �
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6. A zero-space-charge limit for the hybrid model

In this section we discuss the limit λ → 0, firstly for the H-QqHD model, then for
H-QHD equation. In both cases, following the approach proposed by [14], we choose
a particular function C(x), which allows to obtain a suitable set of λ−independent
estimates, as in the following theorem.

Theorem 6.1 (Zero-space-charge limits for the modified H-QqHD equation with
q > 0). Let C, Qq ∈ C2(Ω) be given functions such that

(84)



















C(0) = C(1) = 1, Cx(0) = Cx(1) = 0,

0 < q ≤ Qq ≤ 1,

ε2 maxx∈Ω
|Q′

q|2
Qq

<

(

1− ε4

8

)(

T− J2

n2

)

4
(

1+ ε2

2

(

1− ε2

8

)) ,

where n > n⋆ = |J |/
√
T . Let (wq,λ, Vq,λ) be the solution to the problem (28). Then

wq,λ(x) ⇀ wq :=
√

C(x) in H2(Ω)

wq,λ(x) → wq :=
√

C(x) in C1(Ω̄)(85)

Vq,λ(x) ⇀ Vq(x) in L2(Ω),

where

Vq(x) =− 2ε2

(

Qq

√
Cxx√
C

+Q′
q

√
Cx√
C

)

(86)

+
J2

2C2
+ 2T lnC +

J

τ

∫ x

0

ds

C(s)
.

Proof. As in Section 5, we prove a suitable set of λ−independent estimates, which
allow us to perform the limit λ → 0.

Consider (39), multiply it by (wq,λ −
√
C) and integrate on Ω. After some

calculations we get:

2ε2
∫ 1

0

Qq
(wq,λ)

2
xx

wq,λ
dx+ 2

∫ 1

0

(

T − J2

w4
q,λ

)

(wq,λ)
2
x

wq,λ
dx(87)

+ 2ε2
∫ 1

0

Q′
q

(wq,λ)x(wq,λ)xx
wq,λ

dx+
1

λ2

∫ 1

0

(wq,λ −
√
C)2(wq,λ +

√
C) dx

= 2ε2
∫ 1

0

Qq
(wq,λ)xx
wq,λ

√
Cxx dx+ 2

∫ 1

0

(

T − J2

(wq,λ)4

)

(wq,λ)x
wq,λ

√
Cx dx

+ 2ε2
∫ 1

0

Q′wq,λx

wq,λ

√
Cxx dx+

∫ 1

0

J

τ(wq,λ)2
(wq,λ)x dx−

∫ 1

0

J

τ(wq,λ)2

√
Cx dx

=: Y1 + Y2 + Y3 + Y4 + Y5.
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Using the Young’s inequality with parameter, the lower λ−independent bound for
wq,λ and the properties on the function Qq, we can estimate the integrals Yi:

Y1 ≤ ε4

4

∫ 1

0

Qq
(wq,λ)

2
xx

wq,λ
dx+ 4

∫ 1

0

Qq

√
C

2

xx

wq,λ
dx

≤ ε4

4

∫ 1

0

Qq
(wq,λ)

2
xx

wq,λ
dx+ 4

∫ 1

0

√
C

2

xx

wm
dx,

Y2 ≤
∫ 1

0

(

T − J2

(wq,λ)4

)

(wq,λ)
2
x

wq,λ
dx+ T

∫ 1

0

√
C

2

x

wm
dx

≤
∫ 1

0

(

T − J2

(wq,λ)4

)

(wq,λ)
2
x

wq,λ
dx+

∫ 1

0

√
C

2

x

wm
dx

Y3 ≤ ε4

4

∫ 1

0

[Q′
q(x)]

2 (wq,λ)
2
x

wq,λ
dx+ 4

∫ 1

0

[
√
Cxx]

2

wq,λ
dx

≤ ε4

4

∫ 1

0

[Q′
q(x)]

2 (wq,λ)
2
x

wq,λ
dx+ 4

∫ 1

0

[
√
Cxx]

2

(wq,λ)
dx,

where wm = min{wq,λ}. Moreover

Y4 = 0,

Y5 ≤
∫ 1

0

J2

2τ(wq,λ)4
dx +

∫ 1

0

[
√
Cx]

2

2
dx ≤ J2

2τw4
m

+

∫ 1

0

[
√
Cx]

2

2
dx.

In view of the previous estimates, (87) becomes

2ε2
(

1− ε2

8

)
∫ 1

0

Qq
(wq,λ)

2
xx

wq,λ
dx(88)

+

∫ 1

0

[

(

T − J2

(wq,λ)4

)

−
ε4Q′2

q

4

]

(wq,λ)
2
x

wq,λ
dx

+ 2ε2
∫ 1

0

Q′
q

(wq,λ)x(wq,λ)xx
wq,λ

dx+
1

λ2

∫ 1

0

((wq,λ)−
√
C)2((wq,λ) +

√
C) dx

≤ K̃,

that implies

∫ 1

0

A3
(wq,λ)

2
xx

wq,λ
dx+

∫ 1

0

B3
(wq,λ)x(wq,λ)xx

wq,λ
dx+

∫ 1

0

C3
(wq,λ)

2
x

wq,λ
dx ≤ K̃,(89)

where

A3 = 2ε2
(

1− ε2

8

)

Qq

B3 = 2ε2Q′
q

C3 =

[

(

T − J2

(wq,λ)4

)

−
ε4Q′2

q

4

]

.
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The quadratic form in (89) is strictly positive if B2
3 − 4A3C3 < 0:

B2
3 − 4A3C3 =

= 4ε4Q′
q(x)

2 − 8ε2
(

1− ε2

8

)

Qq

[

(

T − J2

(wq,λ)4

)

−
ε4Q′2

q

4

]

< 0.

The inequality above is verified by

4ε4[Q′
q]

2 + 8ε2
(

1− ε2

8

)

Q

[

ε4[Q′
q(x)]

2

4

]

< ε2
(

1− ε2

8

)

Qq

[(

T − J2

(wq,λ)4

)]

,

which implies, recalling that Qq < 1:

4ε4[Q′
q]

2

(

1 +
ε2

2

(

1− ε2

8

))

< ε2
(

1− ε2

8

)

Qq

[(

T − J2

(wq,λ)4

)]

and then, (84).

Proceeding as in Lemma 4.1, assuming (84), we can see that ‖(wq,λ)‖∞ ≤ K̃

and ‖(wq,λ)‖H1 ≤ K̃. Moreover, in view of (87), it is easy to see that
∫ 1

0

((wq,λ)−
√
C)2((wq,λ) +

√
C) ≤ λ2K̃.

Therefore there exists a subsequence (wq,λ) (not relabeled) such that the first two
relations in (85) hold. Following the same idea used in the discussion of the hybrid

limit, we can prove that ‖Vqλ‖L2 ≤ K̃, and then the last limit in (85).
Finally, we have to find that the limit potential for λ → 0 is given by (86).

Consider (80) multiplied by φ ∈ C∞
0 (Ω) and integrated it in Ω:

∫ 1

0

Vqλφdx =− 2ε2
∫ 1

0

Qq
(wq,λ)xx
wq,λ

φdx− 2ε2
∫ 1

0

Q′
q

(wq,λ)x
wq,λ

φdx(90)

+

∫ 1

0

J2

2(wq,λ)4
φdx+ 2T

∫ 1

0

lnwq,λφdx

− J

τ

∫ 1

0

(
∫ x

0

1

(wq,λ)2
ds

)

φdx.

As a consequence of the uniform estimate derived above, for λ → 0, we have
∫ 1

0

Vqφdx = − 2ε2
∫ 1

0

Qq

√
Cxx√
C

φdx− 2ε2
∫ 1

0

Q′
q

√
Cx√
C

φdx(91)

+

∫ 1

0

J2

2C2
φdx+ T

∫ 1

0

(lnC)φdx − J

τ

∫ 1

0

(
∫ x

0

1

C
ds

)

φdx.

This concludes the proof. �

Proof of Theorem 3.8. Let (wq,λ, Vq,λ)(x) a the smooth solution for (28). As
showed in Theorem 3.1, we have

‖wq,λ‖H1 ≤ K̃, ‖
√

Qq(wq,λ)xx‖L2 ≤ K̃, ‖Vq,λ‖L2 ≤ K̃,
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and, as showed in Theorem 6.1, we have

∫ 1

0

(wq,λ −
√
C)2(wq,λ +

√
C) dx ≤ λ2K̃

and (see (88))

2ε2
(

1− ε2

8

)
∫ 1

0

Qq
(wq,λ)

2
xx

wq,λ
dx(92)

+

∫ 1

0

[

(

T − J2

(wq,λ)4

)

−
ε4Q′2

q

4

]

(wq,λ)
2
x

wq,λ
dx

+ 2ε2
∫ 1

0

Q′
q

(wq,λ)x(wq,λ)xx
wq,λ

dx

+
1

λ2

∫ 1

0

((wq,λ)−
√
C)2((wq,λ) +

√
C) dx

≤ K̃.

Moreover, taking q → 0, we have

2ε2
(

1− ε2

8

)
∫ 1

0

Q
(wλ)

2
xx

wλ
dx(93)

+

∫ 1

0

[(

T − J2

(wλ)4

)

− ε4Q′2

4

]

(wλ)
2
x

wλ
dx

+ 2ε2
∫ 1

0

Q′ (wλ)x(wλ)xx
wλ

dx

+
1

λ2

∫ 1

0

((wλ)−
√
C)2((wλ) +

√
C) dx ≤ K̃.

Let us rewrite (93) as follows

ε2
(

1− ε2

8

)
∫ 1

0

Q
(wλ)

2
xx

wλ
dx(94)

+ (1− ε2)

∫ 1

0

[(

T − J2

(wλ)4

)

− ε4Q′2

4

]

(wλ)
2
x

wλ
dx

+

∫ 1

0

[

A4
[(wλ)xx]

2

wλ
+ B4

(wλ)x(wλ)xx
wλ

+ C4
[(wλ)x]

2

wλ

]

dx

+
1

λ2

∫ 1

0

((wλ)−
√
C)2((wλ) +

√
C) dx ≤ K̃,

where

A4 := ε2(1− ε2

8
)Q,

B4 := 2ε2Q′,

C4 := ε2[(T − J2

n2
)− ε4Q′

4
],

which satisfy

B2
4 − 4A4C4 < 0
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due to (37). So, we have
∫ 1

0

[

A4
[(wλ)xx]

2

wλ
+ B4

(wλ)x(wλ)xx
wλ

+ C4
[(wλ)x]

2

wλ

]

dx ≥ 0,

and, from (94), we further have

ε2
(

1− ε2

8

)
∫ 1

0

Q
(wλ)

2
xx

wλ
dx(95)

+ (1 − ε2)

∫ 1

0

[(

T − J2

(wλ)4

)

− ε4Q′2

4

]

(wλ)
2
x

wλ
dx

+
1

λ2

∫ 1

0

((wλ)−
√
C)2((wλ) +

√
C) dx ≤ K̃,

which implies

‖wλ‖H1 ≤ K̃ and

∫ 1

0

(wλ −
√
C)2(wλ +

√
C) dx ≤ λ2K̃.

This gives

wλ ⇀
√
C in H1 as λ → 0,

and

wλ →
√
C in C0 as λ → 0.

Similarly to (82) and (83), we can prove

Vλ ⇀ Ṽ in L2(Ω) as λ → 0,

where Ṽ is given in (38). The details are omitted. Thus, the proof of Theorem 3.8
is now complete. �

7. Numerical simulations

In the previous sections we have introduced, from the theoretical point of view,
a new hybrid model (H-QHD), obtained localizing the quantum effects in a given
subset of the device domain. Compared to quantum hydrodynamic model, the H-

QHD model (12) has an additional term, namely ε2Q′(x)
√
nx√
n

. Roughly speaking Q′

models a semi-classical region linking quantum and classical domains. Obviously,
when Q′ = 0, we obtain again the QHD model.

In this section we test numerically the H-QHD model on a simple device: a
n+|n|n+ transistor. It is characterized by the following typical doping profile:

C̄(x) =

{

Cm, ∀x ∈ [x1, x2]
1, ∀x ∈ [0, x1) andx ∈ (x2, 1]

(96)

where Cm < 1 is a strictly positive constant and 0 < x1 < x2 < 1.
We approximate the step function C̄(x) by using

C(x) = 1− (0.5−Cm/2)(tanh(1000(x− 1/3))− tanh(1000(x− 2/3))) x ∈ [0, 1],

and by taking Cm = 0.2.
According to the theoretical part, we model as quantum the middle region of the

device and as classical the external parts. Namely
{

Quantum Region ∀x ∈ [y1, y2]
Classical Region ∀x ∈ [0, y1) andx ∈ (y2, 1] ,

(97)

where 0 < y1 < y2 < 1.
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Figure 3. Quantum profile function Q(x), for different value of q. In

particular we set q = 0.2, q = 0.1 and q = 0.01.

Figure 4. Charge density profile n(x), for different value of q. In

particular we set q = 0.2, q = 0.1 and q = 0.01.

We consider the ordinary differential equation (56)

ε2
(

Q

(

uxx +
u2
x

2

)

+Q′ux

)

xx

+ (J2e−2uux)x

− Tuxx +
eu − C(x)

λ2
−
(

J

τ
e−u

)

x

= 0.

coupled with

u(0) = u(1) = 0, ux(0) = ux(1) = 0.

The numerical simulation are performed by using COLNEW, a SCILAB function
for boundary value problems [6]. For our toy model, it looks reasonable to assume
that Q(x) behaves like C(x), therefore we set

Q(x) = (0.5− q/2)((tanh(10(x− 1/3))− tanh(10(x− 2/3))), x ∈ [0, 1]](98)

where q is the strictly positive minimum of the function Q(x). The behaviour of
the function Q(x), for different values of q, is plotted in Figure 3.
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Figure 5. Charge density profile n(x), for different value of q. In

particular we set q = 0.01, q = 0.001 and q = 0.0001.

Figure 6. Charge density profile n(x), for different value of λ. In

particular we set λ = 0.3, λ = 0.2 and λ = 0.1.

Figure 7. Charge density profile n(x), for different value of λ. In

particular we set λ = 0.01, λ = 0.001 and λ = 0.0001.

Next we fix the values of the scaled Debye length λ, of the scaled temperature
T , of the scaled Plank constant ε, of the current density J , and of the relaxation
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time τ as follows:

λ = 0.1, T = 1, ε = 0.1, J = 0.1, τ = 0.125.

By such a setting, then we can check that the system of the flow is subsonic:

C(x) ≥ Cm >
J√
T
, [subsonic doping profile]

n(0) = n(1) >
J√
T
, [subsonic boundary]

and also conditions (33) are verified for all q ≤ 0.5.
To evaluate the performance of our model, we consider the behaviour of the

charge density n for different value of q. In particular, we set q = 0.2, q = 0.1 and
q = 0.01 (Figure 4). As expected, reducing the value of q the solution converges
to the limit hybrid solution. If we reduce again the value of the parameter q, the
solution becomes very close each other and no remarkable difference can be observed
numerically, as showed in Figure 5. This verifies numerically the existence of a limit
solution discussed in the theoretical part.

In Figure 6 we consider the behaviour of the solution for a fixed value of q = 0.01
and different values of the Debye length, namely λ = 0.3, λ = 0.2 and λ = 0.1. As
expected, reducing the value of λ the charge density profile becomes more similar
to the doping profile C(x).

Finally we investigate numerically the zero-space-charge. In order to verify con-
dition (37), we set the following set of parameters:

q = 0.2, T = 50, ε = 0.1, J = 0.001, τ = 0.125,

and λ = 0.01, λ = 0.001 and λ = 0.0001. The results are summarized in Figure 7.
We notice that for λ = 0.001 and λ = 0.0001 the charge density profile coincides
with the doping profile C(x).
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