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Abstract

This paper is concerned with time-delayed reaction–diffusion equations with degenerate diffusion. When 
the term for birth rate is a nonlocal integral with a heat kernel, the family of minimum wave speeds cor-
responding to all the degenerate diffusion coefficients is proved to admit a uniform positive infimum. 
However, when the term for birth rate is local, there is no positive infimum of all the minimum wave speeds. 
This difference indicates that the nonlocal effect plays a role as Laplacian such that a positive lower bound 
independent of the degenerate diffusion exists for the minimum wave speeds. The approach adopted for the 
proof is the monotone technique with the viscosity vanishing method. The degeneracy of diffusion for the 
equation causes us essential difficulty in the proof. A number of numerical simulations are also carried out 
at the end of the paper, which further numerically confirm our theoretical results.
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1. Introduction and preliminaries

In 1986, Metz and Diekmann [39] proposed the dynamical model of population with age-
structure and diffusion:

∂v

∂t
+ ∂v

∂a
= D̃(a)

∂2v

∂2x
− d̃(a)v, 0 < a < τ, (1.1)

where v(t, x, a) is the population density of age a at location x ∈ � and time t > 0, τ is the 
mature time for the species, D̃(a) and d̃(a) are the diffusion rate and death rate of the population 
at age a. Let u(t, x) be the population density of the mature at time t and point x

u(t, x) =
∞∫

τ

v(t, x, a)da.

When the death rate dm and diffusion rate Dm of mature population are constants, So et al. [47]
derived the following reaction–diffusion equation (1.2) with nonlocal birth rate term from (1.1):

∂u

∂t
= Dm�u − dmu +

+∞∫
−∞

b(u(t − r, y))fα(x − y)dy, (1.2)

where α := ∫ τ

0 Dim(a)da > 0 represents the effect of the dispersal rate of immature population 
on the matured population and Dim is the diffusion rate of the immature population. fα is the 
heat kernel in the form of

fα(y) = 1√
4πα

e−y2/4α,

∞∫
−∞

fα(y)dy = 1. (1.3)

Ecologically, since the diffusion phenomenon for the mature population at different time and 
different location are totally different, namely, Dm is variable and may be dependent on the popu-
lation u(t, x), so it is more practical and reasonable for us to consider the following time-delayed 
nonlinear diffusion equation:

∂u

∂t
= ∇(ϕ(u)∇u) − d(u) +

+∞∫
−∞

b(u(t − r, y))fα(x − y)dy. (1.4)

Here, the diffusion of mature species is considered to be degenerate in the form of −∇(ϕ(u)∇u)

with ϕ(u) = Dmum−1 and m > 1, which is dependent on the population density due to the pop-
ulation pressure. See also the derivation and background stated later. Such a degenerate diffusion 
means that the smaller density, the slower spatial-diffusion, particularly, zero density implies 
non-diffusion. D represents the diffusivity of the mature population, and d(u) is the death rate 
function in a general form.
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When α → 0+, namely, the immature population is almost non-mobile, by the property

lim
α→0

∞∫
−∞

b(u(t − r, x − y))fα(y)dy = b(u(t − r, x)),

the nonlocal equation (1.4) is reduced to the local equation

∂u

∂t
= D�um − d(u) + b(u(t − r, x)). (1.5)

For the time-delayed degenerate diffusion equations with nonlocality (1.4) and without nonlo-
cality (1.5), their characters are essentially different. The local equation (1.5) is really degenerate 
in some sense for its space-diffusion, while the nonlocal equation (1.4) basically still behaves 
like a regular diffusion, because there is a good diffusion effect coming out from the nonlocality. 
In fact, for some “good” functions u, we formally have the following expansion for α � 1 (see 
for example [31]), ∫

Rn

u(t, x − y)fα(y)dy − u(t, x)

=
∫
Rn

fα(y)[u(t, x − y) − u(t, x)]dy

= 1

2

∫
Rn

fα(y)y2dy�u(t, x) + o(1)�u(t, x)

∫
Rn

fα(y)y2dy

≈ α2

2
C1�u(t, x) + O(α3), (1.6)

with C1 = ∫
RN k(y)y2

1dz and k(z) = 1√
4π

e−y2/4.
Since α depends on the diffusion of the immature population, an ecological explanation of 

the dispersal model with nonlocal term is that the diffusion rate of the immature population con-

tributes to the effective dispersal rate of the mature population with the rate of α2

2

∫
RN k(y)y2

1dz

for small α. The mobility of the immature for many species indicates that a dynamical model 
with nonlocal birth rate function may be more appropriate.

Different from the previous study of the reaction–diffusion model for a single species with 
age structure, we treat the mature and immature dispersal separately for the heterogeneous pop-
ulations. For the immature, we assume that the individuals randomly diffuse according to Fick’s 
law. For the mature, we consider the nonlinear dispersal responding to overcrowding. When the 
individuals mature into adults, they may be mutually repulsive and become more active when 
they encounter more individuals. There is a nonlinear effect of population pressure upon disper-
sal [43]. The effect of the population pressure, which acts to enhance the dispersal of individuals 
as their density becomes high, is modeled expressing diffusion coefficient as functions of popula-
tion density [18,41]. Incorporating the density-dependent diffusion coefficient ϕ(u) = Dmum−1

with m > 1 of the mature population, we obtain the model equation (1.4). In this case, large 
dispersal takes place in highly populated regions, but low mobility occurs in the regions of low 
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density. This indicates that mature individuals can sense and react to the local population density, 
a type of positive feedback that increases with m [9].

In many realistic cases, the diffusion coefficient is not constant, which may be a consequence 
of the interaction between individuals [9,18,42,41,45]. Gurney et al. [18] and [46] proposed a 
model for animal dispersal in which they assumed that the diffusion coefficient depends linearly 
on population density ϕ(u) ∝ u. Later, Gurtin and MacCamy [20] extended their model to a 
more general case in which ϕ(u) is a function satisfies ϕ′(0) = 0, ϕ′(u) > 0 for u > 0. A special 
case of ϕ(u) is ϕ(u) = Dmum−1 with m > 1. The density-dependent diffusion coefficient can be 
derived from a microscopic model in which individuals perform a biased random walk. Make a 
grid of mesh size h, and set x = nh. The derivation of the model begins with a master equation 
for a continuous-time and discrete-space random walk [49]

∂ui

∂t
= T +

i−1ui−1 + T −
i+1ui+1 − (T +

i + T −
i )ui, (1.7)

where T ±
i (·) denote the transitional rates per unit time of a one-step jump to xi±1 and ui denotes 

the population density at xi . Assume the transition rates depend on the population density at the 
point of departure alone with the following form

T ±
i = βq(ui), (1.8)

where q(ui) is the jump probability which measures the tendency of species u leaving the site xi

and constant β is the intrinsic dispersal coefficient. Assume the jump probability increases with 
population density and satisfy the following property

q(0) = 0, q(Umax) = 1,

where Umax is the carrying capacity at any site, namely, the jump probability is 1 when the 
population density exceeds maximum and it is zero when the species are absent. A natural choice 
for q is

q(u) = (u/Umax)
m−1, m > 1. (1.9)

Expanding the right-hand side as a function of x to second order with respect to h, we obtain

∂u

∂t
= βh2 ∂2

∂2x

(
q(u)u

)
+ O(h4).

We assume that qh = k
h2 q for some scaling constant k. By taking the limit of h → 0, we arrive at 

the following model

∂u

∂t
= β0

∂

∂x

(
q(u)

∂u

∂x

)
,

where β0 = kβ . Taking q(u) as (1.9), we get

∂u = ∂ (

(u)

∂u)
,

∂t ∂x ∂x
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where the density-dependent diffusion coefficient 
(u) = D0u
m−1, D0 = α0

Um−1
max

is a reference 

diffusivity. Thus, the effect of population pressure incorporate to the diffusivity [43]. When 
m > 1, the diffusion coefficient increases with population density. The relationship between bi-
ological dispersal and population density has been studied extensively [43,46]. Individuals tend 
to migrate from the nutrient-poor habitats of high density into regions of low density which have 
larger amounts of unconsumed food [41]. Several experiments have typically found an increase 
in diffusion coefficients as density is increased, such as population regulation of ant-lions [40], 
and the swarming of locusts [5,6]. In particular, Carl [7] found that arctic ground squirrels mi-
grate from overcrowding regions into sparsely populated regions, even when the latter provide a 
less favorable habitat.

Our main purpose of this paper is to study the existence and non-existence of traveling wave 
solutions for (1.4). A traveling wave solution is a solution in the form of u(t, x) = φ(x + ct), 
where c is the wave speed.

From biological experiments, the functions d(s) and b(s) in (1.4) usually satisfy the following 
hypotheses [35]:

(H1) There exist u− = 0 and u+ > 0 such that d(0) = b(0) = 0, d(u+) = b(u+), and d(s), 
b(s) ∈ C2[0, u+];

(H2) b′(0) > d ′(0) ≥ 0, 0 ≤ b′(u+) < d ′(u+), and d ′(u+)2 > b′(0)b′(u+);
(H3) For 0 ≤ s ≤ u+, d ′(s) ≥ 0, b′(s) ≥ 0, d ′′(s) ≥ 0, b′′(s) ≤ 0, but either d ′′(s) > 0 or 

|b′′(s)| > 0.
Under the above hypothesis, both u− = 0 and u+ > 0 are constant equilibria of (1.1), and 

u− = 0 is unstable and u+ is stable for the spatially homogeneous equation associated with (1.1). 
Furthermore, both the birth rate function b(u) and the death rate function d(u) are nondecreasing, 
and b(u) is concave downward and d(u) is concave upward. These characters are summarized 
from the classical Fisher-KPP equation [1,14,56,62], see also a lots of evolution equation in 
ecology, for example, the well-studied nonlocal Nicholson’s blowflies equation [12,13,28,34,48]
with the death function d(u) = δu, the birth function

b1(u) = pue−auq

, or b2(u) = pu

1 + auq
, p > 0, q > 0, a > 0;

and the age-structured population model [3,16,26,27] with

d(u) = δu2, and b(u) = pe−γ τ u, p > 0, δ > 0, γ > 0.

In the past decades, traveling waves for many systems of time-delayed reaction–diffusion 
equations arising from biological and physical applications have been studied intensively [8,10,
11,15,17,23,32,50,52,53]. It was Schaaf [44] who first studied traveling wave solutions for the 
time delayed reaction–diffusion equation by maximum principles, the method of lower and upper 
solutions, and the phase plane techniques. The existence and non-existence of traveling waves 
were proved according to different size of c, namely, there is a critical wave speed c∗ > 0, such 
that if c > c∗, there are only trivial waves; if c < c∗, there are nontrivial wave solutions and c∗
is asymptotic speed of propagation. In [47], So et al. proved the existence of traveling waves 
for (1.2), which is a non-degenerate case of (1.4) describing the population distribution of single 
species with age-structure and spatial diffusion. Later on, Liang and Wu [29] studied theoretically 
the existence of the travelling waves for (1.2) three birth functions which have been widely used 
in the Nicholson’s blowflies equation and showed the wave approximations numerically. Gourley 
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and Kuang [26] studied the existence and the global stability of the age-structure single species 
diffusive delay population model

∂u

∂t
= D�u − δu2 + pe−γ τ

+∞∫
−∞

u(t − r, y)fα(x − y)dy. (1.10)

The existence of traveling waves and the critical wave speed for this model were also established 
in [26,3,16,11,54]. In particular, when α → 0+, the nonlocal equation (1.10) is reduced to the 
local time-delayed reaction–diffusion equation [19,36,33] for α = 0. The first work related to 
the existence of traveling waves for this model was given by Al-Omari and Gourley [2] by the 
method of upper and lower solutions method. For the stability of critical and noncritical traveling 
waves, we refer to [22,23,27,33–38,54,56] and the references therein.

In realistic situation, a high population density results an increasing probability of individual 
leaving departure site [43]. So the degenerate diffusion term �um with m > 1 is more ecological. 
Moreover, there are attractive phenomena due to the degeneracy of the diffusivity at u = 0. For 
example, a population which is initially confined to a bounded region spreads out at a finite speed, 
and may even remain confined for all time [4,20,58,59]. However, the case of time-delayed re-
action diffusion equation with degenerate diffusion is more complex and the study of this type 
of equation is quite limited and incomplete. The bad effect of the degeneracy of spatial diffusion 
and time-delay causes us the essential difficulty for the existence of the traveling waves. Gen-
erally speaking, a traveling wave φ(x + ct) exists if c ≥ c∗, while no traveling wave φ(x + ct)

exists if c < c∗, the number c∗ is called the minimum wave speed (or the critical wave speed). 
The critical wave speed c∗ also coincides with the asymptotic speed of propagation [30,50,55], 
and it is very important in the study of biological invasions.

Our main observation here is that for the degenerate diffusion with nonlocal effect (α > 0), 
the minimum wave speeds, which may depend on D, α and r , denoted by c∗(D, α, r), have a 
uniform positive infimum with respect to all D > 0; while this infimum is zero for the degen-
erate diffusion without nonlocal effect (α = 0). This results may imply that the mobility of the 
immature contributes to the propagation of the whole population. When α > 0, the limit of the 
minimum wave speed is a positive constant as D tends to zero, that is, the invasion speed of the 
population is not zero due to the diffusion of the immature population. When the effect of the 
immature dispersal is neglected (α = 0), the limit of the minimum wave speed is zero as D tends 
to zero. In this case, there is no spreading when the mature population is immotile. We notice 
that, for such a degenerate diffusion case with a local birth rate (i.e., m > 1 and α = 0), Huang et 
al. [21] first studied the existence of traveling waves by the method combining the portrait anal-
ysis with r = 0 and the perturbation analysis on small time-delay 0 < r � 1, they also proved 
the L1-stability of the wavefronts by the weighted energy method. But the traveling waves are 
proved to exist only for the case with the large wave speed c ≥ c0 > 0 and with the small time-
delay r � 1 due to the restriction of the proof approach. Therefore, our results indicate that in 
the degenerate diffusion case the nonlocal convolution involving the heat kernel fα(y) plays the 
smoothing effect. Since the nonlocal term can be approximately expanded as (1.6) for small α, 
we can expect that the nonlocal term plays the role of Laplacian, even though the original dif-
fusion −�(um) is degenerate. As numerical reported in the last part of the paper, the numerical 
results by the direct iteration scheme for the nonlocal equation with degenerate diffusion yield a 
smooth traveling wave, while the direct iteration scheme for the local equation with degenerate 
diffusion gives some irregular oscillations, and we cannot get the traveling wave numerically. 
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Technically, we modify the iteration scheme by adding artificial viscosities to both sides of the 
local equation, then we obtain the expected traveling wave numerically. This also shows that the 
nonlocal effect is essential for the numerical scheme and the regularity of the traveling waves.

The rest of this paper is organized as follows. In section 2, we present the main results on 
the existence and nonexistence of traveling waves. In section 3, we show the existence of trav-
eling wave solutions for both nonlocal and local cases. Section 4 is devoted to the proof of the 
nonexistence theorem of traveling wave solutions for the nonlocal time-delayed reaction diffu-
sion equation with degenerate diffusion. Finally the numerical simulations of traveling waves are 
carried out in Section 5.

2. Main results

We consider the following initial-value problem⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
= D�um − d(u) +

+∞∫
−∞

b(u(t − r, y))fα(x − y)dy, x ∈R, t > 0,

u(s, x) = u0(s, x), x ∈R, s ∈ [−r,0],
(2.1)

where α ≥ 0, r ≥ 0, m > 1, D > 0, u0 ∈ L2((−r, 0) ×�) for any compact set � ⊂R. Since (2.1)
is degenerate for u = 0, we employ the following definition of weak solutions.

Definition 2.1. A function u ∈ L2
loc((0, +∞) × R) is called a weak solution of (2.1) if 0 ≤ u ≤

u+, ∇um ∈ L2
loc((0, +∞) ×R), and for any T > 0 and ψ ∈ C∞

0 ((−r, T ) ×R)

−
T∫

0

∫
R

u(t, x)
∂ψ

∂t
dxdt + D

T∫
0

∫
R

∇um · ∇ψdxdt +
T∫

0

∫
R

d(u(t, x))ψdxdt

=
∫
R

u0(0, x)ψ(0, x)dx +
max{T ,r}∫

r

∫
R

+∞∫
−∞

b(u(t − r, y))fα(x − y)ψ(x, t)dydxdt

+
min{T ,r}∫

0

∫
R

+∞∫
−∞

b(u0(t − r, y))fα(x − y)ψ(x, t)dydxdt.

We are looking for the monotone increasing traveling wave solutions that connect the two 
equilibria u− = 0 and u+ =: K . Under the hypotheses (H1)–(H3), the birth function b(u) is 
monotone increasing on [u1, u2] = [0, K]. Let φ(ξ), where ξ = x +ct and c > 0, be the traveling 
wave solution of (2.1), we get (we write ξ as t for the sake of simplicity)⎧⎪⎪⎨⎪⎪⎩

cφ′(t) = D(φm(t))′′ − d(φ(t)) +
+∞∫

−∞
b(φ(t − cr − y))fα(y)dy,

φ(−∞) = 0, φ(+∞) = K.

(2.2)
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We define upper, lower and traveling wave solutions for (2.2) as follows.

Definition 2.2. A function φ ∈ C(R; R) is called an upper (respectively lower) solution of (2.2) if 
0 ≤ φ ≤ K , φm ∈ W

1,2
loc , limt→+∞ φ(t) = K and limt→−∞ φ(t) = 0, and φ satisfies the following 

inequality

cφ′(t) ≥ (≤)D(φm(t))′′ − d(φ(t)) +
+∞∫

−∞
b(φ(t − cr − y))fα(y)dy,

(
cφ′(t) ≤ D(φm(t))′′ − d(φ(t)) +

+∞∫
−∞

b(φ(t − cr − y))fα(y)dy,
)

in the sense of distributions. A function φ ∈ C(R; R) is called a monotone increasing traveling 
wave solution of (2.2) if φ is monotone increasing on R, and φ is an upper solution as well as a 
lower solution of (2.2).

Since the diffusion in (2.2) is degenerate for φ = 0, we define the following characteristic 
function for c > 0

�c(λ) = b′(0)eαλ2−λcr − cλ − d ′(0), λ > 0. (2.3)

We will show in Lemma 3.2 that if α > 0 then there exists a critical value ĉ = ĉ(α, r) > 0 such 
that �c(λ) = 0 has real root if and only if c ≥ ĉ. For α = 0, we can see that �c(λ) = 0 has real 
root for all c > 0 and we define ĉ(0, r) = 0.

In order to show the important role of ĉ(α, r) playing in the analysis of traveling waves of 
(2.2), we need to compare it with the critical wave speed. For any given m > 1, D > 0, α ≥ 0, 
and r ≥ 0, we define the critical wave speed c∗(D, α, r) for the degenerate diffusion equation 
(2.2) as follows

c∗(D,α, r) := inf{c > 0; (2.2) admits monotone increasing traveling wave solution

satisfying the property (2.6) in Theorem 2.1}. (2.4)

For the classical Fisher-KPP equation ut −D�u = u(1 −u/K), it is well known that c∗ = 2
√

D, 
which vanishes as D tends to zero, and infD>0 c∗ = 0.

The main purpose of this paper is to reveal that

inf
D>0

c∗(D,α, r) = ĉ(α, r)

{
> 0, α > 0,

= 0, α = 0.
(2.5)

That is, there exists a positive infimum of all the minimum wave speeds for all D > 0 if the 
degenerate diffusion involves nonlocal effect while this infimum is zero for the equation without 
nonlocal effect. This indicates the nonlocal effect plays a role as Laplace operator concerned 
with the traveling waves, which is coincident with the observation of formal expansion (1.6) and 
the phenomena in our simulation results.
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Our main results are as follows. For the degenerate diffusion with nonlocal effect (m > 1 and 
α > 0), there is a positive infimum for its minimum wave speed.

Theorem 2.1 (Existence of non-critical traveling waves). Assume that d(u) and b(u) satisfy 
(H1)–(H3), α > 0, m > 1, r ≥ 0. For any given c > ĉ(α, r), if D is sufficiently small or c is 
sufficiently large, then (2.2) admits at least one monotone increasing traveling wave solution 
φ(t) with speed c such that 0 < φ(t) ≤ K for all t ∈ R. Moreover, there exist λ > λ1 > 0 and a 
constant C > 0 such that

|φ(t) − Keλ1t | ≤ Ceλt , t < 0, (2.6)

where λ1 is the least root of �c(λ) = 0 as shown in Lemma 3.2.

Theorem 2.2 (Existence of critical traveling waves). Assume that d(u) and b(u) satisfy 
(H1)–(H3), α > 0, m ≥ 2, r ≥ 0. Then there exists a constant C(m, α, r) > 0 such that for 
any c ≥ ĉ(α, r), (2.2) admits at least one monotone increasing traveling wave solution φ(t) with 
speed c provided that DKm−2 ≤ C(m, α, r). Moreover, φ(t) satisfies the property (2.6) in Theo-
rem 2.1.

Theorem 2.3 (Non-existence of traveling waves). Assume that d(u) and b(u) satisfy (H1) −
(H3), α > 0, m > 1, r ≥ 0. For c < ĉ(α, r), (2.2) admits no monotone increasing traveling wave 
solution φ(t) with speed c that satisfies the property (2.6) in Theorem 2.1.

For the non-degenerate diffusion case (m = 1), we have

Corollary 2.1 (Minimum wave speed). Assume that d(u) and b(u) satisfy (H1) − (H3), α ≥ 0, 
m = 1, r ≥ 0. Then there exists c∗∗(D, α, r) > 0 such that for c > c∗∗(D, α, r), (2.2) admits at 
least one monotone increasing traveling wave solution that satisfying

|φ(t) − Keλ1t | ≤ Ceλt , t < 0,

for some constants λ > λ1 > 0 and C > 0; while for 0 < c < c∗∗(D, α, r), (2.2) admits no mono-
tone increasing traveling wave solution of such kind.

For the degenerate diffusion without nonlocal effect (m > 1 and α = 0), there is no positive 
infimum of minimum wave speed:

Theorem 2.4 (No positive infimum of minimum wave speed for local but degenerate equation). 
Assume that d(u) and b(u) satisfy (H1) − (H3), α = 0, m > 1, r ≥ 0. Then for any given c > 0, 
(2.2) admits at least one monotone traveling wave solution provided that D is sufficiently small; 
while for any c ≤ 0, (2.2) admits no monotone increasing traveling wave solution that satisfying 
the property (2.6) in Theorem 2.1.

Conversely, for any given D > 0, there exists a r0 > 0 such that the critical wave speed 
c∗(D, 0, r) defined in (2.4) is positive provided that 0 ≤ r ≤ r0.
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Remark. According to Theorem 2.1 and Theorem 2.3, we see that for m > 1 and α > 0,

inf
D>0

c∗(D,α, r) = ĉ(α, r) > 0.

Theorem 2.4 tells us that for m > 1 and α = 0,

inf
D>0

c∗(D,0, r) = ĉ(0, r) = 0.

Moreover, Theorem 2.2 implies that for m ≥ 2 and α > 0, there exists a constant C(m, α, r) > 0
such that if DKm−2 ≤ C(m, α, r) then

c∗(D,α, r) = ĉ(α, r).

For the degenerate diffusion without nonlocal effect, if the time delay is small, we find by Theo-
rem 2.4 that

c∗(D,0, r) > 0.

Further, we note that according to our proof, the critical traveling wave and non-critical traveling 
wave for the degenerate diffusion with nonlocal effect (in Theorem 2.1 and Theorem 2.2) and the 
non-degenerate diffusion equation (in Corollary 2.1) are all positive and smooth; the non-critical 
traveling wave for the degenerate diffusion without nonlocal effect (in Theorem 2.4) is positive 
and smooth while its critical traveling wave may be of semi-finite “sharp”-type (see [21]).

3. Existence of monotone traveling wave solutions

In this section, we employ the monotone iteration method to show the existence of monotone 
traveling wave solutions.

Compared with the linear diffusion case (m = 1), both the comparison principle and the solv-
ability of degenerate elliptic problem (m > 1) are not obvious. The solvability of linear diffusion 
case can be easily showed by writing the explicit expression. We can not expect such kind of 
expressions due to the degenerate diffusion.

Let H : C(R; R) → C(R; R) be defined as

H(φ)(t) =
+∞∫

−∞
b(φ(t − cr − y))fα(y)dy.

Under the hypotheses (H1) − (H3), the birth function b(u) is monotonically increasing on 
[u1, u2] = [0, K]. Then H is a monotone operator as showed by the following lemma (see 
Lemma 4.1 of [47]).

Lemma 3.1. Assume that b(u) satisfies (H1) − (H3).
(i) If φ(t) ≥ 0 for all t ∈ R, then H(φ)(t) ≥ 0 for all t ∈ R;
(ii) If 0 ≤ φ(t) ≤ K and φ(t) is monotone increasing, then H(φ)(t) is monotone increasing;
(iii) If 0 ≤ φ(t) ≤ ψ(t) ≤ K , then H(φ)(t) ≤ H(ψ)(t).
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For given c > 0, we define the following function

�c(λ) = b′(0)eαλ2−λcr − cλ − d ′(0), λ > 0.

We can verify that

Lemma 3.2. Let α > 0. There exists ĉ = ĉ(α, r) > 0, such that
(i) When 0 < c < ĉ, then �c(λ) > 0 for all λ ≥ 0;
(ii) When c = ĉ, then there exists λ∗ > 0 such that �ĉ(λ

∗) = 0 and �ĉ(λ) > 0 for all λ ≥ 0, 
λ �= λ∗;

(iii) When c > ĉ, then there exist 0 < λ1 < λ2 such that �c(λ1) = �c(λ2) = 0, �c(λ) > 0 for 
λ ∈ [0, λ1) ∪ (λ2, +∞) and �c(λ) < 0 for λ ∈ (λ1, λ2).

Moreover, for any m̂ > 1 and C > 0, there exists a c > ĉ such that �c(m̂λ1(c)) < −Cλ2
1(c), 

where λ1(c) is the left root determined in (iii) above.

Proof. For fixed c > 0, let f (λ) = �c(λ), p = b′(0) and δ = d ′(0) for simplicity in this proof. 
Then f (0) = p − δ > 0 and

f ′(λ) = peαλ2−λcr (2αλ − cr) − c.

We note that f ′(λ) < 0 for all λ ∈ [0, cr/(2α)]. Both of the functions 2αλ − cr and eαλ2−λcr

are positive and strictly increasing with respect to λ for λ ∈ (cr/(2α), +∞). Therefore, f ′(λ) is 
strictly increasing for λ ∈ (cr/(2α), +∞), which means there exists λ∗ > 0 such that f ′(λ∗) = 0, 
f ′(λ) < 0 for λ ∈ (0, λ∗) and f ′(λ) > 0 for λ ∈ (λ∗, +∞). We only need to show that 
minλ≥0 �c(λ) is strictly decreasing with respect to c. For fixed λ ≥ 0,

∂

∂c
�c(λ) = −peαλ2−λcrλr − λ < 0.

It follows that

�c1(λ) < �c2(λ), λ ≥ 0,

for c1 > c2. Since both �c1(λ) and �c2(λ) attain there minimums, we can take minimum in the 
above inequality and get minλ≥0 �c1(λ) < minλ≥0 �c2(λ) for c1 > c2.

Note that

�c(1) ≤ peα − c − δ ≤ 0,

if c ≥ c0 = peα − δ. That is, λ1(c) ≤ 1 if c ≥ c0. Now we only consider 0 ≤ λ ≤ m̂ and c ≥ c0. 
Then

�′
c(λ) = peαλ2−λcr (2αλ − cr) − c ≤ 2αm̂peαm̂2 − c < 0,

if we further let c > 2αm̂peαm̂2
. Therefore,
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�c(m̂λ1(c)) ≤�c(λ1(c)) + (2αm̂peαm̂2 − c)(m̂λ1(c) − λ1(c))

≤ − (c − 2αm̂peαm̂2
)(m̂ − 1)λ1(c)

< − Cλ1(c) ≤ −Cλ2
1(c),

provided that

c > max{2αm̂peαm̂2 + C/(m̂ − 1), c0},

since λ1(c) ≤ 1 for c ≥ c0. The proof is completed. �
First, we use the approximate Hohmgren’s approach (see Theorem 6.5 in [51], Chapter 1.3 

and 3.2 in [57]) to derive the comparison principle for degenerate elliptic problem on unbounded 
domain. To do so, we need to show the properties of solutions to the dual elliptic problem.

Lemma 3.3. For any given g(t) ≥ 0, g(t) ∈ C2
0(R), ε ∈ (0, 1), η ∈ (0, 1), and 0 ≤ β(t) ∈

L∞(R) ∩ C(R), lim inft→+∞ β(t) > 0, 0 < γ (t) ∈ C1(R), γ (t) is increasing for t ≤ t0 with 
some fixed t0 ∈R, and lim inft→+∞ γ (t) > 0, let A > 1 such that suppg ⊂ (−A, A) and ψε,η(t)

be the solution of the following elliptic problem

{
−cψ ′(t) − D(βε(t) + η)ψ ′′(t) + γε(t)ψ(t) = g(t), t ∈R,

ψ(±∞) = 0,
(3.1)

where βε(t) and γε(t) are the smooth approximations of β(t) and γ (t) such that β(t) ≤ βε(t) ≤
β(t) + ε and γ (t) ≤ γε(t) ≤ γ (t) + ε. Then there exist constants k1, k2, C1, C2, C3 > 0 indepen-
dent of ε, η and A such that ψε,η(t) has the following properties:

(i) 0 < ψε,η(t) ≤ supt∈(−A,A) |g(t)|/γ (t);
(ii) |ψε,η(t)|, |ψ ′

ε,η(t)|, (βε(t) + η)|ψ ′′
ε,η(t)| ≤ C1e

k1t for all t < −A − 1;

(iii) |ψε,η(t)|, |ψ ′
ε,η(t)|, |ψ ′′

ε,η(t)| ≤ C2e
−k2t for all t > A + 1;

(iv) ∫
R

(βε(t) + η)|ψ ′′
ε,η(t)|2dt ≤ C3.

Proof. Since (3.1) is uniformly elliptic and g ∈ C2
0(R), the existence of ψε,η(t) is trivial and 

the maximum principle shows 0 < ψε,η(t) ≤ sup |g|/γ . We now prove the exponential decay of 
ψε,η(t) for t < −A − 1 and t > A + 1 respectively. We write ψε,η(t) as ψ(t) for short. We may 
assume that β(t) > 0, γ (t) > 0 for t > A, and γ (t) is increasing for t ≤ −A. Otherwise, we can 
choose a larger A.

Consider (3.1) on (−∞, −A − 1). Let ψ(−A − 1) = C1. Then

{
−cψ ′(t) − D(βε(t) + η)ψ ′′(t) + γε(t)ψ(t) = 0, t ∈ (−∞,−A − 1),

ψ(−∞) = 0, ψ(−A − 1) = C1.
(3.2)
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We assert that ψ ′(t) ≥ 0 and ψ ′′(t) ≥ 0 for all t ∈ (−∞, −A − 1). We argue by contradiction. If 
there exists some t0 ∈ (−∞, −A − 1) such that ψ ′(t0) < 0, then according to (3.2) ψ ′′(t0) > 0, 
which means there exists a left neighborhood of t0 such that ψ ′(t) < ψ ′(t0) < 0 on that in-
terval. Continue this argument and we can show that ψ ′(t) < 0 for all t < t0 and contradicts 
to ψ(−∞) = 0. If there exists some t0 ∈ (−∞, −A − 1) such that ψ ′′(t0) < 0, then according 
to (3.2), ψ ′(t0) > 0, and there exists a left neighborhood (t1, t0) of t0 such that ψ ′(t) > ψ ′(t0) > 0
on that interval. We note that ψ(t) is increasing and ψ ′(t) is decreasing on (t1, t0). It follows from 
(3.2) that

D(βε(t) + η)ψ ′′(t) = γε(t)ψ(t) − cψ ′(t)

is increasing on (t1, t0). Therefore D(βε(t) + η)ψ ′′(t) ≤ D(βε(t0) + η)ψ ′′(t0) < 0 and ψ ′′(t) <
−|(βε(t0) + η)ψ ′′(t0)|/(sup |β| + 2) on (t1, t0). We can continue this argument to find a constant 
C0 > 0 such that ψ ′′(t) < −C0 for all t < t0. This shows that there exists a t2 < t0 such that 
ψ(t2) < −1, which contradicts to ψ ≥ 0. Now that we have proved ψ ′′ ≥ 0, we consider the 
following elliptic problem{

−cψ̃ ′(t) − D(sup |β| + 2)ψ̃ ′′(t) = 0, t ∈ (−∞,−A − 1),

ψ̃(−∞) = 0, ψ̃(−A − 1) = ψ(−A − 1).
(3.3)

Clearly,

−cψ ′(t) − D(sup |β| + 2)ψ ′′(t) = D
(
(βε(t) + η) − (sup |β| + 2)

)
ψ ′′(t) − γε(t)ψ(t) ≤ 0.

Comparison principle of constant coefficients elliptic problems shows that

ψ(t) ≤ ψ̃(t), t ∈ (−∞,−A − 1).

Since the coefficients of (3.3) are constants, we can employ the phase plane analysis to find 
k1, C1 > 0 independent of ε, η and A, such that |ψ̃(t)| ≤ C1e

k1t for all t < −A − 1. Note that 
ψ ′ ≥ 0 and ψ ′′ ≥ 0, (3.2) shows that |ψε,η(t)|, |ψ ′

ε,η(t)|, (βε(t) + η)|ψ ′′
ε,η(t)| ≤ C1e

k1t for all 
t < −A − 1.

Consider (3.1) in (A + 1, +∞). Let ψ(A + 1) = C2. Then{
−cψ ′(t) − D(βε(t) + η)ψ ′′(t) + γε(t)ψ(t) = 0, t ∈ (A + 1,+∞),

ψ(A + 1) = C2, ψ(+∞) = 0.
(3.4)

We assert that ψ ′(t) ≤ 0 and ψ ′′(t) ≥ 0 for all t ∈ (A + 1, +∞). We can argue by contradiction 
in a way similar to that on (−∞, −A −1). Here we omit it. Since lim inft→+∞ β(t) > 0, we may 
assume that inft>A+1 β(t) > 0 and (3.4) is uniformly elliptic with its diffusion coefficient

0 < D inf
t>A+1

β(t) ≤ D(βε(t) + η) ≤ D( sup
t>A+1

β(t) + 2).

Comparison with the constant coefficients elliptic problems shows the exponential decay of ψ
together with its derivatives.
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Multiplying (3.1) by −ψ ′′(t) and integrating over R, we find

D

+∞∫
−∞

(βε(t) + η)|ψ ′′(t)|2dt +
+∞∫

−∞
γε(t)|ψ ′(t)|2dt

≤
+∞∫

−∞
|g′′(t)||ψ(t)|dt +

+∞∫
−∞

|γ ′
ε(t)||ψ ′(t)|ψ(t)dt ≤ C3,

since g ∈ C2
0(R), γ ∈ C1(R), |ψ ′(t)| is exponentially decaying and

+∞∫
−∞

cψ ′(t)ψ ′′(t)dt = c

2
|ψ ′(t)|2

∣∣∣+∞
−∞ = 0.

This completes the proof. �
Now, we can prove the following comparison principle of degenerate diffusion equation on 

unbounded domain.

Lemma 3.4 (Comparison Principle). Let φ1, φ2 ∈ C(R; R) such that for i = 1, 2, 0 ≤ φi ≤ K , 
φm

i ∈ W
1,2
loc , φ1(t) > 0 for all t ∈ R, φi(t) is increasing for t ≤ t0 with some fixed t0 ∈ R, 

lim inft→±∞(φ1(t) −φ2(t)) ≥ 0, lim inft→+∞ φ1(t) > 0 and φi satisfies the following inequality

cφ′
1(t) − D(φm

1 (t))′′ + d(φ1(t)) ≥ cφ′
2(t) − D(φm

2 (t))′′ + d(φ2(t))

in the sense of distributions. Then φ1(t) ≥ φ2(t) for all t ∈R.

Proof. Let

β(t) =
⎧⎨⎩

φm
1 (t) − φm

2 (t)

φ1(t) − φ2(t)
, φ1(t) �= φ2(t),

mφm−1
1 (t), φ1(t) = φ2(t).

Then 0 ≤ β(t) ≤ mKm−1 and β(t) is continuous. We can rewrite β(t) as

β(t) = m

1∫
0

(sφ1(t) + (1 − s)φ2(t))
m−1ds.

Therefore, β(t) ∈ C(R) and lim inft→+∞ β(t) > 0. For any ψ(t) ≥ 0, ψ ∈ C2
0(R) we have

+∞∫ (
− c(φ1(t) − φ2(t))ψ

′(t) − D(φm
1 (t) − φm

2 (t))ψ ′′(t) + (d(φ1(t)) − d(φ2(t)))ψ(t)
)
dt ≥ 0.
−∞
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That is

+∞∫
−∞

(φ1(t) − φ2(t))
(

− cψ ′(t) − Dβ(t)ψ ′′(t) + γ (t)ψ(t)
)
dt ≥ 0, (3.5)

where

γ (t) =
1∫

0

d ′(sφ1(t) + (1 − s)φ2(t))ds =
⎧⎨⎩

d(φ1) − d(φ2)

φ1(t) − φ2(t)
, φ1(t) �= φ2(t),

d ′(φ1(t)), φ1(t) = φ2(t).

We note that 0 < γ (t) ≤ d ′(K), γ (t) is increasing for t ≤ t0 with some fixed t0 ∈ R, and γ (t)

is C1 continuous since φ1(t) > 0 for all t ∈ R and d ∈ C2([0, K]). Now for any given g(t) ≥ 0, 
g(t) ∈ C2

0(R), ε > 0 and η > 0, let ψε,η(t) be the solution of the following elliptic problem

{
−cψ ′(t) − D(βε(t) + η)ψ ′′(t) + γε(t)ψ(t) = g(t), t ∈R,

ψ(±∞) = 0,
(3.6)

where βε(t) and γε(t) are the smooth approximations of β(t) and γ (t) such that β(t) ≤ βε(t) ≤
β(t) + ε and γ (t) ≤ γε(t) ≤ γ (t) + ε. Lemma 3.3 shows that 0 ≤ ψε,η(t) ≤ maxt∈R g(t)/γ (t), 
and both ψε,η(t), ψ ′

ε,η(t), (βε(t) + η)ψ ′′
ε,η(t) decay to zero exponentially as t → ±∞. Taking 

ψε,η(t) as the test function in (3.5), by (3.6) we find that

+∞∫
−∞

(φ1(t) − φ2(t))g(t)dt ≥ −
+∞∫

−∞
D(φ1(t) − φ2(t))(βε(t) + η − β(t))ψ ′′

ε,η(t)dt

≥ − 2KD

+∞∫
−∞

(|βε(t) − β(t)| + η)|ψ ′′
ε,η(t)|dt. (3.7)

Now for any μ > 0, we can estimate the last term in (3.7) as

+∞∫
−∞

(|βε(t) − β(t)| + η)|ψ ′′
ε,η(t)|dt

≤
−B∫

−∞
+

B∫
−B

+
+∞∫
B

(|βε(t) − β(t)| + η)|ψ ′′
ε,η(t)|dt

≤ 2μ +
B∫
(|βε(t) − β(t)| + η)|ψ ′′

ε,η(t)|dt
−B
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≤ 2μ +
( B∫
−B

(|βε(t) − β(t)| + η)|ψ ′′
ε,η(t)|2dt

) 1
2 ·

( B∫
−B

(|βε(t) − β(t)| + η)dt
) 1

2

≤ 2μ +
( ∞∫
−∞

(βε(t) + η)|ψ ′′
ε,η(t)|2dt

) 1
2 · (2B(|βε(t) − β(t)| + η))

1
2

≤ 3μ,

where B > A + 1 such that 
∫ −B

−∞(βε(t) + η)|ψ ′′
ε,η(t)|dt ≤ μ and 

∫ +∞
B

(βε(t) + η)|ψ ′′
ε,η(t)|dt ≤ μ

since the integral is exponential decay independent of ε and η, and the last inequality is valid 
for sufficiently small ε and η as 

∫ ∞
−∞(βε(t) + η)|ψ ′′

ε,η(t)|2dt is uniformly bounded according to 
Lemma 3.3. Therefore, (3.7) reads

+∞∫
−∞

(φ1(t) − φ2(t))g(t)dt ≥ 0.

Since g(t) ≥ 0 is arbitrary, we conclude φ1(t) ≥ φ2(t) for all t ∈ R. �
Next, we show the solvability of the degenerate elliptic problem.

Lemma 3.5. Assume that φ(t) is an upper solution of (2.2) and φ(t) is monotone increasing, 
0 < φ(t) ≤ K , limt→−∞ φ(t) = 0, limt→+∞ φ(t) = K . Then the following degenerate elliptic 
equation {

cφ′(t) − D(φm(t))′′ + d(φ(t)) = H(φ)(t), t ∈R,

lim
t→−∞φ(t) = 0, lim

t→+∞φ(t) = K,
(3.8)

admits a monotone increasing solution φ(t) such that 0 < φ(t) ≤ φ(t) for all t ∈ R, and φ(t)

is an upper solution of (2.2). Furthermore, there exists a constant C > 0 depending only on 
c, d, m, D, K , such that ‖φm‖W 1,2(−A,A) ≤ CA1/2 for all A > 1.

Proof. Let f (t) = H(φ)(t) for simplicity. Consider the following regularized problem for any 
A > 1{

cφ′(t) = D
(
m(|φ(t)|2 + 1/A)(m−1)/2φ′(t)

)′ − d(φ(t)) + f (t), t ∈ (−A,A),

φ(−A) = d−1(f (−A)), φ(A) = d−1(f (A)).
(3.9)

Since φ(t) is monotone increasing and limt→−∞ φ(t) = 0, limt→+∞ φ(t) = K , Lemma 3.1
shows that f (t) is monotonically increasing. We can verify that 0 < f (t) < d(K) = b(K) and 
limt→−∞ f (t) = 0, limt→+∞ f (t) = d(K). The unique existence of solution to (3.9) is trivial. 
The solution is denoted by φA. Comparison principle of elliptic equation shows that

0 < d−1(f (−A)) ≤ φA(t) ≤ d−1(f (A)) < K, t ∈ (−A,A).
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In fact, if this is not true, we argue by contradiction. If there exists t0 ∈ (−A, A) such that 
φA(t0) < d−1(f (−A)), then the minimum of φA(t) on [−A, A] is less than d−1(f (−A)) and is 
attained at some point t∗ ∈ (−A, A) since φA(±A) ≥ d−1(f (−A)). At this point t∗, φ′

A(t∗) = 0, 
φ′′

A(t∗) ≥ 0, and by (3.9)

f (t∗) = cφ′
A(t∗) − D

(
m(|φA(t∗)|2 + 1/A)(m−1)/2φ′

A(t∗)
)′ + d(φA(t∗)) < f (−A),

which contradicts to the fact f (t) ≥ f (−A) for all t ∈ [−A, A]. The proof of φA(t) ≤ d−1(f (A))

is similar to that of d−1(f (−A)) ≤ φA(t).
We assert that φ′

A(t) ≥ 0. Otherwise, there exists a t0 ∈ (−A, A) such that φ′
A(t0) < 0. Let 

(t1, t2) be the maximum interval such that t0 ∈ (t1, t2) and φ′
A(t) < 0 for t ∈ (t1, t2). We note 

that φA(t) attains its minimum at −A and its maximum at A, which implies φ′
A(−A) ≥ 0 and 

φ′
A(A) ≥ 0. Thus, φ′

A(t1) = φ′
A(t2) = 0, φA(t1) > φA(t2),

(m(|φA(t)|2 + 1/A)(m−1)/2φ′
A(t))′

∣∣
t=t1

≤ 0, (m(|φA(t)|2 + 1/A)(m−1)/2φ′
A(t))′

∣∣
t=t2

≥ 0,

and

f (t1) = cφ′
A(t1) − D

(
m(|φA(t1)|2 + 1/A)(m−1)/2φ′

A(t1)
)′ + d(φA(t1))

> cφ′
A(t2) − D

(
m(|φA(t2)|2 + 1/A)(m−1)/2φ′

A(t2)
)′ + d(φA(t2))

= f (t2), t1 < t2,

which contradicts to the monotone increasing of f . For 1 < B < A, let η(t) be the cut-off 
function such that 0 ≤ η(t) ≤ 1, η ∈ C2

0((−B, B)), |η′(t)| ≤ 2 for t ∈ (−B, B), η(t) = 1 for 
t ∈ (−B + 1, B − 1). Multiply (3.9) by η2(t)φA(t) and integrate over (−A, A), we have

A∫
−A

cη2φA(t)φ′
A(t)dt +

A∫
−A

Dmη2(|φA(t)|2 + 1/A)(m−1)/2|φ′
A(t)|2dt

+
A∫

−A

η2d(φA(t))φA(t)dt

≤
A∫

−A

2Dmη(|φA(t)|2 + 1/A)(m−1)/2φA(t)φ′
A(t)|η′(t)|dt +

A∫
−A

η2φA(t)f (t)dt

≤ 1

2

A∫
−A

Dmη2(|φA(t)|2 + 1/A)(m−1)/2|φ′
A(t)|2dt

+
A∫

−A

2Dm(|φA(t)|2 + 1/A)(m−1)/2|φA(t)|2|η′(t)|2dt + 2d(K)KB.

Therefore,
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1

2

B−1∫
−B+1

Dm(|φA(t)|2 + 1/A)(m−1)/2|φ′
A(t)|2dt +

B−1∫
−B+1

d(φA(t))φA(t)dt

≤
−B+1∫
−B

+
B∫

B−1

2Dm(|φA(t)|2 + 1/A)(m−1)/2|φA(t)|2|η′(t)|2dt + 2d(K)KB

≤ 16Dm(K2 + 1)(m−1)/2K2 + 2d(K)KB.

It follows that ‖φm
A‖W 1,2(−B+1,B−1) is bounded independent of A. We note that the embed-

ding W 1,2(−B + 1, B − 1) to Cγ ([−B + 1, B − 1]) with γ ∈ (0, 12 ) is compact, and φm
A ∈

Cγ ([−B + 1, B − 1]) implies φA ∈ Cγ/m([−B + 1, B − 1]). There exist a subsequence of 
{φA(t)}A>1 denoted by {φAn(t)}n∈N and a function φ(t) ∈ Cγ/m(R) such that φm ∈ W

1,2
loc (R), 

0 ≤ φ ≤ K , and φAn(t) uniformly converges to φ(t) on any compact interval, φm
An

(t) weakly 

converges to φm(t) in W 1,2
loc (R). Since each φAn(t) is monotonically increasing, we see that φ(t)

is also increasing. We can verify that φ(t) is a solution of (3.8). Moreover, φ(t) > 0 for all t ∈R. 
Otherwise, there exists a t0 such that φ(t0) = 0, which is the minimum of φ(t) and φm(t). It fol-
lows φ′(t0) = 0, (φm(t0))

′′ ≥ 0, and f (t0) = H(φ)(t0) = 0 according to (3.8). By the definition 
of H(φ), we see that φ ≡ 0 and it contradicts to the assumption φ > 0.

Now we show that φ(t) ≤ φ(t) and φ(t) is an upper solution of (2.2). According to the defi-
nition of upper solution, we have{

cφ
′
(t) − D(φ

m
(t))′′ + d(φ(t)) ≥ H(φ)(t) = cφ′(t) − D(φm(t))′′ + d(φ(t)), t ∈ R,

lim
t→−∞φ(t) = 0, lim

t→+∞φ(t) = K, φ(t) ≥ 0, lim
t→+∞φ(t) = K.

The comparison principle Lemma 3.4 of degenerate elliptic problem implies that φ(t) ≤ φ(t) for 
all t ∈ R. Lemma 3.1 shows that

cφ′(t) − D(φm(t))′′ + d(φ(t)) = H(φ)(t) ≥ H(φ)(t).

It follows that φ(t) is an upper solution of (2.2). �
We also need to compare the solution of (3.8) with some lower solution φ(t).

Lemma 3.6. Assume that φ(t) is a monotone increasing upper solution of (2.2) such that 0 <
φ(t) ≤ K , limt→−∞ φ(t) = 0, limt→+∞ φ(t) = K , φ(t) is a lower solution of (2.2), φ(t) is 
increasing for t ≤ t0 with some fixed t0 ∈ R, and φ(t) ≤ φ(t) for all t ∈ R. Let φ(t) be the 
solution of (3.8) in Lemma 3.5. Then φ(t) ≥ φ(t) for all t ∈ R.

Proof. Since φ(t) ≤ φ(t), Lemma 3.1 shows that H(φ)(t) ≥ H(φ)(t) for all t ∈R. Therefore,

cφ′(t) − D(φm(t))′′ + d(φ(t)) =H(φ)(t)

≥H(φ)(t) ≥ cφ′(t) − D(φm(t))′′ + d(φ(t)), t ∈R,

lim
t→−∞φ(t) = 0, lim

t→+∞φ(t) = K, lim
t→−∞φ(t) = 0, φ(t) ≤ K.
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The comparison principle Lemma 3.4 of degenerate elliptic problem implies that φ(t) ≥ φ(t) for 
all t ∈R. �

We construct a pair of upper and lower solutions that satisfy the assumption in Lemma 3.6. 
For c > ĉ(α, r) with ĉ(α, r) > 0 being the constant in Lemma 3.2, define the functions φ and φ
by {

φ(t) = min{K,Keλ1t + Kem̂λ1t },
φ(t) = max{0,Keλ1t − MKem̂λ1t }, (3.10)

where 1 < m̂ < min{m, 2} such that m̂λ1 ∈ (λ1, λ2), λ1, λ2 are the two roots of �c(λ1) =
�c(λ2) = 0, M > 1 is a positive constant to be determined.

Lemma 3.7. Assume that (i) c > ĉ(α, r) is given, D is sufficiently small; or (ii) c is sufficiently 
large. Then the function φ(t) defined by (3.10) is a monotone increasing upper solution of (2.2)
such that 0 < φ(t) ≤ K , limt→−∞ φ(t) = 0, limt→+∞ φ(t) = K .

Proof. We note that Keλ1t + Kem̂λ1t are strictly monotone increasing in R. Let t0 be the unique 
solution of eλ1t + em̂λ1t = 1. We point out that φ

m
(t) ∈ W 1,∞(R), (φ

m
(t))′ > 0 in (−∞, t0), 

and (φ
m
(t))′ = 0 in (t0, +∞). Therefore, φ

m
(t) /∈ W 2,1(R). Actually, (φ

m
(t))′′ is the sum of a 

negative measure and a L∞ function at some neighborhood of t0. We only need to check (2.1) in 
(−∞, t0) and (t0, ∞) separately.

Case (i) For t ∈ (t0, ∞). We have φ(t) = K and φ
′
(t) = (φ

m
(t))′′ = 0 for t > t0. Since 0 ≤

φ(t) ≤ K for all t ∈R and the function b(s) is increasing on [0, K], we have

cφ
′
(t) − D(φ

m
(t))′′ + d(φ(t)) −

+∞∫
−∞

b(φ(t − cr − y))fα(y)dy

=d(K) −
+∞∫

−∞
b(φ(t − cr − y))fα(y)dy

≥d(K) −
+∞∫

−∞
b(K)fα(y)dy = d(K) − b(K) = 0.

Case (ii) For t ∈ (−∞, t0). Then φ(t) = Keλ1t + Kem̂λ1t ,

φ
′
(t) = Kλ1e

λ1t + Km̂λ1e
m̂λ1t ,

and

φ
′′
(t) = Kλ2

1e
λ1t + Km̂2λ2

1e
m̂λ1t ,

for all t < t0. We have
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(φ
m
(t))′′ =mφ

m−1 · φ′′
(t) + m(m − 1)φ

m−2 · (φ′
(t))2

=m(Keλ1t + Kem̂λ1t )m−1(Kλ2
1e

λ1t + Km̂2λ2
1e

m̂λ1t )

+ m(m − 1)(Keλ1t + Kem̂λ1t )m−2(Kλ1e
λ1t + Km̂λ1e

m̂λ1t )2, t < t0.

We note that φ(t) ≤ Keλ1t +Kem̂λ1t for all t ∈R, and b(s) ≤ b′(0)s, d(s) ≥ d ′(0)s for s ∈ [0, K]
since d ′′(s) ≥ 0 and b′′(s) ≤ 0. Therefore, for t < t0

cφ
′
(t) − D(φ

m
(t))′′ + d(φ(t)) −

+∞∫
−∞

b(φ(t − cr − y))fα(y)dy

≥ c(Kλ1e
λ1t + Km̂λ1e

m̂λ1t ) − D(φ
m
(t))′′ + d ′(0)(Keλ1t + Kem̂λ1t )

− b′(0)

+∞∫
−∞

(Keλ1(t−cr−y) + Kem̂λ1(t−cr−y))fα(y)dy

≥ Keλ1t (cλ1 + d ′(0)) + Kem̂λ1t (cm̂λ1 + d ′(0)) − D(φ
m
(t))′′

− b′(0)

+∞∫
−∞

(Keλ1(t−cr−y) + Kem̂λ1(t−cr−y))fα(y)dy

≥ Keλ1t (cλ1 + d ′(0) − b′(0)eαλ2
1−λ1cr )

+ Kem̂λ1t (cm̂λ1 + d ′(0) − b′(0)eαm̂2λ2
1−m̂λ1cr ) − D(φ

m
(t))′′

= −Keλ1t�c(λ1) − Kem̂λ1t�c(m̂λ1) − D(φ
m
(t))′′

= −Kem̂λ1t�c(m̂λ1) − D(φ
m
(t))′′

≥ 0,

provided that

−Kem̂λ1t�c(m̂λ1) − D(φ
m
(t))′′ ≥ 0, t < t0, (3.11)

since m̂λ1 ∈ (λ1, λ2) and �c(λ1) = 0. Note that t0 < 0 and eλ1t ≥ em̂λ1t for t < t0. Then we have

D|(φm
(t))′′| ≤Dm(2Keλ1t )m−1(1 + m̂2)Kλ2

1e
λ1t

+ Dm(m − 1)(2Keλ1t )m−2((1 + m̂)Kλ1e
λ1t )2

≤DmKmλ2
1(2

m−1(1 + m̂2) + (m − 1)2m−2(1 + m̂)2)emλ1t

=ADKmλ2
1e

mλ1t , t < t0,

where A = m(2m−1(1 + m̂2) + (m − 1)2m−2(1 + m̂)2). A sufficient condition for (3.11) is

ADKm−1λ2 ≤ −�c(m̂λ1) (3.12)
1
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since t < t0 < 0, m̂ < m and �c(m̂λ1) < 0. For given c > ĉ(α, r), (3.12) is valid if D or K is 
sufficiently small. Otherwise, (3.12) is valid if c is sufficiently large according to Lemma 3.2 for 
any given 1 < m̂ < min{m, 2}, and m̂λ1 ∈ (λ1, λ2) is valid automatically since �c(m̂λ1) < 0. �
Lemma 3.8. For any c > ĉ(α, r), the function φ(t) defined by (3.10) is a lower solution of (2.2)
if the constant M > 1 is sufficiently large. Moreover, φ(t) is increasing for t ≤ t0 with some fixed 
t0 ∈R.

Proof. Let t1 be the unique solution of eλ1t = Mem̂λ1t . Similar to the proof of Lemma 3.7, 
φm(t) ∈ W 1,∞(R), (φm(t))′ < 0 in some left neighborhood of t1, and (φm(t))′ = 0 in (t1, +∞). 
Therefore, φm(t) /∈ W 2,1(R) and (φm(t))′′ is the sum of a positive measure and a L∞ function 
at some neighborhood of t1. We only need to check (2.1) in (−∞, t1) and (t1, ∞) separately.

Case (i) For t ∈ (t1, ∞). We have φ(t) ≥ 0 for all y ∈R. Then

cφ′(t) − D(φm(t))′′ + d(φ(t)) −
+∞∫

−∞
b(φ(t − cr − y))fα(y)dy

≤ −
+∞∫

−∞
b(φ(t − cr − y))fα(y)dy

≤ 0, t > t1.

Case (ii) For t ∈ (−∞, t1). Then φ(t) = Keλ1t − MKem̂λ1t > 0,

φ′(t) = Kλ1e
λ1t − MKm̂λ1e

m̂λ1t ,

and

φ′′(t) = Kλ2
1e

λ1t − MKm̂2λ2
1e

m̂λ1t ,

for all t < t1. We have

(φm(t))′′ =mφm−1 · φ′′(t) + m(m − 1)φm−2 · (φ′(t))2

≥m(Keλ1t − MKem̂λ1t )m−1(Kλ2
1e

λ1t − MKm̂2λ2
1e

m̂λ1t )

≥ − m(Keλ1t − MKem̂λ1t )m−1MKm̂2λ2
1e

m̂λ1t

≥ − mMKmm̂2λ2
1e

m̂λ1t+(m−1)λ1t , t < t1.

Let h(t) = Keλ1t −MKem̂λ1t for t ∈R. Then φ(t) ≥ h(t). Since b(s) is monotone increasing on 
[0, K], b′(0) > 0 and b ∈ C2([0, K]), there exists a constant A > 0 such that b(s) ≥ b′(0)s(1 −
As) for s ∈ (−∞, K] (we can extend b(s) to (−∞, 0)), similar to the proof of Lemma 4.6 in 
[47], we have
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+∞∫
−∞

b(φ(t − cr − y))fα(y)dy

≥
+∞∫

−∞
b(h(t − cr − y))fα(y)dy

≥ b′(0)

+∞∫
−∞

h(t − cr − y)(1 − Ah(t − cr − y))fα(y)dy

≥ b′(0)Keλ1t eαλ2
1−λ1cr − b′(0)MKem̂λ1t eαm̂2λ2

1−m̂λ1cr

− b′(0)K2Ae2λ1t

+∞∫
−∞

e−2λ1(y+cr)(1 − Me(m̂−1)λ1(t−y−cr))2fα(y)dy

≥ b′(0)Keλ1t eαλ2
1−λ1cr − b′(0)MKem̂λ1t eαm̂2λ2

1−m̂λ1cr − B(t)e2λ1t , (3.13)

where

B(t) = b′(0)K2A

+∞∫
−∞

e−2λ1(y+cr)(1 − Me(m̂−1)λ1(t−y−cr))2fα(y)dy

≤ b′(0)K2A

+∞∫
−∞

e−2λ1(y+cr)(1 + Me(m̂−1)λ1(t−y−cr))2fα(y)dy

≤ b′(0)K2A

+∞∫
−∞

e−2λ1(y+cr)(1 + e−(m̂−1)λ1(y+cr))2fα(y)dy

=: B0, t < t1,

since Me(m̂−1)λ1t < 1 for t < t1. We note that d(s) ≤ d ′(0)s + Es2 for s ∈ (−∞, K] with some 
constant E > 0 as d ∈ C2([0, K]). Now we have

cφ′(t) − D(φm(t))′′ + d(φ(t)) −
∞∫

−∞
b(φ(t − cr − y))fα(y)dy

≤ − Keλ1t�c(λ1) + MKem̂λ1t�c(m̂λ1) − D(φm(t))′′ + B(t)e2λ1t + E(φ(t))2

≤MKem̂λ1t�c(m̂λ1) + DmMKmm̂2λ2
1e

m̂λ1t+(m−1)λ1t + (B0 + EK2)e2λ1t

≤MKem̂λ1t�c(m̂λ1) + DmMKmm̂2λ2
1e

m̂λ1t /M(m−1)/(m̂−1) + (B0 + EK2)e2λ1t
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=�c(m̂λ1)e
m̂λ1tM

(
K + DmKmm̂2λ2

1

�c(m̂λ1)M(m−1)/(m̂−1)
+ (B0 + EK2)e(2−m̂)λ1t

�c(m̂λ1)M

)
≤0,

provided that M > 1 sufficiently large such that

K + DmKmm̂2λ2
1

�c(m̂λ1)M(m−1)/(m̂−1)
+ (B0 + EK2)e(2−m̂)λ1t

�c(m̂λ1)M
> 0,

since �c(m̂λ1) < 0. �
We employ the monotone iteration to find the traveling wave solution.

Lemma 3.9. For c > ĉ(α, r), let φ(t) and φ(t) be defined in (3.10). Let φ0(t) = φ(t), and φi(t), 
i = 1, 2, . . . , be the solution of the following iteration problem

{
cφ′

i (t) − D(φm
i (t))′′ + d(φi(t)) = H(φi−1)(t), t ∈R,

lim
t→−∞φi(t) = 0, lim

t→+∞φi(t) = K.

Then φ(t) ≤ · · · ≤ φi(t) ≤ φi−1 ≤ · · · ≤ φ(t), φi(t) > 0 for all t ∈ R, and there exists a function 
φ ∈ C(R; R) such that limi→∞ φi(t) = φ(t), 0 < φ(t) ≤ K and φ(t) is the solution of (2.2).

Proof. According to Lemma 3.5 and Lemma 3.6, we see that 0 < φ1(t) ≤ φ0(t) ≤ K , φ1(t) is a 
monotone increasing upper solution of (2.2), and φ1(t) ≥ φ(t) for all t ∈ R. Using Lemma 3.5
and Lemma 3.6 again, we find that 0 < φ2(t) ≤ φ1(t) ≤ K , φ2(t) is a monotone increasing 
upper solution of (2.2), and φ2(t) ≥ φ(t) for all t ∈ R. We can deduce by induction that the 
above assertions are valid for φi(t). Since φi(t) are monotone decreasing with respect to i, and 
Lemma 3.5 implies that ‖φm

i (t)‖W 1,2 are uniformly bounded on any compact interval, there exists 
a function φ ∈ C(R; R) such that limi→∞ φi(t) = φ(t), and φ(t) is the solution of (2.2) The 
proof of φ(t) > 0 is similar to that of Lemma 3.5. �

Therefore, we have proved the existence Theorem 2.1 of degenerate diffusion equation with 
time-delay and nonlocal effect.

Proof of Theorem 2.1. This is proved in Lemma 3.9. �
Theorem 2.1 shows the existence of traveling waves for any given c > ĉ(α, r) provided that 

D is sufficiently small which may depend on c and vanish as c tends to ĉ. In order to investigate 
the traveling wave with critical wave speed c∗(D, α, r), we construct another upper solution. For 
c ≥ ĉ, we define the function φ by

φ(t) = min{K,Keλ1t }, (3.14)

where λ1 is the least root of �c(λ1) = 0.
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Lemma 3.10. For m ≥ 2 there exists a constant C(m, α, r) > 0 such that if DKm−2 ≤
C(m, α, r), then for any c ≥ ĉ(α, r), the function φ(t) defined by (3.14) is a monotone increasing 
upper solution of (2.2) such that 0 < φ(t) ≤ K , limt→−∞ φ(t) = 0, limt→+∞ φ(t) = K .

Proof. The proof of this upper solution is similar to that in Lemma 3.7. We only need to check 
the case (ii) therein. For t ∈ (−∞, 0), φ(t) = Keλ1t , φ

′
(t) = Kλ1e

λ1t for all t < 0. We have

(φ
m
(t))′′ = m2λ2

1K
memλ1t , t < 0.

We note that φ(t) ≤ Keλ1t for all t ∈ R, b(s) is increasing on [0, K], and b(s) ≤ b′(0)s − Cbs
2, 

d(s) ≥ d ′(0)s +Cds2 for all s ∈ [0, K] with Cb ≥ 0, Cd ≥ 0, Cb +Cd > 0, since either d ′′(s) > 0
or b′′(s) < 0 according to the assumption (H3). (a) If Cd > 0, then for t < 0

cφ
′
(t)−D(φ

m
(t))′′ + d(φ(t)) −

+∞∫
−∞

b(φ(t − cr − y))fα(y)dy

≥ cKλ1e
λ1t − D(φ

m
(t))′′ + d ′(0)Keλ1t + CdK2e2λ1t

− b′(0)

+∞∫
−∞

Keλ1(t−cr−y)fα(y)dy

≥ Keλ1t (cλ1 + d ′(0)) − D(φ
m
(t))′′ + CdK2e2λ1t − b′(0)eαλ2

1−λ1crKeλ1t

≥ Keλ1t (cλ1 + d ′(0) − b′(0)eαλ2
1−λ1cr ) + CdK2e2λ1t − D(φ

m
(t))′′

= −Keλ1t�c(λ1) + CdK2e2λ1t − Dm2λ2
1K

memλ1t

≥ 0, t < 0,

provided that

Dm2λ2
1K

m−2 ≤ Cd, (3.15)

since �c(λ1) = 0 and m ≥ 2. (b) If Cb > 0, then for t < 0

cφ
′
(t)−D(φ

m
(t))′′ + d(φ(t)) −

+∞∫
−∞

b(φ(t − cr − y))fα(y)dy

≥ cKλ1e
λ1t − D(φ

m
(t))′′ + d ′(0)Keλ1t −

+∞∫
−∞

b(Keλ1(t−cr−y))fα(y)dy

≥ Keλ1t (cλ1 + d ′(0)) − D(φ
m
(t))′′

− b′(0)

+∞∫
Keλ1(t−cr−y)fα(y)dy + Cb

+∞∫
K2e2λ1(t−cr−y)fα(y)dy
−∞ −∞
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≥ Keλ1t (cλ1 + d ′(0)) − D(φ
m
(t))′′ − b′(0)eαλ2

1−λ1crKeλ1t + CbK
2e4αλ2

1−2λ1cre2λ1t

≥ Keλ1t (cλ1 + d ′(0) − b′(0)eαλ2
1−λ1cr ) + CbK

2e4αλ2
1−2λ1cre2λ1t − D(φ

m
(t))′′

= −Keλ1t�c(λ1) + CbK
2e4αλ2

1−2λ1cre2λ1t − Dm2λ2
1K

memλ1t

≥ 0, t < 0,

provided that

Dm2λ2
1K

m−2 ≤ Cbe
4αλ2

1−2λ1cr , t < 0, (3.16)

since �c(λ1) = 0 and m ≥ 2. For c ≥ ĉ, let

Cm(c) =
{

Cd/(m2λ2
1), Cd > 0,

Cbe
4αλ2

1−2λ1cr/(m2λ2
1), Cd = 0, Cb > 0.

Since either Cd > 0 or Cb > 0, we see that Cm(c) > 0. Note that λ1 is decreasing with respect to 
c ≥ ĉ, λ1(ĉ) > 0, and

�c(λ1) = b′(0)eαλ2
1−λ1cr − λ1c − d ′(0) = 0.

We have

e4αλ2
1−2λ1cr = e2αλ2

1e2αλ2
1−2λ1cr = e2αλ2

1

(λ1c + d ′(0)

b′(0)

)2 ≥
(d ′(0)

b′(0)

)2
.

Therefore

Cm(c) ≥
{

Cd/(m2λ1(ĉ)
2), Cd > 0,

Cb(d
′(0)/b′(0))2/(m2λ1(ĉ)

2), Cd = 0, Cb > 0,

for all c ≥ ĉ. Hereafter we denote the right-sided constant in the above inequality by C(m, α, r)
as ĉ = ĉ(α, r) depends on α and r . Then either (3.15) or (3.16) is valid if DKm−2 ≤ C(m, α, r)
and thus φ is an upper solution. �

As we have constructed upper solutions for all c ≥ ĉ, we present the following existence of 
critical wave for degenerate diffusion (m ≥ 2) with nonlocal effect and time delay.

Proof of Theorem 2.2. For any c > ĉ, the function φ defined by (3.14) is an upper solution 
according to Lemma 3.10, and the function φ defined by (3.10) is a lower solution according 
to Lemma 3.8 if M > 1 is sufficiently large. Similar to the proof of Lemma 3.9, we see that 
(2.2) admits at least one monotone increasing traveling wave solution φc(t) with speed c such 
that 0 < φc(t) ≤ K for all t ∈ R. We may assume that φc(0) = 1/2 by shifting. The estimates 
in Lemma 3.5 is also valid uniformly for φc(t). There exist a subsequence of {φc}c>ĉ denoted 
by {φck

}k∈N and a function 0 ≤ φĉ ≤ K such that φm
ĉ

∈ W
1,2
loc (R) and φck

uniformly converges to 

φĉ on any compact interval, φm
c weakly converges to φm in W 1,2

(R). We can prove that φĉ is a 

k ĉ loc
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monotone increasing traveling wave of (2.2) with critical speed ĉ by testing the equation (2.2)
of φck

with any ψ ∈ C∞
0 (R) and letting k tends to infinity. The property φĉ > 0 can be proved 

similar to that in Lemma 3.5. �
For the linear diffusion case (m = 1), we now prove the existence of critical traveling wave 

speed Corollary 2.1.

Proof of Corollary 2.1. The existence is proved in [47]. And the nonexistence result can be 
proved in a way similar to the proof of Theorem 2.3 in next section. �

Similar to the proof of existence of monotone traveling wave solution to the degenerate dif-
fusion equation with time-delay and nonlocal effect. We can prove the existence of monotone 
traveling wave solution to the degenerate diffusion equation without nonlocal effect.

Lemma 3.11. Assume that α = 0 and m > 1. (i) If r = 0, then for any given D > 0, the critical 
wave speed c∗(D, 0, 0) defined in (2.4) is positive. (ii) For any given D > 0 there exists a r0 > 0
such that the critical wave speed c∗(D, 0, r) defined in (2.4) is positive if 0 < r ≤ r0.

Proof. For the degenerate diffusion equation without time delay and nonlocal effect, Huang et al.
[21] proved the existence of positive critical wave speed c∗(D, 0, 0) > 0 for a typical type of b(u)

and d(u). They also proved the existence of traveling wave with some speed c > c∗(D, 0, 0) and 
small time delay r for the time delayed degenerate diffusion equation. We can verify that these 
results are valid for the general type of b(u) and d(u) satisfying (H1)–(H3). The main approach 
is the generalized phase plane analysis, see for example [21,24,25,60,61]. If α = 0, (2.2) reads{

cφ′(t) = D(φm(t))′′ − d(φ(t)) + b(φ(t − cr)),

φ(−∞) = 0, φ(+∞) = K.
(3.17)

Let ψ(t) = D(φm(t))′. We are looking for the non-critical traveling waves that are positive and 
smooth and then the infimum of these wave speeds is the critical wave speed. Now (3.17) is 
transformed into ⎧⎪⎨⎪⎩

φ′(t) = ψ(t)

Dmφm−t (t)
=: 
,

ψ ′(t) = cψ(t)

Dmφm−t (t)
− (

b(φcr (t)) − d(φ(t))
) =: �,

(3.18)

where φcr(t) = φ(t − cr).
(i) If r = 0, we note that for φ(t) > 0 and φ′(t) > 0, we can use φ as the variable of ψ and 

then (3.18) is equivalent to

dψ

dφ
= c − Dmφm−1(b(φ) − d(φ))

ψ
= �



. (3.19)

The monotone increasing traveling wave is a trajectory in the phase plane (φ, ψ) of (3.19) such 
that ψ(0) = 0, ψ(K) = 0, ψ(φ) > 0 for φ ∈ (0, K). We solve (3.19) with the condition
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ψ(K) = 0, ψ(φ) > 0, φ ∈ (β,K), (3.20)

where β ∈ [0, K) and (β, K) is the maximum interval such that (φ, ψ) ∈ (0, K) × (0, +∞). The 
existence of the solution denoted by ψc(φ) to such kind singular ODE (3.19) follows from the 
following observation: (a) Let �c be the curve of

ψ̃(φ) := Dmφm−1(b(φ) − d(φ))

c
.

Then it divides (0, K) × (0, +∞) into two parts, E1 := {(φ, ψ); φ ∈ (0, K), 0 < ψ < ψ̃(φ)}
and E2 := ((0, K) × (0, +∞))\E1. (b) For any (φ, ψ) ∈ E1, a direct calculation shows that 
�/
 < 0; while for any (φ, ψ) ∈ E2, �/
 > 0. Since φ(t) is increasing with respect to t , we 
know that the trajectory passing through a point (φ, ψ) ∈ E1 at t = t0 must cross �c from E2 into 
E1 before t0 and it cannot cross {(φ, ψ); φ ∈ (0, K), ψ = 0} before t0. (c) We can solve (3.19)
with the condition ψ(K) = ε > 0 and let ε tends to zero to approximate (3.19)–(3.20). We see 
that the maximum interval is (0, K) and β = 0. Moreover, the solution of (3.19)–(3.20) satisfies 
ψc(φ) ≤ supφ∈(0,K) ψ̃(φ).

Next, we show that for sufficiently large c, the trajectory corresponding to the solution of 
(3.19)–(3.20) will arrive at the point (0, 0) and then it will correspond to a monotone increasing 
traveling wave as we want. Let ψ̄(φ) = Bφr with 1 ≤ r ≤ m. Then,

dψ̄

dφ
< c − Dmφm−1(b(φ) − d(φ))

ψ̄
, φ ∈ (0,K)

is equivalent to

Brφr−1 + Dmφm−1−r (b(φ) − d(φ))

B
< c, φ ∈ (0,K),

which holds for c greater than some constant c0 > 0 since b(0) − d(0) = 0 and b(φ) − d(φ) ∈
C2([0, K]). For c > c0, we note that ψ̄(K) = BKr > 0 = ψc(K), then by comparison, we have 
ψc(φ) ≤ ψ̄(φ) for φ ∈ (0, K) and ψc(0) = 0.

The last step is to show that ψc(0) > 0 if c is sufficiently small and positive. The integral over 
(0, K) of (3.19) with condition (3.20) shows that

− (ψc(0))2

2
= c

K∫
0

ψc(φ)dφ − Dm

K∫
0

φm−1(b(φ) − d(φ))dφ. (3.21)

If ψc(0) = 0, then (3.19) tells us dψc

dφ
≤ c and ψc(φ) ≤ cφ, which yields 

∫ K

0 ψc(φ)dφ ≤ cK2/2. 
Further, according to (3.21)

Dm

K∫
φm−1(b(φ) − d(φ))dφ = c

K∫
ψc(φ)dφ ≤ c2K2/2.
0 0
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Therefore, if c is small enough such that the above inequality is not true, then ψc(0) cannot be 
zero and there does not exist monotone increasing traveling wave.

(ii) If r > 0, inspired by [25,21], we define φcr as a function of φ and ψ(φ) (here we can also 
regard ψ as a function of φ) as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cr =
φ∫

φcr

Dmsm−1

ψ(s)
ds, if

φ∫
0

Dmsm−1

ψ(s)
ds ≥ cr,

φcr = 0, if

φ∫
0

Dmsm−1

ψ(s)
ds < cr.

(3.22)

Consider the following problem⎧⎨⎩
dψ

dφ
= c − Dmφm−1(b(φcr ) − d(φ))

ψ
= �



,

ψ(0) = ψ(K) = 0, ψ(φ) > 0, φ ∈ (0,K).

(3.23)

The existence of monotone increasing traveling waves for small time delay r and some wave 
speed c > c∗(D, 0, 0) is proved in [21].

Here in order to show that c∗(D, 0, r) > 0 for small time delay, we only need to prove that 
there exist r0 > 0 and c0 > 0 such that if c < c0 and 0 < r ≤ r0 then (3.23) has no solution. Let 
ψc,r be such a solution and �c, ψ̃ be defined as in (i). We note that φcr < φ and b(s) is strictly 
increasing. Then we have for any (φ, ψ) ∈ �c in the phase plane of (3.23),

�



= c − Dmφm−1(b(φcr ) − d(φ))

ψ
> c − Dmφm−1(b(φ) − d(φ))

ψ
= 0.

We can also check that �/
 > 0 for (φ, ψ) ∈ E2. Let (γ, K) with γ ∈ (0, K) be the maximum 
interval such that ψ̃ is decreasing. We see that γ is well defined since ψ̃ ′(K) < 0 and ψ̃ ∈
C2([0, K]). The above analysis shows that

ψc,r (φ) ≤ sup
φ∈(0,K)

ψ̃(φ), φ ∈ (0,K), (3.24)

and

ψc,r (φ) < ψ̃(φ), φ ∈ (γ,K). (3.25)

Otherwise, ψc,r (K) will be positive, which contradicts to our assumption.
We also need to study the behavior of ψc,r near φ = 0. For this purpose, let ψ1(φ) be the 

solution of ⎧⎨⎩
dψ

dφ
= c + Dmφm−1d(φ)

ψ
,

ψ(0) = 0, ψ(φ) > 0, φ ∈ (0,K),
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whose existence can be proved in a similar way as Lemma 2.2 in [25], together with the property 
that there exists C1 > 0 such that

ψ1(φ) ≤ C1φ, φ ∈ (0,K).

Here C1 = C1(c0) is a constant depending on the upper bound of c, which is c0, independent 
of r . The comparison principle tells us that

ψc,r (φ) ≤ ψ1(φ) ≤ C1φ, φ ∈ (0,K). (3.26)

Let ε ∈ (0, γ ) be a constant such that

ε∫
0

φm−1d(φ)dφ <
1

4

γ∫
ε

φm−1(b(φ) − d(φ))dφ. (3.27)

It is easy to check that ε (and γ ) only depends on the structure of b(s) and d(s). Using the 
estimates (3.24) and (3.25), we assert that there exists a constant r0 > 0 such that if ψc,r is 
the solution of (3.23) and r ≤ r0, cr ≤ r0, then b(φcr ) − d(φ) > 0 for all φ ∈ (ε, K). (a) For 
φ ∈ (γ, K), we have

ψc,r = Dmφm−1φ′(t) < ψ̃ = Dmφm−1(b(φ) − d(φ))

c
,

that is, φ′(t) < (b(φ) − d(φ))/c, and

cr =
φ∫

φcr

Dmsm−1

ψc,r (s)
ds >

φ∫
φcr

c

b(s) − d(s)
ds ≥

φ∫
φcr

c

(d ′(K) − b′(K))(K − s)
ds

since (b − d) is concave and b(K) − d(K) = 0. It follows that

K − φcr ≤ (K − φ)e(d ′(K)−b′(K))r ,

which together with the fact that b(K) −d(K) = 0 and b′(K) < d ′(K), yields b(φcr ) −d(φ) > 0
for r ≤ r0 with some constant r0 > 0. (b) For φ ∈ (ε, γ ), we see that

inf
φ∈(ε,γ )

(b(φ) − d(φ)) =: δ > 0

and

cr =
φ∫

φcr

Dmsm−1

ψc,r (s)
ds >

φ∫
φcr

Dmsm−1

supφ∈(0,K) ψ̃(φ)
ds.

A direct calculation shows that b(φ) − b(φcr ) ≤ δ/2 for cr ≤ r0 if we choose r0 sufficiently 
small. Then
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b(φcr ) − d(φ) = (b(φ) − d(φ)) − (b(φ) − b(φcr )) ≥ b(φ) − d(φ)

2
, φ ∈ (ε, γ ). (3.28)

The first integral of (3.23) over (0, K) implies that

c

K∫
0

ψc,r (φ)dφ =
K∫

0

Dmφm−1(b(φcr ) − d(φ))dφ

=
ε∫

0

+
γ∫

ε

+
K∫

γ

Dmφm−1(b(φcr ) − d(φ))dφ

≥ −
ε∫

0

Dmφm−1d(φ)dφ +
γ∫

ε

Dmφm−1(b(φcr ) − d(φ))dφ

≥
(

− 1

4
+ 1

2

) γ∫
ε

Dmφm−1(b(φ) − d(φ))dφ,

where we have used (3.27) and (3.28). Additionally, (3.26) tells us

K∫
0

ψc,r (φ)dφ ≤ C1

K∫
0

φdφ = C1K
2

2
.

Now, if we choose c0 > 0 such that

C1K
2

2
c0 <

1

4

γ∫
ε

Dmφm−1(b(φ) − d(φ))dφ,

then there cannot be any monotone increasing traveling wave with speed c < c0 and r ≤ r0. The 
proof is completed. �
Proof of Theorem 2.4. Let

�c(λ) = b′(0)e−λcr − cλ − d ′(0), λ > 0.

For any c > 0, �c(0) = b′(0) − d ′(0) > 0, �c(λ) is strictly decreasing with respect to λ, and

�c((b
′(0) − d ′(0))/c) ≤ b′(0) − (b′(0) − d ′(0)) − d ′(0) = 0.

Hence, there exists an unique λ1 > 0 such that �c(λ1) = 0, �c(λ) > 0 for all λ ∈ (0, λ1), and 
�c(λ) < 0 for all λ ∈ (λ1, +∞). The comparison principle Lemma 3.4, the construction of a 
pair of upper and lower solutions by (3.10), the iteration procedure Lemma 3.9 are still valid for 
nonlocal case for any c > 0. The nonexistence result can be proved in a way similar to the proof 
of Theorem 2.3 in next section. The last assertion of this theorem is proved in Lemma 3.11. �
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Remark. In order to prove the existence of critical wave with speed ĉ for degenerate diffusion 
(m ≥ 2) with nonlocal effect (α > 0) and time delay, we have constructed upper solutions for 
all c ≥ ĉ of the form (3.14). We note that for the degenerate diffusion equation without nonlocal 
effect (α = 0), the construction of upper solutions by (3.14) is invalid, so as the proof of existence 
of critical waves, since the function Cm(c) defined in the proof of Lemma 3.10 vanishes as c tends 
to 0. This suggests the nonexistence of positive infimum of critical traveling wave speeds in this 
case.

4. Nonexistence of traveling waves

We present the following proof of nonexistence theorem of traveling wave solutions with 
speed c < ĉ for the degenerate diffusion equation with time-delay and nonlocal effect.

Proof of Theorem 2.3. Suppose φ(t) is a monotone increasing traveling wave solution of (2.2)
and

|φ(t) − Keλ1t | ≤ Ceλt , t < 0, (4.1)

for some constants λ > λ1 > 0 and C > 0. Note that{
cφ′(t) − D(φm(t))′′ + d(φ(t)) = H(φ)(t), t ∈ R,

lim
t→−∞φ(t) = 0, lim

t→+∞φ(t) = K.
(4.2)

According to Lemma 3.2, for any given c < ĉ(α, r), the continuous function �c(λ) > 0 for all 
λ ≥ 0, �c(λ) is increasing for large λ. It follows that

�c(λ) = b′(0)eαλ2−λcr − λc − d ′(0) ≥ min
λ≥0

�c(λ) = �0 > 0, λ ≥ 0.

Let ε > 0 be sufficiently small such that

(1 − ε)b′(0)eαλ2−λcr − λc − d ′(0) ≥ �0 − εb′(0)eαλ2−λcr ≥ 1

2
�0, λ ∈ [0,2λ1]. (4.3)

We may assume that C ≥ K , then Keλ1t − Ceλt ≤ 0 ≤ φ(t) for t ≥ 0, and Keλ1t − Ceλt ≤ φ(t)

for all t ∈ R. Lemma 3.1 implies that

H(φ)(t) ≥ H(Keλ1t − Ceλt )(t).

Similar to the proof of (3.13) in Lemma 3.8, we have

H(φ)(t) ≥ H(Keλ1t − Ceλt )(t)

≥ b′(0)Keαλ2
1−λ1creλ1t − b′(0)Ceαλ2−λcreλt − B0e

2λ1t

≥ b′(0)Keαλ2
1−λ1creλ1t − Ĉeλ̂t , t < 0,
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where B0 > 0 is the constant in the proof of Lemma 3.8, Ĉ > 0, λ̂ = min{λ, 2λ1} > λ1 > 0. Let 
t0 < 0, such that

Ĉeλ̂t ≤ εb′(0)Keαλ2
1−λ1creλ1t , t < t0.

Therefore, by (4.3),

H(φ)(t) ≥b′(0)Keαλ2
1−λ1creλ1t − Ĉeλ̂t

≥(1 − ε)b′(0)Keαλ2
1−λ1creλ1t

≥(λ1c + d ′(0) + 1

2
�0)Keλ1t

≥(λ1c + d ′(0) + 1

4
�0)(Keλ1t + Ceλt )

≥(λ1c + d ′(0) + 1

4
�0)φ(t), t < t0,

provided that

(λ1c + d ′(0) + 1

4
�0)Ceλt ≤ 1

4
�0Keλ1t , t < t0.

We may take a smaller t0 to let the above inequality hold since λ > λ1. By (4.2), we see that{
cφ′(t) − D(φm(t))′′ + d(φ(t)) ≥ (λ1c + d ′(0) + 1

4�0)φ(t), t < t0,

lim
t→−∞φ(t) = 0, φ(t0) = φ(t0).

(4.4)

We note that there exists a constant E > 0 such that d(s) ≤ d ′(0)s + Es2 for s ∈ [0, K] since 
d ∈ c2([0, K]). Therefore,

d(φ(t)) ≤d ′(0)φ(t) + E(φ(t))2

≤d ′(0)φ(t) + E(Keλ1t + Ceλt )2

≤(d ′(0) + 1

8
�0)φ(t), t < t0,

provided that

E(Keλ1t + Ceλt )2 ≤ 1

8
�0(Keλ1t − Ceλt ), t < t0,

which is also valid if we choose a smaller t0. We can rewrite (4.4) into{
cφ′(t) − D(φm(t))′′ ≥ (λ1c + 1

8�0)φ(t), t < t0,

lim φ(t) = 0, φ(t0) = φ(t0).
(4.5)
t→−∞
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We assert that φ′(t) > 0 for all t < t0. Otherwise, if φ′(t1) = 0 for some t1 < t0, then 
φm(t)′|t=t1 = 0 and (4.4) implies

−D(φm(t))′′|t=t1 ≥ (λ1c + 1

8
�0)φ(t1) > 0.

It follows that φm(t) attains its strictly maximum at t1, which contradicts to the monotone in-
creasing of φ(t) and so as φm(t).

Now we employ the phase plane analysis to get more properties of φ. Since φ′(t) > 0 for all 
t < t0, let

ψ(t) = (φm(t))′ = mφm−1φ′(t) > 0, t < t0. (4.6)

Then the second order degenerate differential inequality (4.4) implies⎧⎪⎨⎪⎩
dφ

dt
= ψ(t)

mφm−1 ,

D
dψ

dt
≤ cψ(t)

mφm−1 − (λ1c + 1

8
�0)φ(t), t < t0.

Note that φ′(t) > 0 and set φ0 = φ(t0). We can use φ(t) as the argument of ψ(t) to get⎧⎨⎩D
dψ(φ)

dφ
≤ c − m(λ1c + �0/8)φm

ψ
=: G(φ,ψ),

0 < φ < φ0, ψ(φ) > 0, ψ(0) = 0.

(4.7)

Hereafter in this proof, we write ψ(t) in the sense of (4.6) and we write ψ(φ) if we regard ψ
as a function of φ, i.e. ψ(φ̂) = ψ(φ−1(φ̂)) for φ̂ ∈ (0, φ0) and φ−1(φ̂) is the inverse function of 
φ(t) since φ′(t) > 0. Let � and � be the following curve and region in the (φ, ψ) phase plane

� = {(φ,ψ);0 < φ < φ0,ψ = m(λ1c + �0/8)φm

c
},

� = {(φ,ψ);0 < φ < φ0,0 < ψ <
m(λ1c + �0/8)φm

c
}.

Clearly, if (φ, ψ) ∈ �, then G(φ, ψ) < 0 and (4.7) shows

D
dψ(φ)

dφ
≤ G(φ,ψ) < 0.

The graph of ψ(φ) cannot run through � when φ grows, it must start from (0, 0) and run into 
(R+ ×R

+)\� for 0 < φ < φ1 with some φ1 ≤ φ0. That is,

ψ(φ) ≥ m(λ1c + �0/8)φm

c
, 0 < φ < φ1.

It follows that
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φ′(t) = ψ(t)

mφm−1 ≥ (λ1c + �0/8)φ

c
= (λ1 + �0

8c
)φ(t), t < t1,

where t1 ≤ t0 such that φ(t1) = φ1. That is,

(logφ(t))′ ≥ λ1 + �0

8c
, t < t1. (4.8)

Integrating (4.8) over (t, t1) yields

logφ(t1) − logφ(t) ≥ (λ1 + �0

8c
)(t1 − t),

which means

φ(t) ≤ φ(t1)e
(λ1+ �0

8c
)(t−t1), t < t1.

This contradicts to (4.1) since λ1 + �0/(8c) > λ1. �
5. Numerical simulations of travelling waves

In this section, we numerically study travelling wavefronts of (1.4). We consider the Nichol-
son’s blowflies equation with degenerate diffusion

∂u

∂t
= D�um − δu + p

+∞∫
−∞

u(t − r, y)e−au(t−r,y)fα(x − y)dy, x ∈ R, t > 0,

where m > 1, α ≥ 0. If α > 0, the equation is nonlocal; while if α → 0, the equation reduces 
to a local one. It possesses two constant equilibria u− = 0 and u+ = 1

a
ln p

δ
:= K . When 1 <

p
δ

≤ e, the birth rate function b(u) = pue−au is monotone increasing, and b(u), d(u) satisfy the 
hypotheses (H1)–(H3).

The travelling wavefront equation, derived in Section 2 is as follows

⎧⎪⎪⎨⎪⎪⎩
cφ′(t) = D(φm(t))′′ − δφ(t) + p

+∞∫
−∞

φ(t − cr − y)e−aφ(t−cr−y)fα(y)dy,

φ(−∞) = 0, φ(+∞) = 1
a

ln p
δ
.

(5.1)

Our aim is to examine the roles of varying biological parameters in the change of the existence, 
shape, and size of the respective waves. We solve the nonlinear travelling wavefront equations in 
Section 3 by using the finite element method and iteration technique.

The main difficulties of numerical simulation lie in: (i) degenerate diffusion m > 1; (ii) non-
linearity caused by both the nonlinear diffusion and the birth or death functions b(u), d(u); (iii) 
time delayed; (iv) nonlocal effect convolution for α > 0; (v) unbounded domain.

Framework for nonlocal case α > 0. In the proof of Theorem 2.1, we have theoretically 
proved that the iteration scheme presented in Lemma 3.9 admits a convergence sequence to the 
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traveling wave solution if there are suitable upper and lower solutions. In numerical simulations, 
we only deal with bounded domain and the corresponding version is⎧⎪⎪⎪⎨⎪⎪⎪⎩

cφ′
i (t) − D(φm

i (t))′′ + δφi(t) = p

M∫
−M

φi−1(t − cr − y)e−aφi−1(t−cr−y)fα(y)dy,

φi(−M) = 0, φi(M) = K,

(5.2)

where M > 0 is sufficiently large. We note that to deal with a larger speed c or time delay r , one 
must choose a larger M for the accuracy. The scheme (5.2) is nonlinear due to the degenerate 
diffusion. The existing method is not applicable, so we need to develop a modified iteration 
scheme. Consider the following second order differential problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

cφ′(t) − D(mφ̃m−1φ′(t))′ + δφ(t) = p

M∫
−M

φ̃(t − cr − y)e−aφ̃(t−cr−y)fα(y)dy,

φ(−M) = 0, φ(M) = K,

(5.3)

where φ̃ ∈ C2(R), φ̃ is monotone increasing and limt→−∞ φ̃(t) = 0, limt→+∞ φ̃(t) = K . The 
solution is denoted by φ = F(φ̃). If the operator F admits a fixed point φ such that φ = F(φ) and 
φ is monotone increasing, we might regard it as an approximate solution of (5.1). For any given ̃φ, 
we can use the finite element method to numerically solve the problem (5.3). Let −M = t0 < t1 <

t2 < · · · < tN = M be the partition with each step �x = 2M/N and {ψj }Nj=0 be the associated 

trigonometric basis function. For φ̃(t) = ∑N−1
i=1 ũiψi(t) + KψN(t) and φ(t) = ∑N−1

i=1 uiψi(t) +
KψN(t) with known {̃ui}N−1

i=1 and unknown {ui}N−1
i=1 , the FEM scheme of (5.3) is

c〈φ′(t),ψj (t)〉 + mD〈φ̃m−1φ′(t),ψ ′
j (t)〉 + δ〈φ(t),ψj (t)〉 = p〈φ̃cre

−aφ̃cr ∗ fα,ψj (t)〉,

for j = 1, 2, . . . , N − 1, where 〈·, ·〉 denotes the L2 inner product and

φ̃cr (t) = φ̃(t − cr) =
N−1+i0∑
i=1+i0

ũiψi+i0(t) + KψN+i0(t)

with i0 = cr/�x (we may assume that i0 is an integer). The search of fixed point can be carried on 
by iteration technique with shifting. We start with a test profile φ0(t), for example, Keλt/(eλt +
e−λt ) with some λ > 0, and compute

φi(t) = F(T (φi−1(t))), i = 1,2, . . . ,

where T is the shifting operator such that φ(t) = T (φ̃(t)) = φ̃(t + k�x) with the selection of k
that makes φ(t∗) = 1/2 with some t∗ in a fixed subinterval [ti∗, ti∗+1]. We note that (i) if φ is 
a fixed point of φ = F(T (φ)), then φ = T (φ) and φ is a fixed point of φ = F(φ); (ii) without 
this shifting, the iteration might not be convergent and thus lead to inaccurate results. Illustrated 
example of the iteration process is shown in Fig. 1. Here and after, we only draw the graphic on 
a suitable subinterval of [−M, M].
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Fig. 1. The iteration process of the traveling wave for nonlocal case with parameters: D = 1, m = 2, d = 1, p = 2, 
a = log(p/d), K = 1, α = 3, r = 3, c = 2, M = 80. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Framework for local case α = 0. Consider the following second order differential problem 
with artificial viscosities −μφ′′ on both sides of the equation{

cφ′(t) − D(mφ̃m−1φ′(t))′ − μφ′′(t) + δφ(t) = pφ̃(t − cr)e−aφ̃(t−cr) − μφ̃′′(t),
φ(−M) = 0, φ(M) = K,

(5.4)

where φ̃ ∈ C2(R), φ̃ is monotone increasing and limt→−∞ φ̃(t) = 0, limt→+∞ φ̃(t) = K , μ > 0
is the regularization parameter. The solution of (5.4) is denoted by φ = G(φ̃). Similar to the 
above nonlocal case, if the operator G admits a fixed point φ such that φ = G(φ) and φ is 
monotone increasing, we may regard it as an approximate solution of (5.1) for α = 0. For 
φ̃(t) = ∑N−1

i=1 ũiψi(t) + KψN(t) and φ(t) = ∑N−1
i=1 uiψi(t) + KψN(t) with known {̃ui}N−1

i=1
and unknown {ui}N−1

i=1 , the FEM scheme of (5.4) is

c〈φ′(t),ψj (t)〉 + mD〈φ̃m−1φ′(t),ψ ′
j (t)〉 + μ〈φ′(t),ψ ′

j (t)〉 + δ〈φ(t),ψj (t)〉
= p〈φ̃cre

−aφ̃cr ,ψj (t)〉 + μ〈φ̃′(t),ψ ′
j (t)〉,

for j = 1, 2, . . . , N − 1. The search of fixed point can also be carried on by iteration technique 
with shifting similar to the nonlocal case. Fig. 2 shows the comparison of the iteration process 
between the cases with and without regularization.

The difference between numerical simulations for nonlocal case and local case is that we add 
a regularization −μφ′′(t) for local case. This is because the simulation without regularization 
in this case seems not to be convergent. This indicates that the nonlocal effect plays a role as 
non-degenerate diffusion, which consists with the observation of theoretical results we proved. 
See the illustrated example of the iteration process in Fig. 2. From the numerical simulation, we 
see that the iteration without regularization is ill conditioned when φ(ξ) tends to zero.

Existence and nonexistence. In Section 3 and Section 4, we have proved the existence and 
nonexistence of monotone traveling waves for degenerate diffusion with nonlocal effect corre-
sponding to c > ĉ(α, r) and c < ĉ(α, r) and the existence of traveling waves for the local case. 
The numerical simulation for nonlocal case α > 0 seems to admit both traveling waves for c > ĉ
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Fig. 2. The iterative process of the traveling wave for the local case: (a) the iteration without regularization does not 
converge; (b) the iteration with regularization converges. Here D = 1, d = 1, m = 2, p = 2, a = log(p/d), K = 1, 
α = 0, r = 4, c = 0.1, M = 80.

Fig. 3. (a) φ(ξ)–ξ and (b) log(φ(ξ))–ξ graphics of (i) local case; (ii) nonlocal case with c < ĉ; (iii) nonlocal case with 
c > ĉ. We have theoretical proved the nonexistence in case (ii). Here D = 1, d = 1, p = 2, m = 2, a = log(p/d), K = 1, 
r = 1, M = 80.

and c < ĉ, as shown in Fig. 3(a). However, if we plot the graphics of log(φ(ξ)), there is an ob-
servable difference between them, see Fig. 3(b). There is a blank in the graphic of log(φ(ξ)) for 
the numerical solution in the nonlocal case with c < ĉ, which shows φ(ξ) ≡ 0 for some interval 
(t1, t2). This is not the true solution as we have shown in Lemma 3.9 that all the monotone so-
lution satisfies φ(t) > 0 for all t ∈ R. We note that for t → −∞, all of φ(t) and its derivatives 
are decaying to zero exponentially. This might be one of the reason that the numerical approach 
admits a false solution. Moreover, the numerical results in Fig. 3 illustrate that the degenerate dif-
fusion equations of local and nonlocal cases with same parameters have an essential distinction 
in the existence of the monotone traveling waves.
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Fig. 4. The traveling waves of (a) local case with c = 0.1, 0.2, 0.3, 0.4 and (b) nonlocal case for c = c∗, 2, 3, 4 with the 
critical speed c∗ = 1.652987.

Minimal traveling wave speed c∗(D, α, r) for nonlocal case. There is a positive infimum 
of critical traveling wave speeds c∗(D, α, r) for degenerate diffusion with nonlocal effect, see 
Theorem 2.1 and Theorem 2.3. The critical value (i.e. the infimum) ĉ(α, r) is determined by 
Lemma 3.2. That is, ĉ is the unique positive number such that

min
λ∈(0,+∞)

�ĉ(λ) = 0.

For any c > 0, let λ∗(c) be the unique positive number such that ∂
∂λ

�c(λ)|λ=λ∗(c) = 0, whose 
unique existence is proved in Lemma 3.2. Then ĉ is the unique root of �c(λ

∗(c)) = 0 for c > 0. 
Although we cannot give its explicit expression, we can solve it numerically.

Our numerical experiments show that the traveling wavefronts are monotone under the condi-
tions of Theorem 2.1 and Theorem 2.4. This consists with the theoretical results obtained above. 
For simplicity, throughout this section we fix the parameters D = δ = 1, m = 2, a = log(p/d), 
K = 1, and leave p, r , c and α free.

Numerical simulations – monotone case: (i) the effect of wave speed c. Consider the case 
where 1 < p

δ
≤ e. We take the birth rate parameter p = 2, M = 80 and the time delay r = 1. Then 

we numerically observe travelling wave solutions for both nonlocal with wave speed c from the 
value c = 0.1 to c = 0.4 and local cases with wave speed c from the value c = c∗ and c = 2 to 
c = 4. Here the critical wave speed c∗ = 1.652987 for p = 2, α = 3, r = 1 as we numerically 
solved the characteristic equation. The numerical results are shown in Fig. 4. Fig. 4 illustrates 
the change of shapes of the traveling wavefronts for the local and nonlocal cases when the wave 
speed c varies. The front of the traveling wave becomes sharper and sharper in the local case as 
c increases, while it becomes more smooth when c is increasing in the nonlocal case within our 
simulations.

Numerical simulations – monotone case: (ii) the effect of time delay r . Consider the case 
where 1 < p

δ
≤ e. We take p = 2 for the birth function, the wave speed c = 0.2 for local case, 

c = 2 for nonlocal case, and M = 160. Then we numerically observe travelling wave solutions 
for both nonlocal and local cases. We choose the time delay r from the value r = 1 to r = 3. The 
numerical results are shown in Fig. 5. Here we have chosen α = 0.1 in the nonlocal case. There 
are two reasons concerned: (i) if we take α larger, the graphics are less distinguishable due to the 
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Fig. 5. The traveling waves of (a) local case with c = 0.2 and (b) nonlocal case with c = 2 for r = 1,2,3.

Fig. 6. The traveling waves of nonlocal case for α = 1,2,3,4.

nonlocal effect; (ii) this selection guarantees c > ĉ for all r = 1, 2, 3, since both α and r affect 
the value of ĉ. In this case, the front of the travelling wave becomes sharper and sharper in the 
local case as the time delay r increases, while it becomes more smooth when the time delay r is 
increasing in the nonlocal case.

Numerical simulations – monotone case: (iii) the nonlocal effect α. Consider the case 
where 1 < p

δ
≤ e. We take p = 2 for the birth function, time delay r = 1, c = 2 for nonlocal 

case, and M = 160. We choose the nonlocal parameter α from the value α = 1 to α = 4. The 
numerical results are shown in Fig. 6. The numerical results showed in Fig. 6 demonstrates that 
the larger nonlocal effect parameter α leads to the smoother wavefront.

Numerical simulations – non-monotone case. In this case, we consider the effect of the large 
birth rate parameter p on the existence of travelling wave solutions when the monotone condition 
is not satisfied. We take the wave speed c = 0.2 for local case and c = 2 for nonlocal case, the 
time delay r = 1, M = 160. We choose the birth rate parameter p from the value p = 2 to p = 8. 
The numerical results given in Fig. 7 shows that the solution u(t, x) behaves like oscillatory 
traveling waves and the amplitude of the oscillatory traveling waves increases as p/δ increases.
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Fig. 7. The traveling waves of (a) local case with c = 0.2 and (b) nonlocal case with c = 2 and α = 1 for p/δ = 2, 4, 6, 8.

Numerical simulations – initial value problem. We consider the following initial value 
problem for local case α = 0⎧⎨⎩

∂v

∂t
= D�vm − δv + pv(t − r, x)e−av(t−r,x), x ∈R, t > 0,

v(s, x) = v0(s, x), x ∈R, s ∈ [−r,0].
(5.5)

Without loss of generality, we may always fix δ = 1, D = 1, m = 2, p = 2, a = log(p/d), K = 1. 
The initial value is taken as

v0(s, x) = K

1 + e−kx
+ 0.05(sinx)e−0.01(x−50)2

, s ∈ [−r,0],

which implies |v0(s, x)| = O(1)e−k|x| for x → −∞ and |v0(s, x) − K| = O(1)e−k|x| for x →
+∞ with k > 0.

We adopt the implicit finite difference approximation with a backward scheme for the time 
derivative and a central scheme for the spatial derivative to a finite computational domain 
[−L, L]. Here, we let L = 400 so that the computational domain is sufficiently large to avoid arti-
ficial numerical reflection. The sizes of the temporal step and spatial step are chosen as �t = 0.02
and �x = 0.2. We take the time delay r = 0.1, total time T = 10, and k = 1 in the initial data 
v0(s, x). The numerical simulations in Figs. 8 and 9 present the large time behavior of the so-
lution of the degenerate reaction–diffusion equation with local birth rate (5.5). It converges to a 
stable monotone traveling wave.

Fig. 8(a) shows that, after a small initial oscillation, the solution v(t, x) quickly behaves like a 
monotone traveling wave which moves in the negative x-direction as time increases (i.e., the wave 
speed c > 0). From the contour map shown in Fig. 8(b), we observe that the interface region of 
left and right states, v− and v+, moves in the negative x-direction as time increases. The contour 
lines are straight and the width of interface region at each time appears constant. We also can 
estimate the traveling speed for the solution v(t, x) as c ≈ 1.0400. In Fig. 9, the increasing shape 
of the solution v(t, x), at different times t = 2, 4, 6, 8, 10 is the same and travels in the negative 
x-direction as time increases. These phenomena indicate that there is no change of the wave’s 
shape for the sense of stability and the solution v(t, x) converges time-asymptotically to the 
monotone traveling wave φ(x + ct) with c ≈ 1.0400.
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Fig. 8. The solution v(t, x) behaves like a stable monotone traveling wave φ(x +ct) with small wave speed c = 1.0400 >
0. (a) Three-dimensional mesh of v(t, x), and (b) the contour of v(t, x).

Fig. 9. From (a) to (f), the solution v(t, x) plotted at times t = 0, 2, 4, 6, 8, 10, which behaves like a stable monotone 
traveling wave and moves in the negative x-direction as time increases.
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