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Abstract. This paper studies the asymptotic behavior of solutions to the initial boundary value
problem on the half space R+ a 2× 2 degenerate system of viscous conservation laws. We show
that the solution of the IBVP exists globally in time and tends toward a shifted critical viscous
shock wave as time goes to infinity. We also prove that the system does not exhibit “phase
transition” and remains in the degenerate hyperbolic state, when the initial perturbations are
small. The proof is given by a weighted energy method.
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1. Introduction

We consider a one-dimensional 2 × 2 system of viscous conservation laws on the
half space R+ = [0,+∞) in the form{

vt − ux = 0,
ut − σ(v)x = µuxx,

(x, t) ∈ R+ ×R+ (1.1)

with the initial and the Dirichlet boundary conditions{
(v, u)|t=0 = (v0, u0)(x), x ∈ R+,

u|x=0 = u−, (v, u)|x=+∞ = (v+, u+).
(1.2)

Such a system physically describes one-dimensional motion of viscoelastic materi-
als and viscous isentropic gas. In the model of viscoelasticity (resp. viscous gas), v
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is the strain (resp. the specific volume), u the velocity, µ(> 0) the viscous constant,
σ(v) the stress function (resp. the pressure) , u± and v+ is given constants. We
assume u+ > u−. The initial data (v0, u0)(x) is assumed to tend toward (v+, u+)
as x→ +∞, and satisfies the compatibility condition u0(0) = u−.

The usual assumption on σ(v) is σ′(v) > 0 for all v under consideration. In
this case, the system (1.1) with µ = 0 is a strictly hyperbolic system. The stability
theory of viscous shock waves to the Cauchy problem of system (1.1) with σ′(v) > 0
has been studied by many people, see [3,5-8,12-17] and references therein. If σ′(v)
changes sign, we call this the mixed case. If σ′(v) < 0 in a region, the characteristic
roots of (1.1) λ1(v) = −

√
σ′(v) and λ2(v) = +

√
σ′(v) are imaginary, so the system

(1.1) with µ = 0 is elliptic in this region. If σ′(v) ≥ 0 in a region, the characteristic
roots λ1(v) and λ2(v) are real. At critical points v∗ with σ′(v∗) = 0 we have
λ1(v∗) = λ2(v∗). Here the system (1.1) with µ = 0 is degenerate hyperbolic. The
prototypes of this situation are the cases σ(v) = vk with even k for v ∈ (−∞,∞)
in the viscoelastic model, and −σ(v) = Rθ

v−b −
a
v2 with positive constants R, θ,

a and b satisfying Rθb/a < (2/3)3 for v > b in the model of van der Waals gas,
cf. [1,5,6,12,14,15,16]. In the mixed case, the corresponding stability theory is
quite incomplete, see [1,2,4]. In [1], Chern-Mei studied the Cauchy problem of
system (1.1) under the assumption σ′(v) > 0 for all v > 0 but σ′(v) = 0 only at
v = 0, which implies that the system (1.1) is degenerate hyperbolic for v ≥ 0,
and that the degenerate hyperbolicity only occurs at the critical point v = 0. For
a critical viscous shock wave of such a degenerate hyperbolic system of viscous
conservation laws, that is, a traveling wave solution with one end state being the
critical point v = 0, we proved its stability by the weighted energy method in
[1]. It is both of mathematical and physical interest to investigate the asymptotic
behavior of solution with a boundary effect. It seems there are no results on the
asymptotics toward the critical viscous shock waves for the degenerate hyperbolic
viscous system case with the boundary effect.

To study such a problem, we have to overcome two difficulties. One is to
determine the effect of boundary layer on the wave shift. Another difficulty arises
from the degenerate hyperbolicity. Now let us recall the progress on the stability
theory for the initial-boundary value problem. For Burgers equation ut + uux =
uxx, on the half space R− = (−∞, 0] with the Dirichlet boundary condition, the
first framework concerning the asymptotics toward the viscous shock wave was
given in Liu-Yu [10] (see also Yu [18]) by the pointwise method, while the problem
for the generalized Burgers equation ut + f(u)x = uxx has been deeply analyzed
by Liu-Nishihara [9] based on the elementary energy method. To locate the wave’s
shift, they have to choose the shift to be a function dependent on t and to have some
asymptotical properties, in order to overcome the difficulty caused by the viscous
term at the boundary. However, their approaches cannot be straightforwardly
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applied to the system case. Very recently, for the physically viscous p-system
vt − ux = 0,
ut + p(v)x = µ(ux/v)x,
p(v) = av−γ , a > 0, γ ≥ 1,

by a heuristic argument of how the shift is determined, Matsumura-Mei [11] suc-
ceeded in handling such a problem for the first time. We formally locate the shift
as an explicit constant based on two basic observations: One is that there are
no standing waves for the p-system; even if there are some waves with negative
speed, they are expected to be reflected at the boundary and finally be captured
by the front shock wave. This makes the variations of asymptotic behavior of the
solution simpler than that for the Cauchy problem case. Another observation is
that the viscous p-system is not uniformly parabolic, the first equation is inviscid
and specifies the shift a constant. The same shift is available for the second equa-
tion, since we can expect that the value of v(x, t) at the boundary is automatically
controlled by the effects of boundary and viscosity. These considerations are also
applicable to equations (1.1) since it is a viscous p-system too. Thus, we deter-
mine the shift for our critical viscous shock wave to be constant. To overcome the
difficulty caused by the degenerate hyperbolicity, we will borrow Chern-Mei’s idea
in [1] and introduce a suitable weight function.

In this paper, we consider system (1.1) with the degenerate hyperbolicity in
the state space v ≥ 0, under the basic assumptions on σ(v)

σ′(v) > 0 for v > 0, and σ′(0) = 0. (1.3)

We also suppose that at the critical point v = 0

σ′(0) = · · · = σ(k−1)(0) = 0, σk(0) 6= 0 (1.4)

for some integer k ≥ 3. Then σ′(v) = O(1)vk−1 for v near 0. Our main purpose is
to prove that, under the assumptions (1.3) and (1.4), the unique global solution
(v, u)(x, t) of the IBVP for (1.1) and (1.2) exists, and asymptotically aproximates
a shifted critical viscous front shock wave (V,U)(x− st+α) on the half space R+
as t → +∞. The boundary layer helps to push the critical viscous front shock
away from the boundary. We also prove that the degenerate hyperbolic equations
(1.1) do not exhibit “phase transition” under suitable small initial perturbations,
namely, the solution v satisfies v(x, t) ≥ 0 so that the system (1.1) retains the
degenerate hyperbolicity. For the proofs, a weight function of exponential type
will be introduced to treat the degenerate hyperbolicity of the system (1.1) at the
critical point v = 0.

This paper is organized as follows. After stating the notations in the rest of this
section, the properties of the critical viscous shock waves, the location of shift and
the main theorem are stated in Section 2. Section 3 proves the main theorem by
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reformulating the original problem to a new IBVP, and proves the global exisitence
and the asymptotic behavior of the solution for the reformed IBVP by the local
existence result together with the a priori estimates. Section 4 is the proof of the
a priori estimates by the weighted energy method.

Notations. Let L2 and H l(l ≥ 0) denote the L2-space and Sobolev spaces on
R+ = [0,∞), respectively. Their norms are denoted by ‖·‖ and ‖·‖l. Let L2

w denote
the weighted L2-space with the weighted norm ‖f‖w = (

∫∞
0 w(x)|f(x)|2dx)1/2,

where w > 0 is the weighting function. Similarly, H l
w(l ≥ 0) denotes the weighted

Sobolev space with the weighted norm ‖f‖l,w = (
∑l
j=0 ‖∂jxf‖2w)1/2. In what

follows, C denote generic positive constants, and f(x) ∼ g(x) means C−1g ≤ f ≤
Cg for some positive constant C.

2. Preliminaries and main result

To analyze the asymptotic behavior of the solution of (1.1) and (1.2) approximat-
ing to a critical viscous shock, we are first going to recall the critical viscous shock
waves and their properties. We then will locate the shift by a heuristic argument,
cf. [11]. Finally, we will state our main result on the asymptotics toward a front
critical shock wave on the half space R+ as t → +∞ and the solution v(x, t) is
invariant on the region v ≥ 0.

Critical viscous shock waves. A critical viscous shock wave of the system (1.1) is
a travelling wave solution of (1.1) on the whole space (−∞,∞) in the form{

(v, u)(x, t) = (V,U)(ξ),
(V,U)(ξ)→ (v±, u±),

ξ = x− st,

where s is the speed of wave, (v±, u±) are the constant end states, and one of its
end states, say v+, is the critical state of the equations (1.1) at which σ′(v+) = 0.
In our case, see (1.3), that is v+ = 0. If the speed s > 0, we call it a critical viscous
front shock wave, while s < 0 a back wave. We plug (u, v)(x, t) = (U, V )(x − st)
into (1.1), then we arrive at

−sV ′ − U ′ = 0,
−sU ′ − σ(V )′ = µU ′′,

(V,U)(±∞) = (v±, u±),
(2.1)

where ′ = d/dξ, ξ = x−st. Integrating (2.1) and eliminating U , we obtain a single
ordinary differential equation for V (ξ):

µsV ′ = −s2V + σ(V )− c̄ ≡: h(V ), (2.2)
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where c̄ is the integral constant given by

c̄ = −s2v± + σ(v±). (2.3)

From (2.1), we can easily see (v±, u±) and s satisfy the Rankine-Hugoniot condition{ −s(v+ − v−)− (u+ − u−) = 0
−s(u+ − u−)− (σ(v+)− σ(v−)) = 0.

(2.4)

If we add the entropy condition

1
s
h(v) ≡ 1

s
[−s2(v − v±) + σ(v)− σ(v±)]

{
< 0, if v+ < v < v−

> 0, if v− < v < v+,
(2.5)

then the Rankine-Hugoniot condition (2.4) and the entropy condition (2.5) are
sufficient and necessary for the existence of the travelling wave solutions of (2.1),
unique up to the shift, see Kawashima-Matsumura [6], also Nishihara [15]. In this
paper, we focus on

0 = v+ < v−, (2.6)

and the convexity of σ(v)

σ′′(v) > 0 for v > 0, (2.7)

which means that the entropy condition (2.5) is equivalent to the Lax’s shock
condition

σ′(v+) < s2 < σ′(v−). (2.8)

Also we have s > 0 from the Rankine-Hugoniot condition (2.4) and u+ > u− and
v+ < v−.

The standard arguments on the ordinary differential equations assert the exis-
tence of the critical viscous shock as follows.

Proposition 2.1. Under the assumptions (2.4), (2.6)-(2.8), then there exists a
unique front critical viscous shock wave (V,U)(ξ) (ξ = x− st, s > 0) up to a shift,
satisfying

v− > V (ξ) > v+ = 0, u− < U(ξ) < u+, sµVξ = h(V ) < 0, (2.9)

|V (ξ)− v±| = O(1)e−c±|ξ|, |U(ξ)− u±| = O(1)e−c±|ξ|, (2.10)

as ξ → ±∞, where c± = |σ′(v±)− s2|/µs > 0, i.e, c+ = s/µ due to σ′(v+) = 0.

Location of the shift. By the same basic observations in [11], we now make a heuris-
tic argument to determine which of the shifted front critical viscous shock wave
the solution of IBVP tends toward. Firstly, fixing a front critical viscous shock
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wave (V,U)(x − st), we consider the situation where the initial data (v0, u0)(x)
are given in a neighborhood of (V,U)(x − st − β) for some shift constant β > 0,
such that we can describe how (V,U)(x − β) is far from the boundary by taking
β > 0 large, and the solution of the IBVP asymptotically converges to the shifted
shock (V,U)(x− st+ α− β) for some constant α determined below.

From the first equation of (1.1), we have

(v − V )t = (u− U)x, (V,U) = (V,U)(x− st+ α− β). (2.11)

Integrating (2.11) over R+ with respect to x and by the boundary condition (1.2)
yields

d

dt

∫ ∞
0

[v(x, t) − V (x− st+ α− β)]dx = (u− U)|∞x=0 = U(−st+ α− β)− u−,

which implies, by the integration with respect to t,∫ ∞
0

[v(x, t) − V (x− st+ α− β)]dx

=
∫ ∞

0
[v0(x)− V (x+ α− β)]dx +

∫ t

0
[U(−st+ α− β)− u−]dt.

We want to determine some α such that∫ ∞
0

[v(x, t) − V (x− st+ α− β)]dx→ 0 as t→ +∞. (2.12)

Let

I(α) :=
∫ ∞

0
[v0(x) − V (x+ α− β)]dx+

∫ ∞
0

[U(−st+ α− β)− u−]dt, (2.13)

the shift α must be determined so that I(α) = 0, namely, (2.12) holds. We use
(2.1) and note v+ = 0 to have

I ′(α) = −
∫ ∞

0
V ′(x+ α− β)dx+

∫ ∞
0

U ′(−st+ α− β)dt

= −v+ + V (α− β)− 1
s

[u− − U(α− β)]

= −v+ + v− = v−.

Thus, we have by the integration on I ′(α) with respect to α

I(α) = I(0) + v−α =
∫ ∞

0
[v0(x)− V (x− β)]dx+

∫ ∞
0

[U(−st− β)− u−]dt+ v−α.
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So, due to I(α) = 0, the constant shift α = α(β) can be determined explicitly by

α := − 1
v−

{∫ ∞
0

[v0(x)− V (x− β)]dx +
∫ ∞

0
[U(−st− β)− u−]dt

}
, (2.14)

and it holds that∫ ∞
0

[v(x, t)− V (x− st+ α− β)]dx

=
∫ ∞

0
[v0(x) − V (x+ α− β)]dx +

∫ t

0
[U(−st+ α− β)− u−]dt

= I(α) −
∫ ∞
t

[U(−sτ + α− β)− u−]dτ

= −
∫ ∞
t

[U(−sτ + α− β)− u−]dτ → 0, as t→∞. (2.15)

On the other hand, we analyze the second equation of (1.1) by the similar equation

(u− U)t = (σ(v) − σ(V ) + µux − µU ′)x

which means that by the integration over R+ × [0, t]∫ ∞
0

[u(x, t)− U(x− st+ α− β)]dx

=
∫ ∞

0
[u0(x) − U(x+ α− β)]dx−

∫ t

0
[σ(v(0, τ)) − σ(V (−sτ + α− β))]dτ

− µ
∫ t

0
[ux(0, τ)− U ′(−sτ + α− β)]dτ.

In order to have ∫ ∞
0

[u0(x)− U(x+ α− β)]dx→ 0 as t→ +∞ (2.16)

for the same shift α determined in (2.14), we need∫ ∞
0

[u0(x)− U(x+ α− β)]dx−
∫ ∞

0
[σ(v(0, t)) − σ(V (−st+ α− β))]dt

−µ
∫ ∞

0
[ux(0, t)− U ′(−st+ α− β)]dt = 0. (2.17)

Since we don’t specify the boundary values of v(0, t), ux(0, t), we expect v(0, t)
and ux(0, t) = vt(0, t) to be automatically controlled by the effect of the boundary
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and viscosity so that (2.17) holds with the same shift α. Indeed, it is true; for the
details, we refer to Theorem 2.4 and the remark below.

We define the weight functions as follows

w(x, t) =
{

1, x ≤ st− α+ β

ec+(k−1)(x−st+α−β), x ≥ st− α+ β,
(2.18)

where k ≥ 2 is given in (1.4). We also mark w := w(x, t) and w0 := w0(x) =
w(x, 0), that is

w0(x) =
{

1, x ≤ −α+ β

ec+(k−1)(x+α−β), x ≥ −α+ β,
(2.19)

for the simplicity. It can be easily seen that w(x, t)(≥ 1) ∈ C0(R+ × R+) but
w /∈ C1. We have the property of the critical viscous shock wave as follows.

Lemma 2.2. It follows that

σ′(ξ)−1 ∼ V (ξ)−(k−1) ∼ w(x, t), (2.20)∣∣∣σ′′(V )Vξ
σ′(V )

∣∣∣ ≤ C, (2.21)

where ξ = x− st+ α− β.

Proof. Since σ′(v+) = · · · = σ(k−1)(v+) = 0 and σ(k)(v+) 6= 0, see (1.4), which
implies |σ′(V )| = O(1)|V |k−1 for V near v+ = 0, and |h(V )| = O(1)|V − v±| =
O(1)e−c±|x−st+α−β| as x− st+ α− β → ±∞ (see (2.10)), we can see that (2.20)
and (2.21) are true.

Suppose that

v0(x)− V (x− β) ∈ H1
w0
, u0(x)− U(x− β) ∈ H1

w0
(2.22)

for some β > 0, and set

(Φ0,Ψ0)(x) := −
∫ ∞
x

(v0(y)− V (y − β), u0(y)− U(y − β))dy. (2.23)

We further assume
Φ0 ∈ L2 and Ψ0 ∈ L2

w0
. (2.24)

Then, we have the asymptotic behavior for the constant shift α as follows.

Lemma 2.3. Under (2.22) and (2.24), it holds that Φ0 ∈ H2, Φ0,x ∈ H1
w0

,
Ψ0 ∈ H2

w0
and

α→ 0 (2.25)
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as ‖(Φ0,Ψ0)‖2 → 0 and β → +∞.

Proof. Without any difficulty, we can see that (2.22) and (2.24) imply Φ0 ∈ H2,
Φ0,x ∈ H1

w0
, Ψ0 ∈ H2

w0
. To prove (2.25), we first note

0 < U(−st− β)− u− ≤ Ce−c−|−st−β| = Ce−c−(st+β)

due to (2.9), (2.10) and β > 0, which means
∣∣∣ ∫∞0 [U(−st− β)− u−]dt

∣∣∣ ≤ Ce−c−β .
So, we use the definition of α to obtain

|α| ≤ 1
v−

(∣∣∣ ∫ ∞
0

[v0(x)− V (x− β)]dx
∣∣∣ +
∣∣∣ ∫ ∞

0
[U(−st− β)− u−]dt

∣∣∣)
≤ C(|Φ0(0)|+ e−c−β ≤ C(‖Φ0‖2 + e−c−β)→ 0

as ‖(Φ0,Ψ0)‖2 → 0 and β → +∞.

Main theorem. Let

(φ0, ψ0)(x) := −
∫ ∞
x

[(v0, u0)(y)− (V,U)(y + α− β)]dy, x ∈ R+. (2.26)

We now state our main result as follows.

Theorem 2.4. Suppose that (1.3), (1.4), (2.4), (2.6)-(2.8) and φ0 ∈ H2, φ0,x ∈
H1
w0

, ψ0 ∈ H2
w0

hold. Furthermore, we assume

−σ′′(V )h(V )/2s2σ′(V ) < 1 for V ∈ [v+, v−]. (2.27)

Then there exists a positive constant δ1 such that if ‖φ0‖2+‖φ0,x‖1,w0 +‖ψ0‖2,w0 +
β−1 < δ1, then (1.1) and (1.2) has a uniquely global solution (v, u)(x, t) satisfying

v − V ∈ C0([0,∞);H1
w) ∩ L2([0,∞);H1

w),

u− U ∈ C0([0,∞);H1
w) ∩ L2([0,∞);H2

w)

and the asymptotic behaviors

sup
x∈R+

|(v, u)(x, t)− (V,U)(x− st+ α− β)| → 0 as t→ +∞, (2.28)

sup
x∈R+

∣∣∣ ∫ ∞
x

[(v, u)(y, t)− (V,U)(y − st+ α− β)]dy
∣∣∣→ 0 as t→ +∞, (2.29)

v(x, t) ≥ v+ = 0 for all (x, t) ∈ R+ ×R+. (2.30)

Remark. 1. (2.29) includes the fact
∫∞

0 [(v, u)(x, t)−(V,U)(x−st+α−β)]dx → 0
as t → +∞, which means (2.16), or say, (2.17) is true for the shift α defined in
(2.14).

2. (2.30) means that the system (1.1) does not exhibit “phase transition”, and
remains in the degenerate hyperbolic state.

3. There is no restriction to weak shocks, i.e., we don’t assume |v+ − v−| � 1.
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3. Proof of main theorem

In order to prove Theorem 2.4, as in Matsumura-Mei [11], we introduce a pair of
new variables as follows

(φ, ψ)(x, t) := −
∫ ∞
x

[(v, u)(x, t) − (V,U)(y − st+ α− β)]dy, (3.1)

for (x, t) ∈ R+ ×R+, namely,

(v, u)(x, t) = (V,U)(x− st+ α− β) + (φx, ψx)(x, t). (3.2)

Substituting (3.2) into (1.1), and integrating the system on [x,∞) with respect to
x, we conclude the system for (φ, ψ)(x, t) with the Neumann boundary in the form

φt − ψx = 0,
ψt − σ′(V )φx − µψxx = F, (x, t) ∈ R+ ×R+,

(φ, ψ)|t=0 = (φ0, ψ0)(x), x ∈ R+,

ψx|x=0 = u− − U(−st+ α− β), t ∈ R+,

(3.3)

where F is defined as F = σ(V + φx)− σ(V )− σ′(V )φx and satisfying

|F | = O(|φx|2). (3.4)

If one can prove the IBVP (3.3) to have a unique solution (φ, ψ)(x, t) time-globally,
then one can know that the IBVP (1.1) and (1.2) has a unique solution (v, u)(x, t)
time-globally. For any constant T > 0, let

X(0, T ) = {φ ∈ C0(0, T ;H2), φx ∈ C0(0, T ;H1
w) ∩ L2(0, T ;H1

w),

ψ ∈ C0(0, T ;H2
w), ψx ∈ L2([0, T ];H2

w)}

and
N(t) = sup

0≤τ≤t
(‖φ(τ)‖2 + ‖φx(τ)‖1,w + ‖ψ(τ)‖2,w),

N0 = ‖φ0‖2 + ‖φ0,x‖1,w0 + ‖ψ0‖2,w0 ,

where the weight functions w(x, t) and w0(x) are defined in (2.18) and (2.19), we
state the following theorem corresponding to Theorem 2.4.

Theorem 3.1. In addition to the assumptions in Theorem 2.4, then there exists
a positive constant δ2 such that if N0 + β−1 ≤ δ2, then (3.3) has a uniquely global
solution (φ, ψ) ∈ X(0,∞) satisfying

‖φ(t)‖22+‖φx(t)‖21,w+‖ψ(t)‖22,w+
∫ t

0
(‖φx(τ)‖21,w+‖ψx(τ)‖22,w)dτ ≤ C(N2

0 +e−c−β),

(3.5)
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0

∣∣∣ d
dt
‖φx(τ)‖2

∣∣∣+
∣∣∣ d
dt
‖φx(τ)‖2

∣∣∣dτ ≤ C(N2
0 + e−c−β) (3.6)

for all t ≥ 0. Moreover, the asymptotic behaviors of the solution (φ, ψ)(t, x) hold

sup
x∈R+

|(φx, ψx)(x, t)| → 0 as t→∞, (3.7)

sup
x∈R+

|(φ, ψ)(x, t)| → 0 as t→∞, (3.8)

|φx(x, t)| ≤ Cδ2e−c+(k−1)|ξ|/2 as ξ = x− st+ α− β → +∞, (3.9)

where C is independent of δ2.

Proof of Theorem 2.4. Once Theorem 3.1 is true, then Theorem 2.4 is easily proved
from Theorem 3.1. In fact, from (3.1) (or (3.2)) and (3.7), (3.8), we conclude that
the IBVP (1.1) and (1.2) has a unique global solution (v, u)(x, t) satisfying (2.28)
and (2.29).

To see (2.30), since we have by (3.2)

v(x, t) − v+ = V (ξ)− v+ + φx(x, t),

and V (ξ) − v+ ≥ C1e
−c+|ξ| → 0 as ξ = x− st + α − β → +∞ for some constant

C1 > 0 by (2.9) and (2.10), also notice (3.9), we then have

v(x, t) − v+ ≥ V (ξ)− v+ − |φx(x, t)| ≥ (C1 − Cδ2e−c+(k−3)|ξ|/2)e−c+|ξ| ≥ 0

for k ≥ 3 and δ2 � 1. This completes the proof of Theorem 2.4.

Therefore, to prove Theorem 3.1 will be our purpose here. We now state the
local existence result and the a priori estimates for the IBVP (3.3) as follows.

Proposition 3.2. (Local Existence). For any δ0 > 0, there exists a positive
constant T0 depending on δ0 such that, if N0 + β−1 ≤ δ0, then the problem (3.3)
has a unique solution (φ, ψ) ∈ X(0, T0) satisfying N(t) ≤ 2δ0 for 0 ≤ t ≤ T0.

Proposition 3.3. (A Priori Estimates.) Let (φ, ψ) ∈ X(o, T0) be a solution of
(3.3) for a positive T . Then there exists a positive constant δ3 such that if N(T )+
β−1 < δ3, then (φ, ψ)(x, t) satisfies the a priori estimates (3.5) and (3.6) for
0 ≤ t ≤ T .

The proof of Proposition 3.2 is standard, we omit its details. To prove Propo-
sition 3.3 is our main effort. By Propositions 3.2 and 3.3, we can prove Theorem
3.1.

Proof of Theorem 3.1. Thanks to Propositions 3.2 and 3.3, by the standard con-
tinuation argument, we can obtain a uniquely global solution (φ, ψ)(x, t) satisfying
(3.5) and (3.6) for all t ∈ [0,∞).
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To prove (3.7) and (3.8), we consider the function G(t) := ‖φx(t)‖2 +‖ψx(t)‖2.
By virtue of the uniform estimates (3.5) and (3.6) and by ‖φx(t)‖1,w+‖ψx(t)‖1,w ≥
‖φx(t)‖1 + ‖ψx(t)‖1 due to w(x, t) ≥ 1, we see that both G(t) and |G′(t)| are
integrable over t ≥ 0. So, it means that G(t) → 0, i.e., ‖φx(t)‖ + ‖ψx(t)‖ → 0
as t → ∞. Furthermore, ‖φ(t)‖2 + ‖ψ(t)‖2 is uniformly bounded in t ≥ 0 due to
(3.5) By the Sobolev inequality, we then obtain

sup
x∈R+

|(φx, ψx)(x, t)|2 ≤ 2{‖φx(t)‖‖φxx(t)‖+ ‖ψx(t)‖‖ψxx(t)‖} → 0,

sup
x∈R+

|(φ, ψ)(x, t)|2 ≤ 2{‖φ(t)φx(t)‖+ ‖ψ(t)‖‖ψx(t)‖} → 0

as t→∞.
To prove (3.9), firstly, we can easily check (wφx)(x, t) ∈ H1 since φ(x, t) ∈

X(0,∞). By the Sobolev inequality, we have |w(x, t)φx(x, t)| ≤ C‖(wφx)(t)‖1 ≤
C‖φx(t)‖1,w. This fact together with (3.5) yield (3.9). The proof of Theorem 3.1
is complete.

4. Proof of a priori estimates

Let (φ, ψ) ∈ X(0, T ) be a solution of (3.3) for a positive constant T . We firstly
give the boundary estimates.

Theorem 4.1. The boundary estimates hold

∣∣∣∣∫ t

0
φψ|x=0dτ

∣∣∣∣ ≤ CN(t)e−c−β , (4.1)∣∣∣∣∫ t

0
[σ′(V )−1ψψx]|x=0dτ

∣∣∣∣ ≤ CN(t)e−c−β , (4.2)∣∣∣∣∫ t

0
φxψx|x=0dτ

∣∣∣∣ ≤ CN(t)e−c−β , (4.3)∣∣∣∣∫ t

0
[σ′(V )−1ψxψt]|x=0dτ

∣∣∣∣ ≤ CN(t)e−c−β , (4.4)∣∣∣∣∫ t

0
[σ′(V )−1ψxψxx]|x=0dτ

∣∣∣∣ ≤ CN(t)e−c−β , (4.5)∣∣∣∣∫ t

0
[σ′(V )−1ψxtψxx]|x=0dτ

∣∣∣∣ ≤ CN(t)e−c−β , (4.6)

for t ∈ [0, T ], where c− = |σ′(c−) + s2|/µs > 0 stated in (2.10).
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Proof. From the first equation of (3.3), we have φt|x=0 = ψx|x=0 = u−−U(−st+
α− β), integrate it on t and note (2.26) or (2.15) to get

φ(0, t) = φ0(0)−
∫ t

0
[U(−sτ + α− β)− u−]dτ

= −
∫ ∞

0
[v0(x)− V (x+ α− β)dx−

∫ t

0
[U(−sτ + α− β)− u−]dτ

=
∫ ∞

0
[U(−sτ + α− β)− u−]dτ ]dτ ≡: A(t). (4.7)

Hence, by the facts | − st+ α − β| = st + β − α because of β � |α| (see (2.25)),
and |U(−st+ α− β)− u−| ≤ Ce−c−(β−α)e−c−st ≤ O(1)e−c−βe−st, we have

|φ(0, t)| = |A(t)| ≤ O(1)
∫ ∞
t

e−c−βe−c−stdτ ≤ O(1)e−c−βe−c−st. (4.8)

Similarly, we have ψxt|x=0 = A′′(t), A(t) ∈W 3,1(0,∞) and that∣∣∣∣ dldtlA(t)
∣∣∣∣ ≤ Ce−c−βe−c−st (l = 0, 1, 2, 3), ‖A‖W3,1 ≤ Ce−c−β . (4.9)

We note also the Sobolev inequalities as follows

|φ(0, t)| ≤ sup
x∈R+

|ψ(x, t)| ≤ CN(t), |ψx(0, t)| ≤ sup
x∈R+

|φx(x, t)| ≤ CN(t). (4.10)

To prove (4.1), (4.2) and (4.3), since −st + α − β < 0 by β > |α| and V (−st +
α − β) > V (0) by the monotonicity of V (ξ), we note |σ′(V (−st + α − β))|−1 ≤
|σ′(V (α − β))|−1 ≤ C because of the monotonicity of σ′(V ), and use (4.7), (4.9)
and (4.10) to have (4.1) and (4.2) as follows:∣∣∣∣∫ t

0
φψ|x=0dτ

∣∣∣∣ ≤ ∫ t

0
|A(τ)||ψ(0, τ)|dτ ≤ CN(t)e−c−β

and ∣∣∣∣∫ t

0
[σ′(V )−1ψψx]|x=0dτ

∣∣∣∣ ≤ C ∫ t

0
|A′(τ)||ψ(0, τ)|dτ ≤ CN(t)e−c−β .

A similar fashion yields (4.3).
To prove (4.4), making use of the equality φtx = ψxx, and integrating it by

parts, also by (4.9) and (4.10), we have∣∣∣∣∫ t

0
ψxψt|x=0dτ

∣∣∣∣ =
∣∣∣∣∫ t

0
A′(τ)ψt(0, τ)dτ

∣∣∣∣∣∣∣∣∫ t

0
[{A′(τ)ψ(0, τ)}t −A′′(τ)ψ(0, τ)]dτ

∣∣∣∣ ≤ CN(t)e−c−β.
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By the same way, we can prove (4.6) and (4.7) without any difficulty.

We are going to make the following basic energy estimates.

Lemma 4.2. It follows that

‖φ(t)‖2 + ‖ψ(t)‖2w +
∫ t

0
‖ψx(τ)‖2wdτ

≤ C
{
‖φ0‖2 + ‖ψ0‖2w0

+N(t)e−c−β +N(t)
∫ t

0
‖φx(τ)‖2wdτ

}
.

(4.11)

Proof. We multiply the first equation of (3.3) by φ and the second one by ψ/σ′(V )
respectively, and add them to yield{

φ2

2
+

ψ2

2σ′(V )

}
t

−
{
φψ +

µ

σ′(V )
ψψx

}
x

− sσ′′(V )Vx
2σ′(V )2 ψ2

−µσ
′′(V )Vx
σ′(V )2 ψψx +

µ

σ′(V )
ψ2
x =

Fψ

σ′(V )
. (4.12)

Since

− sσ′′(V )Vx
2σ′(V )2 ψ2 − µσ′′(V )Vx

σ′(V )2 ψψx +
µ

σ′(V )
ψ2
x

= − σ
′′(V )Vx

2sσ′(V )2 (sψ − µψx)2 +
µ

σ′(V )

(
1 +

σ′′(V )h(V )
2s2σ′(V )

)
ψ2
x

≥ Cµψ2
x/σ

′(V ), (4.13)

where we used the facts that µsVx = h(V ) ≤ 0, σ′′(V ) ≥ 0 and 1 + σ′′(V )h(V )
2s2σ′(V ) > 0

for V ∈ [v+, v−] which means 1 + σ′′(V )h(V )
2s2σ′(V ) ∼ C for some positive constant C, see

(2.9), (2.7) and (2.27), we substitute (4.13) into (4.12) to have{
φ2

2
+

ψ2

2σ′(V )

}
t

−
{
φψ +

µ

σ′(V )
ψψx

}
x

+
Cµ

σ′(V )
ψ2
x ≤

Fψ

σ′(V )
. (4.14)

Integrating (4.14) over R+ × [0, t] and using the boundary estimates (4.1) and
(4.2), also noting |F | = O(1)φ2

x (see (3.4)) and σ′(V )−1 ∼ w(x, t) (see (2.20)), we
obtain

‖φ(t)‖2 + ‖ψ(t)‖2w +
∫ t

0
‖ψx(τ)‖2wdτ

≤ C
(
‖φ0‖2 + ‖ψ0‖2w0

+
∫ t

0

∫ ∞
0

∣∣∣∣ Fφσ′(V )

∣∣∣∣ dxdτ +
∣∣∣∣∫ t

0
[φψ − µσ′(V )−1ψψx]|x=0dτ

∣∣∣∣)
≤ C

(
‖φ0‖2 + ‖ψ0‖2w0

+N(t)
∫ t

0
‖φx(τ)‖2wdτ +N(t)e−β

)
. (4.15)
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Thus, we have proved this lemma.

We make the higher estimates for the solution of (3.3). Differentiating the
equations of (3.3) with respect to x and multiplying the first equation by φx and
the second one by σ′(V )−1ψx, then adding them, we obtain

{
φ2
x

2
+

ψ2
x

2σ′(V )

}
t

−
{
φxψx +

µ

σ′(V )
ψxψxx

}
x

+
µ

σ′(V )
ψ2
xx −

sσ′′(V )Vx
2σ′(V )2 ψ2

x

−µσ
′′(V )Vx
σ′(V )2 ψxψxx =

Fxψx
σ′(V )

+
σ′′(V )Vx
σ′(V )

φxψx. (4.16)

Since Lemma 2.2 means |σ′′(V )Vx/σ′(V )| ≤ C and |σ′′(V )Vx| ≤ C, we get by the
Cauchy inequality that

∣∣∣∣µσ′′(V )Vx
σ′(V )2 ψxψxx

∣∣∣∣ ≤ µψ2
xx

2σ′(V )
+

Cµψ2
x

2σ′(V )
, (4.17)∣∣∣∣µσ′′(V )Vx

σ′(V )
φxψx

∣∣∣∣ ≤ εφ2
x

σ′(V )
+

Cψ2
x

4εσ′(V )
, (4.18)

where 0 < ε < 1 is a constant to be chosen later (see (4.36)). Substituting (4.17)
and (4.18) into (4.16), integrating the resulant inequality over R+ × [0, t], and
applying Lemma 2.2 yield

‖φx(t)‖2 + ‖ψx(t)‖2w +
∫ t

0
‖ψxx(τ)‖2wdτ

≤ C
{
‖φ0,x‖2 + ‖ψ0,x‖2w0

+
∣∣∣∣∫ t

0
[φxψx − µσ′(V )−1ψxψxx]|x=0dτ

∣∣∣∣
+ ε

∫ t

0
‖φξ‖2wdτ + (1 + ε−1)

∫ t

0
‖ψx(τ)‖2wdτ

+
∣∣∣∣∫ t

0

∫ ∞
0

Fxψx
σ′(V )

dxdτ

∣∣∣∣} . (4.19)

On the other hand, we have by (4.11)

(1 + ε−1)
∫ t

0
‖ψx(τ)‖2wdτ

≤ C(1 + ε−1)
(
‖φ0‖+ ‖ψ0‖w0 +N(t)e−c−β +N(t)

∫ t

0
‖φx(τ)‖2wdτ

)
,
(4.20)
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and have by the integration by parts and using (3.4) and (4.3),∣∣∣∣∫ t

0

∫ ∞
0

Fxψx
σ′(V )

dxdτ

∣∣∣∣ ≤
∣∣∣∣∣
∫ t

0

∫ +∞

0
F

{
ψx

σ′(V )

}
x

dxdτ

∣∣∣∣∣ +
∣∣∣∣∫ t

0

(
Fψx
σ′(V )

) ∣∣∣
x=0

dτ

∣∣∣∣
≤ C

∫ t

0

∫ +∞

0
|φx|2

(∣∣∣∣σ′′(V )Vx
σ′(V )

ψx
σ′(V )

∣∣∣∣+
∣∣∣∣ ψxxσ′(V )

∣∣∣∣) dxdτ + C

∫ t

0

∣∣∣∣ φ2
xψx

σ′(V )

∣∣∣
x=0

∣∣∣∣ dτ
≤ CN(T )

∫ t

0
(‖φx(τ)‖2w + ‖ψxx(τ)‖2w)dτ + CN(t)e−c−β . (4.21)

Plugging (4.20), (4.21) and the boundary estimates (4.3), (4.4) into (4.19), we
have proved the following lemma.

Lemma 4.3. It follows that

‖φx(t)‖2 + ‖ψx(t)‖2x +
∫ t

0
‖ψxx(τ)‖2wdτ ≤ C

{
(1 + ε−1)[‖φ0‖21 + ‖ψ0‖21,w0

+N(t)e−c−β ] + [ε+ (1 + ε−1)N(t)
∫ t

0
‖φx(τ)‖2wdτ

}
(4.22)

for N(t)� 1, where C is a positive constant independent of ε.

To establish the a priori estimates (3.5) and (3.6), the following estimate for
φx is key in this paper.

Lemma 4.4. It holds that

‖φx(t)‖2w +
∫ t

0
‖φx(τ)‖2wdτ ≤ C

{
(1 + ε−1)[‖φ0‖21 + ‖φ0,x‖2w0

+ ‖ψ0‖21,w0

+N(t)e−c−β ] + [ε+ (1 + ε−1)N(t)
∫ t

0
‖φx(τ)‖2wdτ

}
(4.23)

for N(t)� 1, where C is a positive constant independent of ε.

Proof. We note that φxt−ψxx = 0 from the first eqution of (3.3). Multiplying this
equation by w(x, t)φxx for x ∈ [0, st−α+β] and x ∈ [st−α+β,∞), respectively,
yields

{wφxxφx}t − wφxxtφx − wtφxφxx − wφxxψxx = 0.

Then use φxxt = φxxx and wt = −swx for all x ∈ R+, especially, wt = −swx = 0
for x ∈ [0, st− α+ β], to obtain

1
2
{(wφ2

x)x − wxφ2
x}t − {wφxψxx −

s

2
wxφ

2
x}x + wxφxψxx −

s

2
wxxφ

2
x = 0, (4.24)
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which hold for both x ∈ [0, st−α+ β] and x ∈ [0, st−α+ β,∞), respectively. We
firstly integrate (4.24) with respect to x from 0 to st− α+ β and use w(x, t) = 1,
wx = 0 for x ∈ [0, st− α+ β] to obtain

1
2
d

dt
(φ2
x|x=st−α+β)− (φxφxx)|x=st−α+β =

1
2
d

dt
(φ2
x|x=0)− (φxφxx)|x=0. (4.25)

Secondly, integrating (4.25) with respect to x from st−α+β to∞ and making use
of w(x, t) = ec+(k−1)(x−st+α−β), wx = c+(k−1)w, also noting w(x, t)|x=st−α+β =
1, after here we remark x(t) := st− α+ β for simplicity, give us

−1
2
d

dt
(φ2
x|x=x(t))− c+(k − 1)

d

dt

∫ ∞
x(t)

wφ2
xdx+ [φxψxx −

s

2
c+(k − 1)φ2

x]|x=x(t)

+c+(k − 1)
∫ ∞
x(t)

wφxψxxdx−
s

2
c2+(k − 1)2

∫ ∞
x(t)

wφ2
xdx = 0. (4.26)

Substituting (4.25) into (4.26) and using the continuity of w(x, t) yield

c+(k − 1)
d

dt

∫ ∞
x(t)

wφ2
xdx+

s

2
c+(k − 1)wφ2

x|x=x(t) +
s

2
c2+(k − 1)2

∫ ∞
x(t)

wφ2
xdx

= c+(k − 1)
∫ ∞
x(t)

wφxψxxdx−
1
2
d

dt
(φ2
x|x=0) + (φxψxx)|x=0. (4.27)

Applying the Cauchy inequality∣∣∣∣∣c+(k − 1)
∫ ∞
x(t)

wφxψxxdx

∣∣∣∣∣ ≤ s

4
c2+(k − 1)2

∫ ∞
x(t)

wφ2
xdx+ s−1

∫ ∞
x(t)

wψ2
xxdx

≤ s

4
c2+(k − 1)2

∫ ∞
x(t)

wφ2
xdx+ s−1‖ψxx(t)‖2w

and by the first equation (3.3)

1
2
d

dt
(φ2
x|x=0) = (φxφxt)|x=0 = (φxψxx)|x=0

to (4.27), and integrating the resultant inequality with respect to τ from 0 to t,
dropping the positive term s

2c+(k − 1)φ2
x|x=x(t), we obtain

∫ ∞
x(t)

wφ2
xdx+

∫ t

0

∫ ∞
x(τ)

wφ2
xdxdτ ≤ C

{
‖φ0,x‖2w0

+
∫ t

0
‖ψxx(τ)‖2wdτ

}
. (4.28)
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Thanks to (4.22) and (4,28), we have

∫ ∞
x(t)

wφ2
xdx+

∫ t

0

∫ ∞
x(τ)

wφ2
xdxdτ ≤ C

{
(1 + ε−1)[‖φ0‖21 + ‖φ0,x‖2w0

+‖ψ‖21,w0
+N(t)e−c−β ] + [ε+ (1 + ε−1)N(t)]

∫ t

0
‖φx(τ)‖2wdτ

}
. (4.29)

On the other hand, from equations (3.3) we have

µφxt + σ′(V )φx − ψt = −F. (4.30)

We multiply (4.30) by φx to obtain

{µ
2
φ2
x}t + σ′(V )φ2

x − φxψt = −Fφx. (4.31)

From φxt = ψxx, we have

−φxψt = −{φxψ}t + φxtψ = −{φxψ}t + {ψxψ}x − ψ2
x. (4.32)

Substituting (4.32) into (4.31) yields

{µ
2
φ2
x − ψφx}t + σ′(V )φ2

x + {ψψx}x = ψ2
x − Fφx. (4.33)

Integrating (4.33) over R+ × [0, t], using the Cauchy inequality:∣∣∣∣∣
∫ +∞

0
ψφxdx

∣∣∣∣∣ ≤ µ

4
‖φx(t)‖2 + µ−1‖ψ(t)‖2 ≤ µ

4
‖φx(t)‖2 + µ−1‖ψ(t)‖2w,

also noting σ′(V (x− st+ α− β)) ≥ σ′(V (0)) ≥ C > 0, for x ≤ st− α+ β due to
σ′′(V ) > 0 and Vx < 0, by the boundary estimate (4.2) in Lemma 4.1, we then get

µ

4
‖φx(t)‖2 + σ′(V (0))

∫ t

0

∫ x(τ)

0
φ2
xdxdτ +

∫ t

0

∫ ∞
x(τ)

σ′(V )φ2
xdxdτ

≤ C
{
‖φ0,x‖2 + ‖ψ0‖2 +N(t)e−c−β + ‖ψ(t)‖2w

+
∫ t

0
‖ψx(t)‖2dτ +N(t)

∫ t

0
‖φx(τ)‖2dτ

}
≤ C

{
‖φ0,x‖2 + ‖ψ0‖2 +N(t)e−c−β + ‖ψ(t)‖2w

+
∫ t

0
‖ψx(τ)‖2wdτ +N(t)

∫ t

0
‖φx(τ)‖2wdτ

}
. (4.34)
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Using (4.11) into (4.34) and dropping the positive term
∫ t
0
∫∞
x(τ) σ

′(V )φ2
xdxdτ , we

have

‖φx(t)‖2 +
∫ t

0

∫ x(τ)

0
φ2
xdxdτ

≤ C
{
‖φ0‖21 + ‖ψ0‖2w0

+N(t)e−c−β +N(t)
∫ t

0
‖φx(τ)‖2wdτ

}
.

Therefore, adding the above inequality and (4.29) implies (4.23).

Lemma 4.5. It holds that

‖φ(t)‖21 + ‖φx(t)‖2w + ‖ψ(t)‖21,w +
∫ t

0
{‖φx(τ)‖2w + ‖ψx(τ)‖21,wd}τ

≤ C(‖φ0‖21 + ‖φ0,x‖2w0
+ ‖ψ0‖21,w0

+ e−c−β) (4.35)

for N(T )� 1.

Proof. Lemmas 4.2–4.4 imply that

‖φ(t)‖21 + ‖φx(t)‖2w + ‖ψ(t)‖21,w +
∫ t

0
{‖φx(τ)‖2w + ‖ψ(τ)‖21,w}dτ

≤ C1

{
(1 + ε−1)[‖φ0‖21 + ‖φ0,x‖2w0

+ ‖ψ0‖21,w0
+N(t)e−c−β ]

+ [ε+ (1 + ε−1)N(t)]
∫ t

0
‖φx(τ)‖2wdτ

}
for some positive constant C1. Now, we choose ε (0 < ε < 1) such that

C1ε ≤
1
4
, (4.36)

while choose N(t) such that C1(1 + ε−1)N(t) ≤ 1
4 , then we obtain C1[ε + (1 +

ε−1)N(t)] ≤ 1
2 . Therefore, (4.35) is proved.

The energy estimate for (φxx, ψxx) can be showed by repeating the same pro-
cedure in Lemmas 4.2–4.4. The estimates appearing in Lemma 4.1 and Lemma
4.5 are available for this proof. We list the result as follows but omit the details.

Lemma 4.6. It holds that

‖φxx(t)‖2w+‖ψxx(t)‖2w+
∫ t

0
{‖φxx(τ)‖2w+‖ψxxx(τ)‖2w}dτ ≤ C(N2

0 +e−c−β) (4.37)
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for t ∈ [0, T ] and N(t)� 1.

Proof of Proposition 3.3. Combining Lemmas 4.5–4.6, we immediately prove (3.5)
for 0 ≤ t ≤ T . To prove (3.6) for 0 ≤ t ≤ T , we differentiate the first equation of
(3.3) with respect to x, and multiply it by φx, then integrate the resultant equality
on x to have

d

dt
‖φx(t)‖2 = 2

∫ ∞
0

ψxxφxdx

for 0 ≤ t ≤ T . Applying the estimate (3.5) to it, we have∫ t

0

∣∣∣∣ ddt‖φx(t)‖2
∣∣∣∣ dτ ≤ ∫ t

0
(‖ψxx(τ)‖2 + ‖φx(t)‖2)dτ ≤ C(N2

0 + e−c−β).

for 0 ≤ t ≤ T . Similarly, the second equation of (3.3) and the a priori estimate
(3.5) give ∫ t

0

∣∣∣∣ ddt‖ψx(t)‖2
∣∣∣∣ dτ ≤ C(N2

0 + e−c−β)

for 0 ≤ t ≤ T .
Thus, we complete the proof of Proposition 3.3.
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