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Abstract

We investigate the propagating profiles of a degenerate chemotaxis model describing the bacteria chemo-
taxis and consumption of oxygen by aerobic bacteria, in particular, the effect of the initial attractant 
distribution on bacterial clustering. We prove that the compact support of solutions may shrink if the signal 
concentration satisfies a special structure, and show the finite speed propagating property without assuming 
the special structure on attractant concentration, and obtain an explicit formula of the population spreading 
speed in terms of model parameters. The presented results suggest that bacterial cluster formation can be 
affected by chemotactic attractants and density-dependent dispersal.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the following chemotaxis model with chemotactic consumption and porous me-
dia diffusion
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{
ut = ∇(φ(u)∇u) − χ∇ · (u∇v),

vt = �v − αuv, x ∈ �, t > 0,
(1)

where u represents the number per unit volume of aerobic bacteria cells, v denotes the oxygen 
concentration, χ is the chemotactic coefficient, α denotes the fractional rate of oxygen consump-
tion per unit concentration of bacteria cell. The diffusion of species is considered to be degenerate 
in the form of ∇(φ(u)∇u) with φ(u) = Dum−1 and m > 1, which is dependent of the population 
density due to the population pressure, � ∈RN is a bounded domain with smooth boundary ∂�. 
This model can also describe other chemotaxis progress with nutrient consumption.

The chemotaxis model with porous medium diffusion type is motivated from a biological 
point of view [34]. It is worthy of mentioning that the porous medium type diffusion can repre-
sent “population pressure” in cell invasion models [28], which initially arises from the ecology 
literature [12,13,26,51]. In fact, experimental investigation has shown that the diffusion coeffi-
cient depends on the bacterial density [41]. In the bacterial experiments done by Ohgiwari et al.
[27], they recognized that cells located inside the bacterial colonies move actively, but cells be-
came sluggish at the outermost front with apparently low cell density. This phenomenon indicates 
that bacteria become active as the cell density u increases. Thus, a natural choice of the bacterial 
diffusion coefficient is φ(u) = um−1(m > 1), and this porous medium type bacterial diffusivity 
is based on the degenerate diffusion model proposed by Kawasaki et al. [16]. Recently, Leyva et 
al. [20] incorporated a chemotactic term into the original model by Kawasaki et al., and explored 
the effects of chemotaxis on bacterial aggregation patterns.

Incorporating the porous medium type diffusivity in bacterial chemotaxis models mentioned 
above, the system (1) appears as part of the following chemotaxis-fluid model proposed by Tuval 
et al. [39] to describe the motion of oxygen-driven swimming bacteria in an incompressible fluid

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut + w · ∇u = �um − ∇ · (uχ(v)∇v),

vt + w · ∇v = �v − uf (v),

wt + κ(w · ∇w) = �w − ∇P + u∇φ,

∇ · w = 0, x ∈ �, t > 0,

(2)

where w is the velocity field of the fluid subject to an incompressible Navier-Stokes equation 
with pressure P , κ the strength of nonlinear fluid convection, ∇φ a gravitational force, f (v) the 
rate of oxygen consumption, u, v χ(v) the quantities denoted as before. It was Francesco who 
first extended the classical fluid-chemotaxis coupled model to one with a porous medium-type 
diffusion of swimming bacteria [10]. Obviously, if the flow of fluid is ignored (i.e., w = 0) or the 
fluid is stationary, then (2) yields the chemotaxis model with porous media diffusion (1).

Chemotaxis is the biased migration in the direction of a chemical stimulus concentration gra-
dient [14,17]. Bacteria can sense a large range of chemical signals, such as the concentrations of 
nutrients, toxins, oxygen, minerals, etc. A mathematical model for the process of aerobic motile 
bacteria toward oxygen which they consume was first proposed in [29]. For the classical chemo-
taxis model with consumption chemoattractant (i.e. m = 1 in (1)), the diffusion of bacteria cells 
are assumed to be random. When the initial data is sufficiently small, Tao [35] proved that this 
model admits a classical solution globally in time. Moreover, for large initial data, Tao and Win-
kler [36] showed that the problem admits a global weak solution, and a more interesting fact 
is that, the weak solution will become smooth after some time. Recently, chemotaxis models 
featuring a density-dependent diffusion term have drawn great attention from many authors [3,
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11,23,33,42–44,48,54]. For the chemotaxis model (1) with consumption of chemoattractant and 
porous medium type diffusion, it was shown that the weak solution is globally solvable in two 
dimension for m > 1 [37]. In three dimensional space, the authors made great efforts to prove 
the global existence of weak solutions for this model for any m > 1. Winkler and Tao [38,47]
proved that this problem admits a global weak solution for the case m ∈ (1, 87 ].

The qualitative analysis of the chemotaxis model with nonlinear diffusion has attracted a lot 
of attention and led to a variety of challenging problems [1,2,14]. In many biological cases, the 
diffusion coefficient φ(u) is not constant, which can be regarded as a consequence of the interac-
tion between cells [6,22,24,32,53]. The interaction between diffusion and chemotaxis contributes 
substantial influences on the behavior of solutions for these models. In [7], Burger, Di Francesco, 
and Dolak considered the Keller-Segel model of chemotaxis with volume filling effect, which is 
degenerate when bacteria densities approaching either 0 or 1, and they investigated the qual-
itative behavior of solutions, such as finite speed of propagation and asymptotic behavior of 
solutions. Kim and Yao [18] studied the qualitative properties of the Patlak-Keller-Segel model 
with porous medium type diffusion term by using maximum principle type arguments, and they 
proved the finite propagation property of the compactly supported solutions generated by this 
type of degeneracy of diffusivity. In [9], Fischer proved finite speed of support propagation for the 
parabolic-elliptic chemotaxis Keller-Segel system with porous medium type diffusive term and 
gave sufficient criteria for support shrinking, based on the integral estimates and the Stampacchi-
a’s lemma. Moreover, mechanism of nonlinear diffusion is capable of suppressing or generating 
the occurrence of blow up in chemotaxis systems, such as chemotaxis with the flux limitation 
[3,4], the volume-filling effect [45,49].

The main feature of our model (1) lies in that the porous medium diffusive term and the 
chemotactic term are in competition. The dispersal term induces forward motion, whereas the 
chemotactic attraction may account for cohesive swarm and induce backward motion of the 
invasion boundary [9]. We explore the effect of density dependent diffusion and chemotactic 
attraction, which can account for cohesive, finite swarms with realistic density profiles.

To understand how changes in the initial conditions of chemotaxis can so dramatically alter 
the aggregation behavior of bacteria, we study the effects of attractant concentration on bacte-
ria distribution. We will give (see Theorem 2.1) a mathematical understanding of the collective 
behavior of bacteria chemotactic toward oxygen. We find that under certain initial conditions, 
the boundary of suppu(·, t) moves backward in response to the gradient of attraction at early 
stage. This indicates that the size of the swarm is defined by a balance of chemotactic attraction 
and cell dispersal: the greater the attraction the smaller its size for a given total number of or-
ganisms. This is observed biologically: bacteria exhaust the local oxygen and then react to the 
attractant gradient they have created, producing a flux towards the region with more oxygen. 
Early in bioconvection, this process generated accumulations of cells, resulting in smaller size of 
cell collective region. This experiment was conducted on Bacillus subtilis [8].

One of the intrinsic characteristics of porous medium diffusions is the population moves with 
a finite speed of propagation, which seems more reasonable than infinite speed in biological ap-
plications. To put it concisely, for any non-zero initial data u0, the solution of linear diffusion 
equation u(x, t) > 0 for t > 0 and any x ∈ RN , thus a linear diffusion process predicts an in-
finite propagation [40]. However, the spatial support of the solution to the degenerate diffusion 
equation remains bounded for all time t > 0 [9].

Bacteria are known to exhibit very diverse morphological aggregation patterns depend-
ing on a variety of environmental conditions [5,25,27,41]. These experimental observa-



T. Xu et al. / J. Differential Equations 268 (2020) 414–446 417
tions showed the bacterial enveloping front propagates outward gradually over time and 
the velocity of front propagation is finite. In order to explain these phenomena, a vari-
ety of mathematical models have been proposed [16,20,30,31]. The density-dependent de-
generate diffusion model may capture more pattern features found experimentally and pro-
vides a better match to experimental cell density profiles. The difference between these 
diffusion types is that the porous medium type diffusion leads to distinct boundaries, and 
the population density decreases to zero at a finite point in space, rather than tends to 
zero asymptotically. It is therefore not surprising that the behavioral property of living 
organisms in these two models is different. The porous medium type models allow the 
cells aggregate rather than spread out. The non-physical diffusion is eliminated in this 
model.

Although the underlying dynamics of the chemotaxis model with degenerate mobility can be 
complicated, explicit description of bacteria invasion process can be given. The challenge in the 
mathematical analysis consists of the chemotactic term as well as the degeneracy of the diffusion 
term which generates compactly supported solutions. We prove several propagating properties 
of solutions, including the initial shrinking, finite propagation property, eventual smoothness 
and eventual expanding. The spreading speed is the rate at which the species with uniformly 
positive initial distribution over a large interval and zero distribution outside an interval expands 
its spatial range [19]. Theorem 2.3 below provides an explicit formula for the spreading speed 
in terms of model parameters. To the best of our knowledge, it is the first work that presents 
a precise description of the propagating speed for this model. These results provide important 
insight into the spatial patterns and rates of invading bacteria species in space.

Besides the porous-medium-type diffusivity, we note that the dynamics of solution’s expand-
ing and shrinking properties is also related to the nonlinearity of the chemotactic sensitivity. In 
[51], we considered the chemotaxis model involving the same nonlinearity in the diffusivity and 
the chemotactic sensitivity, which is

ut = �um − ∇ · (un∇v) + uδ(1 − u) (3)

with n = m > 1, and we proved that its support is always expanding with finite speed. Roughly 
speaking, for the general diffusion versus chemotaxis equation (3) with m > 1, n ≥ 1 and cou-
pled or given v(x, t) with suitable regularity, its support exhibits initial shrinking only for the 
case n = 1 and v(x, t) satisfies some special structure. This is suggested by the exact propagating 
speed in Theorem 2.3 for the case n = 1, where the degenerate diffusion �um and the chemo-
taxis χ∇ · (u∇v) maintain some precise balance such that the sign of 2mKm−1

0 /(m − 1) − χμ

determines the expanding or shrinking of the initial support (K0, μ are given therein). If n > 1, 
the chemotaxis χ∇ · (un∇v) is “degenerated” as un−1(x, t) approaches zero near the bound-
ary of the support, and in this case, μ is interpreted as zero and then 2mKm−1

0 /(m − 1) − χμ is 
always positive. We would like to point out that the above observation of diffusion versus chemo-
taxis is only concerned with the expanding or shrinking of its support, while the dynamics of the 
solution away from the boundary of the support is left untouched, which may exhibit different 
behavior.

The outline of this paper is as follows. In Section 2, we state our main results and some nota-
tions. We leave the comparison principle of the corresponding degenerate chemotaxis equation 
and its Hölder continuity into Section 3 as preliminaries. Section 4 is devoted to the study of the 
propagating properties of bacteria cells and the large time behavior of the weak solution.
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2. Main results and notations

We consider the following chemotaxis system (4) with degenerate diffusion

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = �um − χ∇ · (u∇v), x ∈ �, t > 0,

vt = �v − uv, x ∈ �, t > 0,

∂um

∂n
= ∂v

∂n
= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ �,

(4)

where m > 1, χ > 0, � ⊂ RN is as mentioned before, u0, v0 are nonnegative functions, n is the 
unit outer normal vector.

Since degenerate diffusion equations may not have classical solutions in general, we need to 
formulate the following definition of generalized solutions for the initial boundary value problem 
(4).

Definition 2.1. Let T ∈ (0, ∞). A pair of (u, v) is said to be a weak solution to the problem (4)
in QT = � × (0, T ) if

(1) u ∈ L∞(QT ), ∇um ∈ L2((0, T ); L2(�)), and um−1ut ∈ L2((0, T ); L2(�));
(2) v ∈ L∞(QT ) ∩ L2((0, T ); W 2,2(�)) ∩ W 1,2((0, T ); L2(�));
(3) the identities

T̂

0

ˆ

�

uψtdxdt +
ˆ

�

u0(x)ψ(x,0)dx

=
T̂

0

ˆ

�

∇um · ∇ψdxdt −
T̂

0

ˆ

�

χu∇v · ∇ψdxdt,

T̂

0

ˆ

�

vtϕdxdt +
T̂

0

ˆ

�

∇v · ∇ϕdxdt =
T̂

0

ˆ

�

wzϕdxdt,

hold for all ψ, ϕ ∈ L2((0, T ); W 1,2(�)) ∩ W 1,2((0, T ); L2(�)) with ψ(x, T ) = 0 for x ∈ �;
(4) v takes the value v0 in the sense of trace at t = 0.
If (u, v) is a weak solution of (4) in QT for any T ∈ (0, ∞), then we call it a global weak 

solution.
A pair of (u, v) is said to be a globally bounded weak solution to the problem (4) if there 

exists a positive constant C such that

sup
t∈R+

{‖u‖L∞(�) + ‖v‖W 1,∞(�)

} ≤ C.

Throughout this paper we assume that the initial data satisfies

u0 ∈ C(�), ∇um
0 ∈ L2(�),

∂v0 = 0 on ∂�, v0 ∈ C2,α0(�) for some α0 ∈ (0,1). (5)

∂n
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We are aiming at the propagating properties of the cell invasions. Let us first focus on the 
waiting time and the initial shrinking of the compact support caused by chemotaxis. Our approach 
is based on the comparison principle and the technique of self-similar weak lower and upper 
solutions with compact support.

Theorem 2.1 (Initial shrinking caused by chemotaxis). Let (u, v) be a globally bounded weak 
solution of (4) with (i) N = 1; or (ii) supt∈(0,∞) ‖u(·, t)‖C1/(2m)(�) ≤ C for some constant C > 0. 
Further we assume that

suppu0 ⊂ BR0(x0) ⊂ �, u0 ≤ K0(R
2
0 − |x − x0|2)d0 , x ∈ BR0(x0), (6)

∇v0 · (x − x0) ≤ −μ|x − x0|2, x ∈ BR0(x0), (7)

for some x0 ∈ � and positive constants d0 ≥ 1/(m − 1), and R0, K0, μ > 0, such that χμ >
4m

m−1Km−1
0 max{1, R2((m−1)d0−1)

0 }. Then there exist a family of shrinking open sets {A(t)}t∈(0,t0)

with t0 > 0 such that A(0) = BR0(x0) and

suppu(·, t) ⊂ A(t) ⊂ �, t ∈ (0, t0),

and ∂A(t) has a finite negative derivative with respect to t .

Remark 2.1. The existence of globally bounded weak solutions of (4) is proved in [15]. We will 
prove in Lemma 3.5 that (i) implies (ii). The finite propagating speed (i.e. the derivative of ∂A(t)

with respect to t ) is interpreted as in the sense of Theorem 2.3.

We show the finite speed propagating property without the special structure (7) on signal 
concentration.

Theorem 2.2 (Finite speed propagating). Let the assumptions in Theorem 2.1 be valid except for 
(7). Then there exist a family of open sets {A(t)}t∈(0,t0) with t0 > 0 such that A(0) = BR0(x0)

and

suppu(·, t) ⊂ A(t) ⊂ �, t ∈ (0, t0),

and ∂A(t) has a finite derivative with respect to t .

Remark 2.2. Without the structure (7) on signal concentration, we do not know the shrinking or 
expanding of the cells. However, Theorem 2.2 shows the propagating speed is finite.

If the cell density and the signal concentration have special structure, we will present the exact 
propagating speed as follows.

Theorem 2.3 (Exact propagating speed). Let (u, v) be a globally bounded weak solution of (4)
with (i) N = 1; or (ii) supt∈(0,∞) ‖u(·, t)‖C1/(2m)(�) ≤ C for some constant C > 0. Further we 
assume that the initial values satisfy



420 T. Xu et al. / J. Differential Equations 268 (2020) 414–446
{
u0 = K0

[
(R2

0 − |x − x0|2)+
]d

, x ∈ �,

∇v0 · (x − x0) = −μ|x − x0|2, x ∈ Bδ
R0

(x0),
(8)

for some x0 ∈ � and positive constants d = 1/(m − 1), R0, K0, μ, δ > 0 such that BR0(x0) ⊂ �

and Bδ
R0

(x0) := {x ∈ BR0(x0); dist(x, ∂BR0(x0)) < δ}. Here, (R2
0 − |x − x0|2)+ = max{0, R2

0 −
|x − x0|2}. Then

suppu(x, t) = {(θ, ρ(θ, t)); θ ∈ SN−1},
where (θ, ρ) is the spherical coordinate centered at x0, ρ(θ, 0) = R0 for all θ ∈ SN−1, and the 
propagating speed

∂ρ(θ, t)

∂t

∣∣∣
t=0

= R0

( 2m

m − 1
Km−1

0 − χμ
)
, ∀θ ∈ SN−1.

With the signal being consumed as time grows, we show that the cells will eventually expand.

Theorem 2.4 (Eventual expanding). Let (u, v) be a globally bounded weak solution of (4) with 
(i) N = 1; or (ii) supt∈(0,∞) ‖u(·, t)‖C1/(2m)(�) ≤ C for some constant C > 0. Further we assume 

the initial data u0 ≥ 0, u0 �≡ 0 and � is convex. Then there exist T̂ > t̂ > 0 and t0 ∈ (t̂ , T̂ ), 
ε0 > 0, and a family of expanding open sets {A(t)}

t∈(t̂,T̂ )
, such that

A(t) ⊂ suppu(x, t), t ∈ (t̂ , T̂ ),

and A(t) = �, u(x, t) ≥ ε0 for all x ∈ � and t ∈ [t0, T̂ ].

Theorem 2.4 implies that the cells will eventually expand to the whole domain. After that we 
can show the eventual smoothness and large time behavior.

Theorem 2.5 (Eventual smoothness). Let the assumptions in Theorem 2.4 be valid. Then 
u(x, t) ≥ ε0 for all x ∈ � and t ≥ t0 with t0 > 0 and ε0 > 0 in Theorem 2.4, u ∈ C2,1(� ×
[t0, ∞)) and there exist C > 0 and c > 0 such that

‖u(·, t) − u‖L∞(�) + ‖v(·, t)‖W 1,∞(�) ≤ Ce−ct , t > 0,

where u = ´
�

u0dx/|�|.

The main difficulty lies in the balance between the degenerate diffusion (expanding) and the 
possible aggregating effect (shrinking) caused by the chemotaxis. According to the exact prop-
agating speed Theorem 2.3, it is clear that the profile near the boundary of its support competes 
with the gradient of the signal concentration. We first prove the comparison principle by the 
approximate Hohmgren’s approach, and then construct several kinds of lower and upper solu-
tions. The self similar weak lower and upper solutions with shrinking or expanding support are 
comparable with the Barenblatt solution to the porous medium equation

B(x, t) = (1 + t)−k
[(

1 − k(m − 1) |x|2
2k/N

) ] 1
m−1

(9)

2mN (1 + t) +
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with k = 1/(m − 1 + 2/N) for m > 1. After showing the eventual expanding property, we for-
mulate the eventual smoothness and large time behavior.

3. Preliminaries: comparison principle and Hölder continuity

3.1. Comparison principle of degenerate diffusion equations

We present the following comparison principle of degenerate diffusion equation in general 
form

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= �A(u) − ∇ · (B(u)�(x, t)), x ∈ �, t > 0,

(∇A(u) − B(u)�) · n = 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), x ∈ �,

(10)

where A(s) is strictly increasing and locally Lipchitz continuous for s ∈ R, B(s) is locally 
Lipchitz continuous for s ∈ R, and � : RN × R+ → RN is bounded. Here the degenerate set 
{s ∈ R; A′(s) = 0} has no interior point and the equation (10) is weakly degenerate. The typical 
case is A(u) = um with m > 1, B(u) = χu and the solution u is non-negative (otherwise, one 
may write A(u) = |u|m−1u).

Lemma 3.1 (Comparison principle). Let T > 0 and the function space E = {u ∈ L∞(QT );
∇A(u) ∈ L2(QT )}, u1, u2 ∈ E, � ∈ L∞(QT ), and u1, u2 satisfy the following differential in-
equality

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u1

∂t
− �A(u1) + ∇ · (B(u1)�(x, t)),

≥ ∂u2

∂t
− �A(u2) + ∇ · (B(u2)�(x, t)), x ∈ �, t ∈ (0, T ),

(∇A(u1) − B(u1)�) · n ≥ (∇A(u2) − B(u2)�) · n, x ∈ ∂�, t ∈ (0, T ),

u1(x,0) ≥ u2(x,0), x ∈ �,

in the sense that the following inequality

¨

QT

u1ϕtdxdt +
ˆ

�

u10(x)ϕ(x,0)dx −
¨

QT

∇A(u1) · ∇ϕdxdt

+
¨

QT

B(u1)�(x, t) · ∇ϕdxdt +
¨

∂�×(0,T )

(∇A(u1) − B(u1)�) · ndxdt,

≤
¨

QT

u2ϕtdxdt +
ˆ

�

u20(x)ϕ(x,0)dx −
¨

QT

∇A(u2) · ∇ϕdxd

+
¨

QT

B(u2)�(x, t) · ∇ϕdxdt +
¨

∂�×(0,T )

(∇A(u2) − B(u2)�) · ndxdt,
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hold for some fixed u10, u20 ∈ L2(�) such that u10 ≥ u20 on � and all test functions 0 ≤ ϕ ∈
L2((0, T ); W 1,2(�)) ∩ W 1,2((0, T ); L2(�)) with ϕ(x, T ) = 0 on �. Then u1(x, t) ≥ u2(x, t)
almost everywhere in QT .

Proof. The following inequality

¨

QT

(u1 − u2)ϕtdxdt ≤
¨

QT

∇(A(u1) − A(u2)) · ∇ϕdxdt

−
¨

QT

(B(u1) − B(u2))�(x, t) · ∇ϕdxdt,

holds for all 0 ≤ ϕ ∈ L2((0, T ); W 1,2(�)) ∩W 1,2((0, T ); L2(�)) with ϕ(x, T ) = 0. If we further 
assume that ∂ϕ

∂n
= 0 for x ∈ ∂� and t ∈ (0, T ), then we have

¨

QT

(u1 −u2)ϕtdxdt ≤
¨

QT

(
− (A(u1)−A(u2))�ϕ− (B(u1)−B(u2))�(x, t) ·∇ϕ

)
dxdt. (11)

Let

a(x, t) =
1ˆ

0

A′(su1 + (1 − s)u2)ds =
⎧⎨
⎩

A(u1) − A(u2)

u1 − u2
, u1(x, t) �= u2(x, t),

A′(u1), u1(x, t) = u2(x, t),

b(x, t) =
1ˆ

0

B ′(su1 + (1 − s)u2)ds · �(x, t)

=
⎧⎨
⎩

(B(u1) − B(u2))�(x, t)

u1 − u2
, u1(x, t) �= u2(x, t),

B ′(u1)�(x, t), u1(x, t) = u2(x, t),

and

c
η
δ (x, t) =

{
(η + a(x, t))− 1

2 b(x, t), |u1(x, t) − u2(x, t)| ≥ δ,

0, |u1(x, t) − u2(x, t)| < δ,

for any η > 0 and δ > 0. Further, for any fixed γ > 0, we denote

Fγ = {(x, t) ∈ QT ; |u1(x, t) − u2(x, t)| ≥ γ },

and

Gγ = {(x, t) ∈ QT ; |u1(x, t) − u2(x, t)| < γ }.

Now, (11) reads
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¨

QT

(u1 − u2)
(

− ϕt − a(x, t)�ϕ − b(x, t) · ∇ϕ
)
dxdt ≥ 0, (12)

for all 0 ≤ ϕ ∈ L2((0, T ); W 1,2(�)) ∩ W 1,2((0, T ); L2(�)) with ϕ(x, T ) = 0 for x ∈ � and 
∂ϕ
∂n

= 0 for x ∈ ∂� and t ∈ (0, T ). Since �(x, t), u1, u2 are bounded and A(s), B(s) are lo-
cally Lipchitz continuous, there exists a constant C > 0 such that |a|, |b| and |u1|, |u2| ≤ C. 
Henceforth, a generic positive constant (possibly changing from line to line) is denoted by C. 
According to the strictly increasing property of A(s) and the boundedness of u1, u2, there exists 
a constant L(γ ) > 0 such that

a(x, t) ≥ L(γ ), for all (x, t) ∈ Fγ ,

and therefore

|cη
δ | ≤ L(δ)−

1
2 |b| ≤ L(δ)−

1
2 C =: K(δ).

We employ the standard duality proof method or the approximate Hohmgren’s approach to 
complete this proof (see Theorem 6.5 in [40], Chapter 1.3 and 3.2 in [50], see also the comparison 
principle Lemma 3.4 in [52] on unbounded domain and Lemma 4.1 in [51]). For any smooth 
function 0 ≤ ψ(x, t) ∈ C2

0(QT ), consider the following approximated dual problem

⎧⎪⎪⎨
⎪⎪⎩

−ϕt − (η + aε(x, t))�ϕ − c
η
δ,ε(x, t)(η + aε(x, t))

1
2 · ∇ϕ = ψ, (x, t) ∈ QT ,

∂ϕ

∂n
= 0, (x, t) ∈ ∂� × (0, T ),

ϕ(x,T ) = 0, x ∈ �,

(13)

where η > 0, δ > 0, ε > 0, aε is a smooth approximation of a in L4(QT ), aε ≥ a, and cη
δ,ε(x, t)

is a smooth approximation of cη
δ (x, t) in L4(QT ). Here we note that (13) is a standard parabolic 

problem as the initial data is imposed at the end time t = T . Therefore, it has a smooth solution 
ϕ ≥ 0. Maximum principle shows the boundedness of ϕ such that 0 ≤ ϕ ≤ C(ψ). Then we get 
from (12) and (13) the estimate

¨

QT

(u1 − u2)ψdxdt ≥ −
¨

QT

|u1 − u2||a − aε||�ϕ|dxdt

− η

¨

QT

|u1 − u2||�ϕ|dxdt

−
¨

QT

|u1 − u2||cη
δ,ε(η + aε)

1
2 − b||∇ϕ|dxdt

=: − I1 − I2 − I3. (14)

Next, we need the a priori estimate on (η+aε)|�ϕ|2. We multiply the equation (13) by −�ϕ. 
Integrating over QT yields
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¨

QT

ϕt�ϕdxdt +
¨

QT

(η + aε)(�ϕ)2dxdt

≤
¨

QT

|cη
δ,ε|(η + aε)

1
2 |∇ϕ||�ϕ|dxdt +

¨

QT

ψ�ϕdxdt

≤ 1

4

¨

QT

(η + aε)(�ϕ)2dxdt +
¨

QT

|cη
δ,ε|2|∇ϕ|2dxdt +

¨

QT

|�ψ ||ϕ|dxdt

≤ 1

4

¨

QT

(η + aε)(�ϕ)2dxdt + (K(δ))2
¨

QT

|∇ϕ|2dxdt + C(ψ).

Using ϕ(x, T ) = 0 and ∂ϕ
∂n

= 0 on ∂�, we have

¨

QT

ϕt�ϕdxdt = −
¨

QT

∇ϕ · ∇ϕtdxdt = −1

2

¨

QT

∂

∂t
|∇ϕ|2dxdt

= 1

2

ˆ

�

|∇ϕ(x,0)|2dx ≥ 0,

and
¨

QT

|∇ϕ|2dxdt =
¨

QT

∇ϕ · ∇ϕdxdt = −
¨

QT

ϕ�ϕdxdt

≤ 1

4(K(δ))2

¨

QT

(η + aε)(�ϕ)2dxdt + η−1(K(δ))2C(ψ).

Therefore,

(K(δ))2
¨

QT

|∇ϕ|2dxdt +
¨

QT

(η + aε)(�ϕ)2dxdt ≤ C(ψ)(K(δ))4η−1, (15)

and

‖�ϕ‖L2(QT ) ≤ (C(ψ)(K(δ))4η−2)
1
2 ≤ C(ψ)(K(δ))2η−1.

It follows that

I1 =
¨

QT

|u1 − u2||a − aε||�ϕ|dxdt

≤C‖�ϕ‖L2(QT )‖a − aε‖L2(QT ) ≤ C(ψ)(K(δ))2η−1‖a − aε‖L2(QT ),

which converges to zero if we let ε → 0. We can estimate I2 as follows
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I2 = η

¨

QT

|u1 − u2||�ϕ|dxdt

≤ η

¨

Gγ

|u1 − u2||�ϕ|dxdt + η

¨

Fγ

|u1 − u2||�ϕ|dxdt

≤ γ

¨

Gγ

η|�ϕ|dxdt + Cη

L(γ )
1
2

¨

Fγ

a
1
2 |�ϕ|dxdt

≤ γ

¨

Gγ

η|�ϕ|dxdt + Cη

L(γ )
1
2

¨

Fγ

a
1
2
ε |�ϕ|dxdt

≤ Cγη
1
2

(¨
QT

η|�ϕ|2dxdt
) 1

2 + Cη

L(γ )
1
2

(¨
QT

aε|�ϕ|2dxdt
) 1

2

≤ Cγη
1
2 C(ψ)(K(δ))2η− 1

2 + Cη

L(γ )
1
2

C(ψ)(K(δ))2η− 1
2

= γC(ψ)(K(δ))2 + η
1
2 C(ψ)(K(δ))2/L(γ )

1
2 .

We also have

I3 =
¨

QT

|u1 − u2||cη
δ,ε(η + aε)

1
2 − b||∇ϕ|dxdt

≤
¨

Gδ

|u1 − u2||cη
δ,ε(η + aε)

1
2 ||∇ϕ|dxdt +

¨

Gδ

|u1 − u2||b||∇ϕ|dxdt

+
¨

Fδ

|u1 − u2||cη
δ,ε(η + aε)

1
2 − b||∇ϕ|dxdt

≤δ‖cη
δ,ε(η + aε)

1
2 ‖L2(Gδ)

‖∇ϕ‖L2(QT ) + Cδ

¨

Gδ

|∇ϕ|dxdt

+ C‖cη
δ,ε(η + aε)

1
2 − b‖L2(Fδ)

‖∇ϕ‖L2(QT ).

We note that

c
η
δ,ε(η + aε)

1
2 → c

η
δ (η + a)

1
2 =

{
0, (x, t) ∈ Gδ,

b(x, t), (x, t) ∈ Fδ,

almost everywhere and also in L2(QT ). It follows that

lim sup
ε→0

I3 ≤ Cδ

¨
|∇ϕ|dxdt.
Gδ
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We leave the uniform L1 estimate of ‖∇ϕ‖L1(QT ) ≤ C(ψ) to the next lemma (Lemma 3.2), and 
we combine the above estimates to find

lim sup
ε→0

(I1 + I2 + I3) ≤ γC(ψ)(K(δ))2 + η
1
2 C(ψ)(K(δ))2/L(γ )

1
2 + C(ψ)δ.

Now we conclude according to (14) that

¨

QT

(u1 − u2)ψdxdt ≥ −
{
γC(ψ)(K(δ))2 + η

1
2 C(ψ)(K(δ))2/L(γ )

1
2 + C(ψ)δ

}
,

for any given δ > 0, η > 0, γ > 0 and ψ ≥ 0, which yields that

¨

QT

(u1 − u2)ψdxdt ≥ 0,

by taking η → 0, then γ → 0, and at last δ → 0. Since 0 ≤ ψ ∈ C2
0(QT ) is arbitrary selected, we 

see that u1 ≥ u2 almost everywhere on QT . �
Lemma 3.2. Let ϕ be the solution of the approximated dual problem (13) in the proof of 
Lemma 3.1. Then there holds

sup
t∈(0,T )

ˆ

�

|∇ϕ(x, t)|dx ≤
¨

QT

|∇ψ |dxdt.

Proof. Since ϕ is smooth enough, ϕ(x, T ) = 0 on � and ∂ϕ
∂n

= 0 on ∂�, we take the gradient 
of (13) and then multiply it by |∇ϕ|β−1∇ϕ with β ∈ (0, 1), integrate over Qt,T = � × (t, T ), to 
find

1

β + 1

ˆ

�

|∇ϕ(x, t)|β+1dx + β

¨

Qt,T

(η + aε)|�ϕ|2|∇ϕ|β−1dxdt

= −β

¨

Qt,T

c
η
δ,ε(η + aε)

1
2 · ∇ϕ|∇ϕ|β−1�ϕdxdt +

¨

Qt,T

∇ψ · |∇ϕ|β−1∇ϕdxdt

≤β

¨

Qt,T

(η + aε)|�ϕ|2|∇ϕ|β−1dxdt + β

¨

Qt,T

|cη
δ,ε|2|∇ϕ|β+1dxdt

+
¨

Qt,T

|∇ψ ||∇ϕ|βdxdt. (16)

According to (15), we see that

¨
|cη

δ,ε|2|∇ϕ|β+1dxdt ≤
¨

(K(δ))2(1 + |∇ϕ|2)dxdt ≤ C(ψ)(K(δ))4η−1,
QT QT
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and

lim sup
β→0

¨

QT

|∇ψ ||∇ϕ|βdxdt ≤
¨

QT

|∇ψ |dxdt,

by the dominated convergence theorem. Now we let β tend to zero, then (16) implies that

ˆ

�

|∇ϕ(x, t)|dx ≤
¨

QT

|∇ψ |dxdt,

for all t ∈ (0, T ). The proof is completed. �
The comparison principle together with specially constructed weak lower and upper solutions 

are used to show the propagating properties. Hence we define the following weak lower and 
upper solutions of the first equation in (4).

Definition 3.1 (Weak lower and upper solutions). A function g(x, t) is said to be a weak lower 
(or upper) solution of the first equation in (4) on QT corresponding to the initial value u0 and a 
given function v such that ∇v ∈ L∞(QT ), if 0 ≤ g ∈ L∞(QT ), ∇gm ∈ L2(QT ), and it satisfies 
the following differential inequality

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂g

∂t
≤ (≥)�gm − ∇ · (g∇v), x ∈ �, t ∈ (0, T ),

∂gm

∂n
− g∇v · n ≤ (≥)0, x ∈ ∂�, t ∈ (0, T ),

g(x,0) ≥ 0, g(x,0) ≤ (≥)u0(x), x ∈ �,

where the first two inequality are satisfied in the following sense

¨

QT

gϕtdxdt +
ˆ

�

g(x,0)ϕ(x,0)dx

≥ (≤)

¨

QT

∇gm · ∇ϕdxdt −
¨

QT

g∇v · ∇ϕdxdt,

holds for all test functions 0 ≤ ϕ ∈ L2((0, T ); W 1,2(�)) ∩W 1,2((0, T ); L2(�)) with ϕ(x, T ) = 0
on �.

Lemma 3.3 (Comparison principle). Let (u, v) be a globally bounded weak solution of (4). If 
g(x, t) is a weak lower (or upper) solution of the first equation in (4) on QT , then

u(x, t) ≥ (≤)g(x, t), ∀(x, t) ∈ QT .

Proof. This is a simple corollary of comparison principle Lemma 3.1. �
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3.2. Regularity of Hölder continuity

In order to show the propagation properties of the degenerate chemotaxis system (4), we need 
to know the existence, global boundedness, regularity and large time behavior of its solutions.

We recall the existence and the global boundedness of solutions to the degenerate chemotaxis 
model (4).

Lemma 3.4 ([15]). Assume that u0 ∈ L∞(�), ∇um
0 ∈ L2(�), v0 ∈ W 2,∞(�), u0, v0 ≥ 0 and 

m > 1, the spacial dimension N = 3. Then the problem (4) admits a nonnegative global bounded 
weak solution (u, v) with

sup
t∈(0,∞)

(‖u(·, t)‖L∞(�) + ‖v‖W 1,∞(�)) ≤ C,

sup
t∈(0,∞)

ˆ

�

|∇um|2dx + sup
t∈(0,∞)

‖um+1
2 ‖

W
1,1
2 (�×(t,t+1))

≤ C,

sup
t∈(0,∞)

‖v‖
W

2,1
p (�×(t,t+1))

≤ C(p), ∀p > 1.

Furthermore,

lim
t→∞‖v‖L∞(�) = 0, lim

t→∞‖u − ū‖Lp(�) = 0, ∀p > 1,

where ū = 1
|�|

´
�

u0dx > 0.

Remark 3.1. The same global boundedness and asymptotic behavior results hold for the lower 
spatial dimensional case N = 1, 2.

Remark 3.2. We note that the boundedness of ‖u‖L∞(QT ) and ‖v‖L∞(QT ) is insufficient for the 
boundedness of ‖�v‖L∞(QT ) according to the strong theory of the second equation in (4). Hence 
the W 2,1

p estimate for p = ∞ is not obtained in the above Lemma 3.4.

Remark 3.3. One of the basic features for the degenerate diffusion equations, such as the porous 
medium equation, is the property of finite speed of propagation. Therefore, the first component u
may not have positive minimum for some time t > 0. For the large time behavior, it is proved in 
Lemma 3.4 that u(x, t) converges to ū in Lp(�) for p < ∞, while the L∞(�) and some other 
more regular convergence are not deduced.

In a special case that v0 ≡ 0, we see that v(x, t) ≡ 0 and u satisfies the porous medium equa-
tion. The Barenblatt solution (9) of the porous medium equation shows that the best regularity 

of the first equation in (4) is no better than Hölder continuous C
1

m−1 (QT ) (for m > 2) even for 
the one spatial dimensional case N = 1. In what follows, we will show the Hölder continuous 
of u with respect to space, and the boundedness of ‖�v‖L∞(QT ). Actually, we will prove that 
�v ∈ Cα,α/2(QT ) for some α ∈ (0, 1).
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Lemma 3.5. Let N = 1 and (u, v) be the globally bounded weak solution of (4). Then there exists 
a constant C > 0 such that

sup
t∈(0,∞)

{
‖um(·, t)‖C1/2(�) + ‖u(·, t)‖C1/(2m)(�)

}
≤ C.

Proof. According to Lemma 3.4, ‖∇um(·, t)‖L2(�) is uniformly bounded. The Sobolev embed-
ding theorem for one dimensional case implies the uniform boundedness of ‖um(·, t)‖C1/2(�).

We assert that for m > 1,

|a − b|m ≤ C(M)|am − bm|, ∀a, b ∈ [0,M].
This is a simple result of calculus. Actually, we can choose C(M) = 1. Therefore,

( |u(x1, t) − u(x2, t)|
|x1 − x2|1/(2m)

)m ≤ C( sup
t∈(0,∞)

‖u‖L∞(�))
|um(x1, t) − um(x2, t)|

|x1 − x2|1/2 , x1 �= x2.

That is, the uniform C1/2 regularity of um(·, t) implies the uniform C1/(2m) regularity of 
u(·, t). �

The following continuity of ‖∇v(·, t)‖L∞(�) and boundedness of ‖�v(·, t)‖L∞(�) will be 
used to formulate varies types of upper and lower solutions in the next section.

Lemma 3.6. Let (u, v) be the globally bounded weak solution of (4) such that

sup
t∈(0,∞)

‖u(·, t)‖C1/(2m)(�) ≤ C,

and v0 ∈ C2,α0(�) for some α0 ∈ (0, 1), ∂v0
∂n

= 0 on ∂�. Then ∇v(·, t) is continuous in the 
‖ · ‖L∞(�) norm with respect to time and there exist α ∈ (0, 1) and a constant C(T , δ) > 0 such 
that

‖�v(x, t)‖Cα(�δ×[0,T ]) ≤ C(T , δ),

where �δ = {x ∈ �; dist(x, ∂�) > δ}.

Proof. Since ‖v‖
W

2,1
p (�×(t,t+1))

is uniformly bounded for p > 1 in Lemma 3.4, we see that 
supt∈(0,∞) ‖v(·, t)‖Cβ(�) ≤ C for some β ∈ (0, 1). Therefore,

sup
t∈(0,∞)

‖(uv)(·, t)‖Cα(�) ≤ C

for some α ∈ (0, 1). Indeed, we can choose α = min{1/(2m), β}. The Schauder theory via Cam-
panato space theory in [21] implies the interior Hölder continuity of �v with respect to space 
and time, and the Hölder continuity of vt with respect to space (the Hölder continuity of vt with 
respect to time is insufficient). �

For large time behavior, we present the following regularity.
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Lemma 3.7. Let (u, v) be the globally bounded weak solution of (4). Then

lim
t→∞‖∇v(·, t)‖L∞(�) = 0.

Proof. Let (et�)t≥0 be the Neumann heat semigroup in �, and let λ1 > 0 denote the first nonzero 
eigenvalue of −� in � under Neumann boundary condition. Then the solution v can be ex-
pressed as follows

v(x, t) = et�v0(x) −
tˆ

0

e(t−s)�(uv)(x, s)ds, t ≥ t0 ≥ 0.

According to the Lp − Lq estimates for the Neumann heat semigroup (see for example [46]),

‖∇v(x, t)‖L∞(�) ≤ ‖∇et�v0(x)‖L∞(�) +
tˆ

0

‖∇e(t−s)�(uv)(x, s)‖L∞(�)ds

≤ C
(
1 + t−

1
2
)
e−λ1t‖v0‖L∞(�) +

tˆ

0

C
(
1 + (t − s)−

1
2
)
e−λ1(t−s)‖(uv)(·, s)‖L∞(�)ds

≤ C
(
1 + t−

1
2
)
e−λ1t‖v0‖L∞(�) + C

t−1ˆ

0

e−λ1(t−s)ds

+ C

tˆ

t−1

(
1 + (t − s)−

1
2
)
ds sup

τ∈(t−1,t)

‖v(·, τ )‖L∞(�),

which tends to zero since ‖u(·, t)‖L∞(�), ‖v(·, t)‖L∞(�) are uniformly bounded and
‖v(·, t)‖L∞(�) tends to zeros as t → ∞ from Lemma 3.4. �
Lemma 3.8. Let the conditions in Lemma 3.6 be valid. Then

lim
t→∞‖�v(·, t)‖L∞(�) = 0.

Proof. We rewrite v = v1 + w such that

⎧⎪⎨
⎪⎩

v1t = �v1, x ∈ �, t > 0,

v1(x,0) = v0(x), x ∈ �,
∂v1
∂n

= 0, x ∈ ∂�, t > 0,

and
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⎧⎪⎨
⎪⎩

wt = �w − uv, x ∈ �, t > 0,

w(x,0) = 0, x ∈ �,
∂w
∂n

= 0, x ∈ ∂�, t > 0.

The Neumann heat semigroup theory shows limt→∞ ‖�v1(·, t)‖L∞(�) = 0. We note that

‖(uv)(·, t)‖Cα(�) ≤ ‖u(·, t)‖L∞(�)‖v(·, t)‖Cα(�) + ‖v(·, t)‖L∞(�)‖u(·, t)‖Cα(�) → 0,

as t tends to infinity since limt→∞ ‖v(·, t)‖W 1,∞(�) = 0 according to Lemma 3.7 and
‖u(·, t)‖Cα(�) are uniformly bounded in Lemma 3.6 for some α ∈ (0, 1). The Schauder theory in 
[21] shows the Hölder continuity

‖�w(·, t)‖L∞(�) ≤ C1 sup
s∈[t/2,t]

‖(uv)(·, s)‖Cα(�) + C2(t) sup
s∈(0,∞)

‖(uv)(·, s)‖Cα(�),

where C1 > 0 is a constant and C2(t) decays to zeros as t tends to infinity. �
4. Propagation properties: shrinking versus expanding

This section is devoted to the study of the propagating properties of bacteria cells and the large 
time behavior of the weak solution (u, v) to the problem (4). In contrast with the heat equation, 
it is known that the porous medium equation has the property of finite speed of propagation. 
Therefore, the first component u may not have positive minimum for some time t > 0. We use 
the comparison principle together with weak lower solutions.

Our interest lies in the propagating properties of the cell invasions. Let us first focus on the 
waiting time and initial shrinking of the compact support. Our approach is the combination of 
the comparison principle Lemma 3.3 and weak lower and upper solutions with compact support.

4.1. Initial shrinking caused by the chemotaxis

The Barenblatt solution (9) of the classical porous medium equation indicates the slow diffu-
sion with finite speed of expanding support; while the chemotaxis may cause backward diffusion, 
i.e. the aggregation, which in competition with the slow diffusion results in a initial shrinking of 
the support provided specified structures of the signal concentration.

We consider a typical situation in which the cells are concentrated in a compact support and 
the signal concentration has the aggregation effect. Specifically speaking, assume that

{
suppu0 ⊂ BR0(x0) ⊂ �, u0 ≤ K0(R

2
0 − |x − x0|2)d0 , x ∈ BR0(x0),

∇v0 · (x − x0) ≤ −μ|x − x0|2, x ∈ BR0(x0),
(17)

for some x0 ∈ � and positive constants d0 ≥ 1/(m − 1), and R0, K0, μ > 0.
We construct self similar upper and lower solution with compact support to show the propa-

gating property. We note that for the degenerate porous medium type equation and the self similar 
function of the form g = [(1 − |x|2)+]d with md > 1, we can check that ∇gm is continuous and 
�gm ∈ Lq(�) for some q > 1. This shows that the differential inequality for an upper (or lower) 
solution only need to be valid almost everywhere, without the possible Radon measures on the 
boundary of its support, which is completely different from the uniform parabolic cases.
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Lemma 4.1. Let the conditions in Lemma 3.6 be valid with the initial values satisfying (17) and 
χμ > 4m

m−1Km−1
0 max{1, R2((m−1)d0−1)

0 }. Define a function

g(x, t) = ε(τ + t)σ
[(

η2 − |x − x0|2
(τ + t)β

)
+

]d

, x ∈ �, t ≥ 0,

where d = 1/(m − 1), β, σ ∈ R, ε > 0, η > 0, τ > 0. Then by appropriately selecting β < 0, 
σ > 0, ε, η and τ , the support of g(x, t) is contained in � and shrinks for t ∈ (0, t0) with some 
t0 > 0 and the function g(x, t) is an upper solution of the first equation in (4) on � × (0, t0)
corresponding to v(x, t) and the initial date u0. Therefore, u(x, t) ≤ g(x, t) and there exist a 
family of shrinking open sets {A(t)}t∈(0,t0) such that

suppu(·, t) ⊂ A(t) ⊂ �, t ∈ (0, t0),

and ∂A(t) has a finite derivative with respect to t .

Proof. For simplicity, we let

h(x, t) =
(
η2 − |x − x0|2

(τ + t)β

)
+, x ∈ �, t ≥ 0,

and

A(t) =
{
x ∈ �; |x − x0|2

(τ + t)β
< η2

}
, t ≥ 0.

Without loss of generality, we may assume that x0 = 0 and write BR = BR(0). Straightforward 
computation shows that

gt = σε(τ + t)σ−1hd + ε(τ + t)σ dhd−1 β|x|2
(τ + t)β+1 ,

∇g = − ε(τ + t)σ dhd−1 2x

(τ + t)β
,

∇gm = − εm(τ + t)mσ mdhmd−1 2x

(τ + t)β
,

�gm = εm(τ + t)mσ md(md − 1)hmd−2 4|x|2
(τ + t)2β

− εm(τ + t)mσ mdhmd−1 2N

(τ + t)β
,

for all x ∈ A(t) and t > 0. According to the initial condition (17) and the regularity result 
Lemma 3.6, we see that at the initial time

∇g(x,0) · ∇v(x,0) = ∇g(x,0) · ∇v0(x)

= −ετσ dhd−1 2x

τβ
· ∇v0(x) ≥ ετσ−βdhd−12μ|x|2,

and there exists a t̂ > 0 by the continuity such that
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∇v(x, t) · x ≤ −μ

2
|x|2, x ∈ BR0\BR0/2, t ∈ [0, t0],

∇v(x, t) · x ≤ μ

2
R2

0, x ∈ BR0/2, t ∈ [0, t̂].

Therefore,

∇g(x, t) · ∇v(x, t) = −ε(τ + t)σ dhd−1 2x

(τ + t)β
· ∇v(x, t)

≥ ε(τ + t)σ−βdhd−1μ|x|2, x ∈ BR0\BR0/2, t ∈ [0, t̂]. (18)

Let τ > 0 be determined and

η2 = R2
0

τβ
, t0 = min{τ, t̂}. (19)

According to the definition of g(x, t), we see that A(0) = BR0(0), suppu0 ⊂ A(0) ⊂ �, and 
A(t) ⊂ BR0(0) ⊂ � for t ∈ [0, t0]. Therefore, ∂g

∂n
= 0 and ∂gm

∂n
= 0 on ∂� for all t ∈ (0, t0), and

g(x,0) = ετσ
[(

η2 − |x|2
τβ

)
+

]d = ετσ
(R2

0

τβ
− |x|2

τβ

)d · 1BR0 (0)

= ετσ−dβ(R2
0 − |x|2)d · 1BR0 (0) ≥ K0(R

2
0 − |x|2)d0 · 1BR0 (0) ≥ u0(x), x ∈ �,

provided that

ετσ−dβ ≥ K0 max{1,R
2(d0−d)
0 }. (20)

In order to find a weak upper solution g, we only need to check the following differential in-
equality on A(t)

∂g

∂t
≥ �gm − χ∇ · (g∇v) = �gm − χ∇g · ∇v − χg�v, x ∈ A(t), t ∈ (0, t0). (21)

We denote C1 = ‖∇v‖L∞(�×[0,1]) and C2 = ‖�v‖L∞(�×[0,1]) for convenience, since they are 
bounded according to Lemma 3.6. A sufficient condition of inequality (21) is

σε(τ + t)σ−1hd + ε(τ + t)σ dhd−1 β|x|2
(τ + t)β+1

+ εm(τ + t)mσ mdhmd−1 2N

(τ + t)β
+ χ∇g · ∇v

≥ εm(τ + t)mσ md(md − 1)hmd−2 4|x|2
(τ + t)2β

+ C2χε(τ + t)σ hd, (22)

for all x ∈ A(t), t ∈ (0, t0). As we have chosen d = 1/(m − 1), we rewrite (22) into
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σε(τ + t)σ−1h + εβ

m − 1
(τ + t)σ

|x|2
(τ + t)β+1

+ 2N
m

m − 1
εm(τ + t)mσ h

(τ + t)β
+ h1−dχ∇g · ∇v

≥ m

(m − 1)2 εm(τ + t)mσ 4|x|2
(τ + t)2β

+ C2χε(τ + t)σ h, (23)

for all x ∈ A(t), t ∈ (0, t0). For simplicity, we denote (23) by LHS ≥ RHS.
Now, we give sufficient conditions of (23) to be valid on BR0/2 and BR0\BR0/2 respectively 

(Note that A(t) ⊂ BR0(0) for t ∈ (0, t0) as β < 0). For x ∈ (BR0\BR0/2) ∩ A(t) and t ∈ (t, t0), 
we have according to the estimate (18) that

LHS − RHS ≥ σε(τ + t)σ−1h + εβ

m − 1
(τ + t)σ

|x|2
(τ + t)β+1

+ 2N
m

m − 1
εm(τ + t)mσ h

(τ + t)β
+ χε(τ + t)σ−βdμ|x|2

− m

(m − 1)2 εm(τ + t)mσ 4|x|2
(τ + t)2β

− C2χε(τ + t)σ h

≥
(
σ + 2N

m

m − 1
εm−1(τ + t)(m−1)σ−β+1 − C2χ(τ + t)

)
ε(τ + t)σ−1h

+
(
dχμ + β

m − 1
(τ + t)−1 − 4m

(m − 1)2 εm−1(τ + t)(m−1)σ−β
)
ε(τ + t)σ−β |x|2

≥
(
σ + 2N

m

m − 1
εm−1τ (m−1)σ−β+1 − 2C2χτ

)
ε(τ + t)σ−1h

+
(
dχμ + β

m − 1
τ−1 − 4m

(m − 1)2 εm−1(2τ)(m−1)σ−β
)
ε(τ + t)σ−β |x|2. (24)

For x ∈ (BR0/2) ∩ A(t) and t ∈ (t, t0), we also have

LHS − RHS ≥
(
σ + 2N

m

m − 1
εm−1τ (m−1)σ−β+1 − 2C2χτ

)
ε(τ + t)σ−1h

+
( β

m − 1
τ−1 − 4m

(m − 1)2 εm−1(2τ)(m−1)σ−β
)
ε(τ + t)σ−β |x|2

− dχμε(τ + t)σ−βR2
0 . (25)

Let β ∈ [−2 ln(4/3)/ ln 2, 0), i.e. 2β/2 ∈ [3/4, 1). For t ∈ (0, t0), we see that

A(t) = Bη(τ+t)β/2(0) = BR0(1+t/τ )β/2(0) ⊃ B2β/2R0
(0) ⊃ B3R0/4(0).

Further if x ∈ (BR0/2) ∩ A(t) = BR0/2 and t ∈ (0, t0) ⊂ (0, τ),

h(x, t) =
(
η2 − |x|2

β

)
= R2

0
β

− |x|2
β

≥ R2
0
β

− (R0/2)2

β
≥ 5 R2

0
β

.

(τ + t) + τ (τ + t) τ (2τ) 9 τ
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Then (25) reads

LHS − RHS ≥
(
σ + 2N

m

m − 1
εm−1τ (m−1)σ−β+1 − 2C2χτ

)
ε(τ + t)σ−1 5

9

R2
0

τβ

+
( β

m − 1
τ−1 − 4m

(m − 1)2 εm−1(2τ)(m−1)σ−β − 4dχμ
)
ε(τ + t)σ−β R2

0

4

≥
[(

σ + 2N
m

m − 1
εm−1τ (m−1)σ−β+1 − 2C2χτ

) 5

9τβ

+
( β

m − 1
τ−1 − 4m

(m − 1)2 εm−1(2τ)(m−1)σ−β − 4dχμ
) (τ + t)1−β

4

]
ε(τ + t)σ−1R2

0 .

(26)

Let ε > 0, β ∈ [−2 ln(4/3)/ ln 2, 0), σ > 0, τ > 0, η > 0 and t0 > 0 be chosen such that (19), 
(20) are valid and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ + 2N
m

m − 1
εm−1τ (m−1)σ−β+1 − 2C2χτ ≥ 0,

dχμ + β

m − 1
τ−1 − 4m

(m − 1)2 εm−1(2τ)(m−1)σ−β ≥ 0,(
σ + 2N

m

m − 1
εm−1τ (m−1)σ−β+1 − 2C2χτ

) 5

9τβ

+
( β

m − 1
τ−1 − 4m

(m − 1)2 εm−1(2τ)(m−1)σ−β − 4dχμ
) (2τ)1−β

4
≥ 0.

(27)

We can fix τ = 1, η and t0 to be determined by (19), ε = K0 max{1, R2(d0−d)
0 } as (20) is valid, 

and β < 0 with |β| being sufficiently small such that the second inequality in (27) is true since 
χμ > 4m

m−1Km−1
0 max{1, R2((m−1)d0−1)

0 }, and at last we choose σ > 0 to be sufficiently large such 
that the first and the third inequalities are satisfied. Now, (27) is valid for those parameters. Then 
according to the inequalities (24), (25), (26), we find that

LHS − RHS ≥ 0, x ∈ BR0 ∩ A(t) = A(t), t ∈ (0, t0),

which yields (21), (23), and then g(x, t) is an upper solution.
The comparison principle Lemma 3.3 implies that u(x, t) ≤ g(x, t) for all x ∈ � and t ∈

(0, t0). Thus,

suppu(·, t) ⊂ A(t) = {x ∈ �; |x − x0|2 < η2(τ + t)β}, t ∈ (0, t0),

and

∂A(t) = {x ∈ �; |x − x0| = η(τ + t)
β
2 }, t ∈ (0, t0),

which has finite derivative with respect to t . The family of sets {A(t)}t∈(0,t0) is shrinking with 
respect to t since β < 0. �
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Remark 4.1. We compare the self similar weak upper solution g(x, t) in the proof of Lemma 4.1
to the Barenblatt solution of porous medium equation

B(x, t) = (1 + t)−k
[(

1 − k(m − 1)

2mN

|x|2
(1 + t)2k/N

)
+

] 1
m−1

,

with k = 1/(m − 1 + 2/N). The Barenblatt solution B(x, t) is decaying at the rate (1 +
t)−1/(m−1+2/N) in L∞(RN) and the support is expanding at the rate (1 + t)k/N . Here, the upper 
solution is increasing at the rate (τ + t)σ and its support is shrinking at the rate (τ + t)β/2. The 
increasing of g(x, t) makes it possible to be an upper solution, which is crucial in the proof.

4.2. Finite speed propagating and the exact propagating speed

We have proved that the compact support may shrink if the signal concentration satisfies a 
special structure such as (17). Now, we will show the finite speed propagating property without 
assuming the special structure on signal concentration. Assume that

suppu0 ⊂ BR0(x0) ⊂ �, u0 ≤ K0(R
2
0 − |x − x0|2)d0 , x ∈ BR0(x0), (28)

for some x0 ∈ � and positive constants d0 ≥ 1/(m − 1) and R0, K0 > 0.

Lemma 4.2. Let the conditions in Lemma 3.6 be valid with the initial values satisfying (28). 
Define a function

g(x, t) = ε(τ + t)σ
[(

η2 − |x − x0|2
(τ + t)β

)
+

]d

, x ∈ �, t ≥ 0,

where d = 1/(m − 1), β, σ ∈ R, ε > 0, η > 0, τ > 0. Then by appropriately selecting β > 0, 
σ > 0 ε, η and τ , the support of g(x, t) is contained in � for t ∈ (0, t0) with some t0 > 0 and the 
function g(x, t) is an upper solution of the first equation in (4) on � × (0, t0) corresponding to 
v(x, t) and the initial data u0. Therefore, u(x, t) ≤ g(x, t) and there exist a family of open sets 
{A(t)}t∈(0,t0) such that

suppu(·, t) ⊂ A(t) ⊂ �, t ∈ (0, t0),

and ∂A(t) has a finite derivative with respect to t .

Proof. This proof is similar to the proof of Lemma 4.1, except there is no structure condition (18)
and we need minor modifications. We still define h(x, t) and A(t) as in the proof of Lemma 4.1
and we assume x0 = 0 for simplicity. Let

η2 = R2
0

τβ
, ετσ−dβ ≥ K0 max{1,R

2(d0−d)
0 }, (29)

and C1, C2 be defined as in the proof of Lemma 4.1. We need to check the differential inequality 
(21) (i.e. (22)). A sufficient condition of (22) is
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σε(τ + t)σ−1h + εβ

m − 1
(τ + t)σ

|x|2
(τ + t)β+1

+ 2N
m

m − 1
εm(τ + t)mσ h

(τ + t)β
− C1χε(τ + t)σ−β 2|x|

m − 1

≥ m

(m − 1)2 εm(τ + t)mσ 4|x|2
(τ + t)2β

+ C2χε(τ + t)σ h, (30)

for all x ∈ A(t), t ∈ (0, t0). For simplicity, we denote (30) by LHS ≥ RHS.
According to (28), BR0(0) ⊂ �, there exists a R > R0 such that BR0(0) ⊂ BR(0) ⊂⊂ �. Let 

t̂ > 0 depending on β and τ such that

(
1 + t̂

τ

)β ≤ R2

R2
0

. (31)

Let t0 = min{τ, ̂t}. We see that for t ∈ (0, t0),

suppg(x, t) = A(t) = Bη(τ+t)β/2 ∩ � = BR0(1+t/τ )β/2 ∩ � ⊂ BR ∩ � = BR ⊂ �.

Then ∂g
∂n

= 0 and ∂gm

∂n
= 0 on ∂� for all t ∈ (0, t0). For x ∈ A(t)\BR0/2 and t ∈ (0, t0), we have

LHS − RHS ≥ σε(τ + t)σ−1h + εβ

m − 1
(τ + t)σ

|x|2
(τ + t)β+1

+ 2N
m

m − 1
εm(τ + t)mσ h

(τ + t)β
− C1χε(τ + t)σ−β 4|x|2

(m − 1)R0

− m

(m − 1)2 εm(τ + t)mσ 4|x|2
(τ + t)2β

− C2χε(τ + t)σ h

≥
(
σ + 2N

m

m − 1
εm−1(τ + t)(m−1)σ−β+1 − C2χ(τ + t)

)
ε(τ + t)σ−1h

+
( β

m − 1
(τ + t)−1 − 4m

(m − 1)2 εm−1(τ + t)(m−1)σ−β − 4C1χ

(m − 1)R0

)
ε(τ + t)σ−β |x|2

≥
(
σ + 2N

m

m − 1
εm−1τ (m−1)σ−β+1 min{1,2(m−1)σ−β+1} − 2C2χτ

)
ε(τ + t)σ−1h

+
( β

m − 1
(2τ)−1 − 4m

(m − 1)2 εm−1τ (m−1)σ−β max{1,2(m−1)σ−β}

− 4C1χ

(m − 1)R0

)
ε(τ + t)σ−β |x|2. (32)

We note that BR0/2 ⊂ BR0 ⊂ A(t) for t ∈ (0, t0) since β > 0. For x ∈ (BR0/2) ∩ A(t) and t ∈
(t, t0), we find that

h(x, t) =
(
η2 − |x|2

β

)
= R2

0
β

− |x|2
β

≥ R2
0
β

− (R0/2)2

β
≥ 3 R2

0
β

,

(τ + t) + τ (τ + t) τ τ 4 τ
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then we also have

LHS − RHS ≥ σε(τ + t)σ−1h + εβ

m − 1
(τ + t)σ

|x|2
(τ + t)β+1

+ 2N
m

m − 1
εm(τ + t)mσ h

(τ + t)β
− C1χε(τ + t)σ−β R0

m − 1

− m

(m − 1)2 εm(τ + t)mσ 4|x|2
(τ + t)2β

− C2χε(τ + t)σ h

≥
(
σ + 2N

m

m − 1
εm−1(τ + t)(m−1)σ−β+1 − C2χ(τ + t)

)
ε(τ + t)σ−1h

+
( β

m − 1
(τ + t)−1 − 4m

(m − 1)2 εm−1(τ + t)(m−1)σ−β
)
ε(τ + t)σ−β |x|2

− C1χε(τ + t)σ−β R0

m − 1

≥
(
σ − 2C2χτ

)
ε(τ + t)σ−1 3

4

R2
0

τβ
− C1χε(τ + t)σ−β R0

m − 1

+
( β

m − 1
(2τ)−1 − 4m

(m − 1)2 εm−1τ (m−1)σ−β max{1,2(m−1)σ−β}
)
ε(τ + t)σ−β |x|2, (33)

provided that σ ≥ 2C2χτ .
Let τ = 1, η = R0, ε = K0 max{1, R2(d0−d)

0 }, and β = (m − 1)σ with σ > 0 being sufficiently 
large such that

⎧⎪⎪⎨
⎪⎪⎩

β

2(m − 1)
− 4m

(m − 1)2 εm−1 − 4C1χ

(m − 1)R0
≥ 0,

(σ − 2C2χ)
3R0

4τβ
min{1,2β−1} − C1χ

m − 1
≥ 0.

Then (33) tells us LHS ≥ RHS for all x ∈ A(t) and t ∈ (0, t0). It follows that g(x, t) is an upper 
solution. The comparison principle Lemma 3.3 completes the proof. �

Lemma 4.2 implies the finite speed propagating property of the degenerate diffusion equation. 
We will present the exact propagating speed for a special structure initial data.

Lemma 4.3 (Exact propagating speed). Let the conditions in Lemma 3.6 be valid with the initial 
values satisfying

{
u0 = K0

[
(R2

0 − |x − x0|2)+
]d

, x ∈ �,

∇v0 · (x − x0) = −μ|x − x0|2, x ∈ Bδ
R0

(x0),
(34)

for some x0 ∈ � and positive constants d = 1/(m − 1), R0, K0, μ, δ > 0 such that BR0(x0) ⊂ �

and Bδ
R0

(x0) := {x ∈ BR0(x0); dist(x, ∂BR0(x0)) < δ}. Then

suppu(x, t) = {(θ, ρ(θ, t)); θ ∈ SN−1},
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where (θ, ρ) is the spherical coordinate centered at x0, ρ(θ, 0) = R0 for all θ ∈ SN−1, and the 
propagating speed

∂ρ(θ, t)

∂t

∣∣∣
t=0

= R0

( 2m

m − 1
Km−1

0 − χμ
)
, ∀θ ∈ SN−1.

Proof. Define

g±(x, t) = ε(τ + t)σ±
[(

η2 − |x − x0|2
(τ + t)β±

)
+

]d

, x ∈ �, t ≥ 0,

with ε = K0, τ = 1, η = R0, σ± ∈ R, β± ∈ R are to be determined. We have

g±(x,0) = K0
[
(R2

0 − |x − x0|2)+
]d = u0, x ∈ �,

and ∂g±
∂n

= 0, 
∂gm±
∂n

= 0 on ∂� at least for a small time interval since BR0 ⊂ �. Here we only aim 
to find the exact propagating speed and we only need to construct upper and lower solutions on 
a small time interval. We note that

∇g±(x,0) · ∇v0 = −ε(τ + t)σ±−βdhd−12(x − x0) · ∇v0

= 2με(τ + t)σ±−βdhd−1|x − x0|2,

for x ∈ Bδ
R0

(x0). Let

β = 4m

m − 1
Km−1

0 − 2χμ,

and β± approach β from above and below. Take σ+ > 0 sufficiently large and σ− < 0 with |σ−|
being sufficiently large, we can check as in the proof of Lemma 4.1 and next Lemma 4.4 that 
g±(x, t) are upper and lower solutions for a small time interval (0, T±), where T± > 0 depend 
on |β± − β|. Here we omit the details. Then the comparison principle Lemma 3.3 implies that 
there exists {Aβ±(t)}t∈(0,T±) such that

Aβ±(t) = BR0(1+t)β±/2(x0), t ∈ (0, T±),

and

Aβ−(t) ⊂ suppu(x, t) ⊂ Aβ+(t), t ∈ (0, T±).

Therefore,

∂ρ(θ, t)

∂t

∣∣∣
t=0

∈ [R0β−/2,R0β+/2].

Since β± approach β , we have ∂ρ(θ,0)
∂t

= R0β/2. �
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4.3. Eventual smoothness and expanding

The large time behavior in Lemma 3.4 and Lemma 3.7 shows that ‖v(·, t)‖W 1,∞(�) tends to 
zero as time grow. This indicates that the chemotaxis effect decays and the support will expand to 
the whole domain. Now we construct a self similar weak lower solution with expanding support.

Lemma 4.4. Let the conditions in Lemma 3.6 be valid with the initial data u0 ≥ 0, u0 �≡ 0 and �
be convex. Define a function

g(x, t) = ε(τ + t)σ
[(

η2 − |x − x0|2
(τ + t)β

)
+

]d

, x ∈ �, t > −τ,

where d = 1/(m −1), β > 0, σ < 0, ε, η > 0, τ ∈ R and x0 ∈ �. Then by appropriately selecting 
β , ε, τ , σ , η and x0, the function g(x, t) is a weak lower solution of the first equation in (4) on 
� × (t̂ , T̂ ) corresponding to v(x, t) and u0 for some T̂ > t̂ > 0. Therefore, u(x, t) ≥ g(x, t) and 
there exist t0 ∈ (t̂ , T̂ ), ε0 > 0, and a family of expanding open sets {A(t)}

t∈(t̂,T̂ )
, such that

A(t) ⊂ suppu(x, t), t ∈ (t̂ , T̂ ),

and A(t) = �, u(x, t) ≥ ε0 for all x ∈ � and t ∈ [t0, T̂ ].

Proof. Since u0 ≥ 0, u0 �≡ 0 and u0 ∈ C(�), the first equation in (4) shows that

ˆ

�

u(x, t)dx =
ˆ

�

u0(x) > 0, t > 0.

For any t > 0, there exists a x0(t) ∈ � such that u(x0(t), t) ≥ u := 1
|�|

´
�

u0(x) > 0. According 
to the uniform Hölder continuity of u(·, t), we find that there exists a R0 > 0 independent of t
such that

u(x, t) ≥ u

2
=: ε1, ∀x ∈ BR0(x0(t)). (35)

We denote C1(t) = ‖∇v(·, t)‖L∞(�) and C2(t) = ‖�v(·, t)‖L∞(�) for convenience. According 
to Lemma 3.7 and Lemma 3.8, C1(t) and C2(t) tend to zero. For fixed δ > 0 to be determined, 
let t̂ > 0 depend on δ such that

C1(t) ≤ δ, C2(t) ≤ δ, ∀t ≥ t̂ . (36)

Note that u(x, ̂t) ≥ ε1 on BR0(x0(t̂)). Without loss of generality, we may assume that BR0 =
BR0(x0(t̂)) ⊂ � and x0 = x0(t̂) = 0.

Similar to the proof of Lemma 4.1, we let

h(x, t) =
(
η2 − |x − x0|2

(τ + t)β

)
+, x ∈ �, t ≥ 0,

and
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A(t) =
{
x ∈ �; |x − x0|2

(τ + t)β
< η2

}
, t ≥ 0.

According to the definition of g, we see that ∂g
∂n

≤ 0 and ∂gm

∂n
≤ 0 on ∂� since � is convex, and 

for τ = 1 − t̂ we have

g(x, t̂) = ε[(η2 − |x|2)+]d ≤ ε11BR0 (x0) ≤ u0(x), x ∈ �,

provided that

η ≤ R0, εη2d ≤ ε1. (37)

In order to find a weak lower solution g, we only need to check the following differential in-
equality on A(t)

∂g

∂t
≤ �gm − χ∇ · (g∇v) = �gm − χ∇g · ∇v − χg�v, x ∈ A(t), t ∈ (t̂ , T̂ ), (38)

for some T̂ > t̂ to be determined.
A sufficient condition of inequality (38) is

σε(τ + t)σ−1h + εβ

m − 1
(τ + t)σ

|x|2
(τ + t)β+1

+ 2N
m

m − 1
εm(τ + t)mσ h

(τ + t)β
+ C1(t)χε(τ + t)σ−β 2|x|

m − 1

≤ m

(m − 1)2 εm(τ + t)mσ 4|x|2
(τ + t)2β

− C2(t)χε(τ + t)σ h, (39)

for all x ∈ A(t), t ∈ (t̂ , T̂ ). For simplicity, we denote (39) by LHS ≤ RHS. The estimates on the 
above inequality is quite similar to (30) in the proof of Lemma 4.2 except some terms are with 
inverse signs. Here, (32) and (33) are changed into

LHS − RHS ≤ σε(τ + t)σ−1h + εβ

m − 1
(τ + t)σ

|x|2
(τ + t)β+1

+ 2N
m

m − 1
εm(τ + t)mσ h

(τ + t)β
+ C1(t)χε(τ + t)σ−β 4|x|2

(m − 1)R0

− m

(m − 1)2 εm(τ + t)mσ 4|x|2
(τ + t)2β

+ C2(t)χε(τ + t)σ h

≤
(
σ + 2N

m

m − 1
εm−1(τ + t)(m−1)σ−β+1 + C2(t)χ(τ + t)

)
ε(τ + t)σ−1h

+
( β

m − 1
− 4m

(m − 1)2 εm−1(τ + t)(m−1)σ−β+1 + 4C1(t)χ(τ + t)

(m − 1)R0

)
ε(τ + t)σ−β−1|x|2

≤
(
σ + 2N

m
εm−1 max{1, (τ + T̂ )(m−1)σ−β+1} + C2(t)χ(τ + T̂ )

)
ε(τ + t)σ−1h
m − 1
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+
( β

m − 1
− 4m

(m − 1)2 εm−1 min{1, (τ + T̂ )(m−1)σ−β+1}

+ 4C1(t)χ(τ + T̂ )

(m − 1)R0

)
ε(τ + t)σ−β−1|x|2, x ∈ A(t)\BR0/2, t ∈ (t̂ , T̂ ), (40)

and (note that σ < 0)

LHS − RHS ≤ σε(τ + t)σ−1h + εβ

m − 1
(τ + t)σ

|x|2
(τ + t)β+1

+ 2N
m

m − 1
εm(τ + t)mσ h

(τ + t)β
+ C1(t)χε(τ + t)σ−β R0

m − 1

− m

(m − 1)2 εm(τ + t)mσ 4|x|2
(τ + t)2β

+ C2(t)χε(τ + t)σ h

≤
(
σ + 2N

m

m − 1
εm−1(τ + t)(m−1)σ−β+1 + C2(t)χ(τ + t)

)
ε(τ + t)σ−1h

+
( β

m − 1
− 4m

(m − 1)2 εm−1(τ + t)(m−1)σ−β+1
)
ε(τ + t)σ−β−1|x|2

+ C1(t)χε(τ + t)σ−β R0

m − 1

≤
(

2N
m

m − 1
εm−1 max{1, (τ + T̂ )(m−1)σ−β+1} + C2(t)χ(τ + T̂ )

)
ε(τ + t)σ−1η2

+
( β

m − 1
− 4m

(m − 1)2 εm−1 min{1, (τ + T̂ )(m−1)σ−β+1}
)
ε(τ + t)σ−β−1|x|2

+ σε(τ + t)σ−1 3

4
η2 + C1(t)χε(τ + t)σ−β R0

m − 1
, x ∈ (BR0/2) ∩ A(t), t ∈ (t̂ , T̂ ). (41)

Since � is bounded, there exists R > R0 such that � ⊂ BR(x0). Let η = R0, ε > 0, β ∈ (0, 1), 
τ = 1 − t̂ , T̂ > t̂ and σ = − 1−β

m−1 < 0 be chosen such that

⎧⎪⎨
⎪⎩

εη2d ≤ ε1, 2N m
m−1εm−1 ≤ −σ/4, β ≤ 2m

m−1εm−1,

δχ(T̂ − t̂ + 1) ≤ −σ/4, 4δχ(T̂ − t̂ + 1) ≤ 2m
m−1εm−1R0,

δχ(T̂ − t̂ + 1)1−β R0
m−1 ≤ −ση2/4, (T̂ − t̂ + 1)β/2 ≥ 2R/R0.

(42)

The above seven inequalities can be satisfied simultaneously in the following way. We first fix 
β ∈ (0, 1) sufficiently small such that Nβ ≤ (1 − β)/(4(m − 1)). Then we set ε = ε(β) > 0 such 
that 2m

m−1εm−1 = β . Now we can modify β to be smaller such that εη2d ≤ ε1. The first three 

inequalities are valid. Let L = e
2
β

ln 2R
R0 − 1 and

δ = min{−σ/(4χ(L + 1)),
2m

m − 1
εm−1R0/(4χ(L + 1)),−ση2(m − 1)/(4χ(L + 1)1−βR0)}.

For this δ > 0, let t̂ be chosen such that (36) is fulfilled and T̂ = t̂ + L.
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For those parameters, we see that (42) is valid and (40), (41) tells us LHS ≤ RHS for all 
x ∈ A(t) and t ∈ (t̂ , T̂ ), i.e. (39). It follows that g(x, t) is a lower solution. The comparison 
principle Lemma 3.3 shows that

u(x, t) ≥ g(x, t) = ε(τ + t)σ
[(

η2 − |x − x0|2
(τ + t)β

)
+

]d

,

for all x ∈ � and t ∈ (t̂ , T̂ ). We note that for this lower solution, its support satisfies

A(t̂) = Bη(τ+t̂ )β/2(x0) ∩ � = BR0(x0),

and

A(T̂ ) = B
η(τ+T̂ )β/2(x0) ∩ � = B

R0(T̂ −t̂+1)β/2(x0) ∩ � ⊃ B2R(x0) ∩ � = �,

since (T̂ − t̂ + 1)β/2 ≥ 2R/R0 in (42) and � ⊂ BR(x0). There exists a t1 ∈ (t̂ , T̂ ) such that

η2 − |x − x0|2
(τ + t)β

≥ 0, ∀x ∈ �, t ∈ (t1, T̂ ),

which means A(t) = � for t ∈ (t1, T̂ ). And there exists a t0 ∈ (t1, T̂ ) such that

η2 − |x − x0|2
(τ + t)β

≥ η2

2
, ∀x ∈ �, t ∈ (t0, T̂ ),

and thus

u(x, t) ≥ g(x, t) ≥ ε(T̂ − t̂ + 1)σ
(η2

2

)d =: ε0, ∀x ∈ �, t ∈ (t0, T̂ ).

The proof is completed. �
Remark 4.2. It is interesting to compare the self similar weak lower solution g(x, t) in the proof 
of Lemma 4.4 to the Barenblatt solution of porous medium equation

B(x, t) = (1 + t)−k
[(

1 − k(m − 1)

2mN

|x|2
(1 + t)2k/N

)
+

] 1
m−1

,

with k = 1/(m − 1 + 2/N). The Barenblatt solution B(x, t) is decaying at the rate (1 +
t)−1/(m−1+2/N) in L∞(RN) and the support is expanding at the rate (1 + t)k/N . While the self 
similar weak lower solution g(x, t) is decaying at the rate (1 + t)−(1−β)/(m−1) and its support 
is expanding at the rate (1 + t)β/2. Here in the proof we have selected β > 0 sufficiently small, 
which means the support of g is expanding with a much slower rate and the maximum of g is 
decaying at a slightly faster rate.

Now that we have proved the lower bound of u(x, t) on � × (t0, T̂ ), we will show the globally 
lower bound at large time, as well as the non-degeneracy, regularity for large time behavior.



444 T. Xu et al. / J. Differential Equations 268 (2020) 414–446
Lemma 4.5 (Eventual smoothness). Let the conditions in Lemma 4.4 be valid. Then u(x, t) ≥ ε0
for all x ∈ � and t ≥ t0 with t0 > 0 and ε0 > 0 being defined as in the proof of Lemma 4.4, 
u ∈ C2,1(� × [t0, ∞)) and there exist C > 0 and c > 0 such that

‖u(·, t) − u‖L∞(�) + ‖v(·, t)‖W 1,∞(�) ≤ Ce−ct , t > 0,

where u = ´
�

u0dx/|�|.

Proof. We point out that

ε0 = ε(T̂ − t̂ + 1)σ
(η2

2

)d = ε(L + 1)σ
(η2

2

)d

is independent of δ and t̂ therein, since L only depends on β , R0 and R (note that β , σ , ε depend 
only on ε1 and ε1 = u/2 is fixed). Therefore, we can take t̂ larger to be t̂ + θ with any θ > 0 such 
that (36) is also valid. Lemma 4.4 shows that u(x, t) ≥ ε0 for all x ∈ � and t ∈ [t0 + θ, T̂ + θ ]. 
Since ε0 > 0 is fixed and θ > 0 is arbitrary, we have u(x, t) ≥ ε0 for all x ∈ � and t ≥ t0. 
It follows that the first equation in (4) is non-degenerate and uniform parabolic. The Hölder 
regularity and exponential decay can be verified similar to the proof of Theorem 1.3 in [51]. �
Acknowledgment

The research of T. Xu is supported by the Innovation Project of Graduate School of South 
China Normal University Grant No. 2018LKXM005. The research of S. Ji is supported by NSFC 
Grant No. 11701184. The research of M. Mei is supported in part by NSERC Grant RGPIN 
354724-2016, and FRQNT Grant No. 2019-CO-256440. The research of J. Yin is supported in 
part by NSFC Grant No. 11771156 and NSF of Guangzhou Grant No. 201804010391.

References

[1] N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern 
formation in biological tissues, Math. Models Methods Appl. Sci. 25 (9) (2015) 1663–1763.

[2] N. Bellomo, Y. Tao, M. Winkler, Cross-diffusion models: analytic and multiscale problems, Math. Models Methods 
Appl. Sci. 28 (11) (2018) 2097–2102.

[3] N. Bellomo, M. Winkler, A degenerate chemotaxis system with flux limitation: maximally extended solutions and 
absence of gradient blow-up, Commun. Partial Differ. Equ. 42 (3) (2016) 436–473.

[4] N. Bellomo, M. Winkler, Finite-time blow-up in a degenerate chemotaxis system with flux limitation, Transl. Am. 
Math. Soc. 4 (2) (2017) 31–67.

[5] E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czirók, T. Vicsek, Generic modelling of cooperative growth 
patterns in bacterial colonies, Nature 368 (6466) (1994) 46.

[6] S. Bian, J.G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent 
m > 0, Commun. Math. Phys. 323 (3) (2013) 1017–1070.

[7] M. Burger, M. Di Francesco, Y. Dolak-Struss, The Keller-Segel model for chemotaxis with prevention of over-
crowding: Linear vs. nonlinear diffusion, SIAM J. Math. Anal. 38 (4) (2006) 1288–1315.

[8] L. Cisneros, The Organized Melee: Emergence of Collective Behavior in Concentrated Suspensions of Swimming 
Bacteria and Associated Phenomena, 2008.

[9] J. Fischer, Advection-driven support shrinking in a chemotaxis model with degenerate mobility, SIAM J. Math. 
Anal. 45 (3) (2013) 1585–1615.

[10] M. Di Francesco, A. Lorz, P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear 
diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst. 28 (4) (2010) 1437–1453.

http://refhub.elsevier.com/S0022-0396(19)30348-1/bib42656C6C6F6D6F32303135s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib42656C6C6F6D6F32303135s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib42656C6C6F6D6F32303138s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib42656C6C6F6D6F32303138s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib42656C6C6F6D6F3230313641s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib42656C6C6F6D6F3230313641s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib42656C6C6F6D6F32303137s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib42656C6C6F6D6F32303137s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib42656E3139393447656E65726963s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib42656E3139393447656E65726963s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4269616E3230313344796E616D6963s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4269616E3230313344796E616D6963s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib42757267657232303036546865s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib42757267657232303036546865s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4369736E65726F7332303038546865s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4369736E65726F7332303038546865s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4669736368657232303133416476656374696F6Es1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4669736368657232303133416476656374696F6Es1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4672616E636573636F3130s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4672616E636573636F3130s1


T. Xu et al. / J. Differential Equations 268 (2020) 414–446 445
[11] M. Di Francesco, J. Rosado, Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding, 
Nonlinearity 21 (21) (2008) 2715–2730, 16 p.

[12] W.S. Gurney, R.M. Nisbet, The regulation of inhomogeneous populations, J. Theor. Biol. 52 (2) (1975) 441–457.
[13] M.E. Gurtin, R.C. Maccamy, On the diffusion of biological populations, Math. Biosci. 33 (1) (1977) 35–49.
[14] T. Hillen, K.J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009) 183.
[15] C.H. Jin, Y.F. Wang, J.X. Yin, Global solvability and stability to a nutrient-taxis model with porous medium slow 

diffusion, arXiv :1804 .03964.
[16] K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda, N. Shigesada, Modeling spatio-temporal patterns generated 

by bacillus subtilis, J. Theor. Biol. 188 (2) (1997) 177–185.
[17] E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970) 

399–415.
[18] I. Kim, Y. Yao, The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle, 

SIAM J. Math. Anal. 44 (2) (2012) 568–602.
[19] M.A. Lewis, B. Li, Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion 

models, Bull. Math. Biol. 74 (10) (2012) 2383–2402.
[20] J.F. Leyva, C. Málaga, R.G. Plaza, The effects of nutrient chemotaxis on bacterial aggregation patterns with non-

linear degenerate cross diffusion, Phys. A Stat. Mech. Appl. 392 (22) (2013) 5644–5662.
[21] G.M. Lieberman, Intermediate Schauder theory for second order parabolic equations iv: time irregularity and regu-

larity, Differ. Integral Equ. 5 (1992) 1219–1236.
[22] F. Lutscher, Density-dependent dispersal in integrodifference equations, J. Math. Biol. 56 (2008) 499–524.
[23] M. Ma, Z.A. Wang, Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with 

volume-filling effect, Nonlinearity 28 (8) (2015) 2639–2660.
[24] M. Mansour, Traveling wave solutions of a nonlinear reaction-diffusion-chemotaxis model for bacterial pattern 

formation, Appl. Math. Model. 32 (2) (2008) 240–247.
[25] T. Matsuyama, M. Matsushita, Fractal morphogenesis by a bacterial cell population, CRC Crit. Rev. Microbiol. 

19 (2) (1993) 117–135.
[26] J.D. Murry, Mathematical Biology I: An Introduction, Springer, New York, USA, 2002.
[27] M. Ohgiwari, M. Matsushita, T. Matsuyama, Morphological changes in growth phenomena of bacterial colony 

patterns, J. Phys. Soc. Jpn. 61 (3) (1992) 816–822.
[28] K.J. Painter, J.A. Sherratt, Modelling the movement of interacting cell populations, J. Theor. Biol. 225 (2003) 

327–339.
[29] G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen, Bull. Math. Biol. 40 (5) (1978) 671–674.
[30] R.A. Satnoianu, P.K. Maini, F.S. Garduno, J.P. Armitage, Travelling waves in a nonlinear degenerate diffusion 

model for bacterial pattern formation, Discrete Contin. Dyn. Syst., Ser. B 1 (3) (2012) 339–362.
[31] J.A. Sherratt, On the form of smooth-front travelling waves in a reaction-diffusion equation with degenerate nonlin-

ear diffusion, Math. Model. Nat. Phenom. 5 (5) (2010) 64–79.
[32] J.A. Sherratt, B.P. Marchant, Nonsharp travelling wave fronts in the fisher equation with degenerate nonlinear dif-

fusion, Appl. Math. Lett. 9 (5) (1996) 33–38.
[33] Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic sys-

tems of chemotaxis, Differ. Integral Equ. 20 (2) (2007) 133–180.
[34] Z. Szymanska, C. Morales-Rodrigo, M. Lachowicz, M. Chaplain, Mathematical modelling of cancer invasion tissue: 

the role and effect of nonlocal interactions, Math. Models Methods Appl. Sci. 19 (2009) 257–281.
[35] Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl. 381 (2011) 

521–529.
[36] Y.S. Tao, M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemo-

taxis system with consumption of chemoattractant, J. Differ. Equ. 252 (3) (2012) 2520–2543.
[37] Y.S. Tao, M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous 

medium diffusion, Discrete Contin. Dyn. Syst., Ser. A 32 (5) (2013) 1901–1914.
[38] Y.S. Tao, M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-stokes system with 

nonlinear diffusion, Ann. Inst. Henri Poincaré 30 (1) (2013) 157–178.
[39] I. Tuval, L. Cisneros, C. Dombrowski, C.W. Wolgemuth, J.O. Kessler, R.E. Goldstein, Bacterial swimming and 

oxygen transport near contact lines, Proc. Natl. Acad. Sci. 102 (7) (2005) 2277–2282.
[40] J.L. Vàzquez, The Porous Medium Equation: Mathematical Theory, Oxford Univ. Press, 2006.
[41] J. Wakita, K. Komatsu, A. Nakahara, T. Matsuyama, M. Matsushita, Experimental investigation on the validity of 

population dynamics approach to bacterial colony formation, J. Phys. Soc. Jpn. 63 (3) (1994) 1205–1211.
[42] L. Wang, C. Mu, K. Lin, J. Zhao, Global existence to a higher-dimensional quasilinear chemotaxis system with 

consumption of chemoattractant, Z. Angew. Math. Phys. 66 (4) (2015) 1–16.

http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4672616E636573636F3230303846756C6C79s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4672616E636573636F3230303846756C6C79s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4775726E657931393735546865s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib47757274696E313937374F6Es1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib48696C6C656E3230303941s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4A696E6172586976s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4A696E6172586976s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4B61776173616B69313939374D6F64656C696E67s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4B61776173616B69313939374D6F64656C696E67s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib3131s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib3131s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4B696D32303132546865s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4B696D32303132546865s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4C6577697332303132537072656164696E67s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4C6577697332303132537072656164696E67s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4C6579766132303133546865s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4C6579766132303133546865s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4C69656265726D616Es1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4C69656265726D616Es1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4C75747363686572s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4D616E6A756E32303135476C6F62616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4D616E6A756E32303135476C6F62616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4D616E736F75723230303854726176656C696E67s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4D616E736F75723230303854726176656C696E67s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4D6174737579616D61313939334672616374616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4D6174737579616D61313939334672616374616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4D75727279s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4F68676977617269313939324D6F7270686F6C6F676963616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4F68676977617269313939324D6F7270686F6C6F676963616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib5368657272617474s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib5368657272617474s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib526F73656E31393738537465616479s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib5361746E6F69616E753230313254726176656C6C696E67s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib5361746E6F69616E753230313254726176656C6C696E67s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib5368657272617474323031304F6Es1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib5368657272617474323031304F6Es1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib5368657272617474313939364E6F6E7368617270s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib5368657272617474313939364E6F6E7368617270s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib5375676979616D613230303754696D65s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib5375676979616D613230303754696D65s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib537A796D616E736B61s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib537A796D616E736B61s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib54616F323031314A4D4141s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib54616F323031314A4D4141s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib54616F323031324576656E7475616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib54616F323031324576656E7475616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib54616F32303133476C6F62616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib54616F32303133476C6F62616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib54616F323031334C6F63616C6C79s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib54616F323031334C6F63616C6C79s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib547576616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib547576616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib504D45s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57616B697461313939344578706572696D656E74616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57616B697461313939344578706572696D656E74616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57616E674C3135s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57616E674C3135s1


446 T. Xu et al. / J. Differential Equations 268 (2020) 414–446
[43] Z.A. Wang, T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos 17 (3) 
(2007) 299–304.

[44] Z.A. Wang, M. Winkler, D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model 
with volume filling effect and degenerate diffusion, SIAM J. Math. Anal. 44 (44) (2012) 3502–3525.

[45] M. Winkler, Does a ‘volume-filling effect’ always prevent chemotactic collapse?, Math. Methods Appl. Sci. 33 (1) 
(2010) 12–24.

[46] M. Winkler, Aggregation vs. global diffusive behavior in the higher dimensional Keller-Segel model, J. Differ. Equ. 
248 (2010) 2889–2905.

[47] M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-stokes system with nonlinear 
diffusion and general sensitivity, Calc. Var. Partial Differ. Equ. 54 (4) (2015) 3789–3828.

[48] M. Winkler, Global existence and stabilization in a degenerate chemotaxis-stokes system with mildly strong diffu-
sion enhancement, J. Differ. Equ. 264 (2018) 6109–6151.

[49] M. Winkler, K.C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, 
Nonlinear Anal. 72 (2) (2010) 1044–1064.

[50] Z. Wu, J. Zhao, J. Yin, H. Li, Nonlinear Diffusion Equations, World Scientific Publishing Co. Pvt. Ltd., 2001.
[51] T.Y. Xu, S.M. Ji, C.H. Jin, M. Mei, J.X. Yin, Early and late stage profiles for a chemotaxis model with density-

dependent jump probability, Math. Biosci. Eng. 15 (2018) 1345–1385.
[52] T.Y. Xu, S.M. Ji, M. Mei, J.X. Yin, Traveling waves for time-delayed reaction diffusion equations with degenerate 

diffusion, J. Differ. Equ. 265 (2018) 4442–4485.
[53] Y. Yao, A.L. Bertozzi, Blow-up dynamics for the aggregation equation with degenerate diffusion, Physica D 260 (5) 

(2013) 77–89.
[54] J. Zheng, Y. Wang, A note on global existence to a higher-dimensional quasilinear chemotaxis system with con-

sumption of chemoattractant, Discrete Contin. Dyn. Syst., Ser. B 22 (2) (2017) 669–686.

http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57616E6732303037436C6173736963616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57616E6732303037436C6173736963616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57616E6732303132476C6F62616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57616E6732303132476C6F62616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57696E6B6C65723130766F6C756D65s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57696E6B6C65723130766F6C756D65s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57696E6B6C65722D4167677265676174696F6Es1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57696E6B6C65722D4167677265676174696F6Es1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57696E6B6C657232303135426F756E6465646E657373s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57696E6B6C657232303135426F756E6465646E657373s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57696E6B6C657232303138476C6F62616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57696E6B6C657232303138476C6F62616Cs1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57696E6B6C657231304E41s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib57696E6B6C657231304E41s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib4E4445s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib58754D4245s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib58754D4245s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib58754A4445s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib58754A4445s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib59616F32303133426C6F77s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib59616F32303133426C6F77s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib5A68656E67s1
http://refhub.elsevier.com/S0022-0396(19)30348-1/bib5A68656E67s1

	On a chemotaxis model with degenerate diffusion: Initial shrinking, eventual smoothness and expanding
	1 Introduction
	2 Main results and notations
	3 Preliminaries: comparison principle and Hölder continuity
	3.1 Comparison principle of degenerate diffusion equations
	3.2 Regularity of Hölder continuity

	4 Propagation properties: shrinking versus expanding
	4.1 Initial shrinking caused by the chemotaxis
	4.2 Finite speed propagating and the exact propagating speed
	4.3 Eventual smoothness and expanding

	Acknowledgment
	References


