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1. Introduction

In this paper, we consider the multi-dimensional isentropic Euler-Poisson equations for the unipo-
lar hydrodynamical model of semiconductor device (for simplicity but without loss of generality, we
consider 3-D case throughout the paper)

n; + div(nu) =0,
(nu); +divinudu) + Vp(n) =nVw — ? (1.1)
Aw=n—b(x),

for x = (x1,x2,X3) € R3, and t > 0. Here n = n(x,t), u= (uy, uz, u3z)(x, t), and w = w(x, t) represent
the electron density, the electron velocity and the electric potential, respectively. In what follows, we
also denote

J=(1,J2,J3):=nu and E=(E1,E2, E3):=Vow (1.2)

as the electron current density and the electric field, respectively. The coefficient T denotes the relax-
ation time. Since our interest here is the large-time behavior of the solutions rather than the limit of
relaxation times, so without loss of generality, we assume throughout this paper T = 1. The function
b(x) stands for the density of fixed, positively charged background ions, the so-called doping profile.
p(n) is the pressure-density relation satisfying p’(n) > 0 for n > 0.

For the system (1.1), the initial conditions are prescribed as

n(x,0) =ng(x) > 0, (13)
u(x, 0) = up(x), '
with
li? no(x) =ny >0,
X1 —Fo00 2
lim uo(x) = us = (us.0,0), for any fixed (x2, x3) € R*, (1.4)
X1—*o0
and Vw(x,t) = E(x,t) satisfies the following boundary condition at x; = —oc0
lim Vwk,t)= lim E(x,t)=E_=(E_,0,0), (1.5)
X1—>—00 X1—>—Q

where ni, uy and E_ are given state constants.

The study on hydrodynamical system of semiconductor devices has been one of hot spots of re-
search in mathematical physics, see [1-16,18-35] and the references therein. Among them, the most
studies are related only to the 1-D case, and the study to the n-D case is very limited. For the unipo-
lar isentropic and nonisentropic hydrodynamical equations of semiconductors (one carrier type) in
1-D case, Degond and Markowich [3,4], Fang and Ito [5], Gamba [6], Tsuge [33], and Nishibata and
Suzuki [29] investigated the existence and uniqueness of (subsonic) 1-D stationary solutions. Such
stationary solutions are also called the (planar) stationary waves to the original equations (1.1). Later
on, Luo, Natalini and Xin [23] proved that such stationary solutions for the Cauchy problem are stable
time-asymptotically, when the state constants of the current density are zero, ie., [ =J_=E_=0
(the switch-off case). Huang, Pan and Yu [17] established a framework for the large time behavior of
general uniformly bounded weak entropy solutions to the Cauchy problem of Euler-Poisson system of
semiconductor devices. Then they proved the bounded weak entropy solutions converge to the sta-
tionary solutions exponentially in time. They had to need such a stiff condition due to a technical
difficulty in reformulating the perturbed system in L2-sense. Recently, we [16] successfully obtained
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the stability of stationary waves without such a stiff condition by ingeniously constructing a new
kind of correct functions to delete the gaps between the original solution and the stationary waves in
L2-space, such a new technique was first introduced by Huang, Mei and Wang [15] for the study of
bipolar semiconductor models. For the initial-boundary value problem in 1-D case, Li, Markowich and
Mei [19] showed the stability of stationary solutions within a bounded domain [0, 1] in the almost
flat doping case, which then was improved by Guo and Strauss [7] and Nishibata and Suzuki [29,30]
even in the non-flat doping case.

However, for the multi-dimensional case, the stability of the corresponding planar stationary waves
is never dealt due to the particular difficulty of the system itself. To solve this problem is our main
target in the present paper.

Based on our results in the first part of this series of study [16] for 1-D case, we consider the
stability problem of multi-dimensional unipolar hydrodynamic model of semiconductors for multi-
dimensional case. By using the basic energy method, we can further prove the stability of the planar
stationary waves with exponential decay rates. More precisely, when the initial perturbations around
the planar stationary waves are small enough, we prove that the solutions of (1.1) converge time-
exponentially to the corresponding planar stationary waves in the form

| —®) . = 0™,
[d=D®], =0, for some v > 0. (1.6)
(Vo —B)®)] j = 0(De™™,

Here, J(x1) = (J(x1), 0, 0), E(x1) = (E(x1),0,0), and (1, J, E)(x1) is the stationary scalar solution for
the system (1.1) in 1-D case, which is called the planar stationary wave for the multi-dimensional
solution of (1.1). For details, we refer to Section 2 for the precise definition of planar stationary waves.

The interesting thing of (1.6) is that the current density J converges to a constant state which is
independent of the initial current densities, but is determined by the initial-end state of electron
density and the electric field at x; = —o0.

Since we consider the stability of planar stationary waves, we need to technically assume in this
paper that

b(x)=b(x1)eC4(R) and lim b(x;) =n4,
X1 —> %00

0 , +00 5 (1.7)
[|b(x1)—n_| dx1 + / |b(x1) —ny|"dx; < Cp
—00 0

where Cp, > 0 is a positive constant.

The rest of this paper is arranged as follows. In Section 2, we state some well-known results on
the stationary solutions, and the results in [16] which will be used later in this paper. In Section 3,
we reformulate the original system (1.1), then introduce our main results, namely, the stability of
the planar stationary wave. In Section 4, the main effort is contributed to prove that the original
solutions of the Euler-Poisson equations (1.1) converges to the corresponding 1-D stationary solution,
the so-called planar stationary wave.

Notation. Throughout this paper, Co, Cj, etc. always denote some specific positive constants, and C
denotes the generic positive constant. L2(R?) is the space of square integrable real valued function
defined on R3 with the norm || - ||, and H¥(R3) (H* without any ambiguity) denotes the usual Sobolev
space with the norm || - ||, especially || - |[o = || - ||. For the nonnegative multi-indexes o = (o1, o2, @3)
and B = (B1, B2, B3), we define

loe| = loeg | + Jeea| + o3| (1.8)
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and
a<B, ifa;<B, fori=1,2,3. (1.9)
2. Planar stationary waves and some preliminaries
In this section, we are going to introduce the well-known results on the stationary solutions to the
corresponding steady-state equation of (1.1), the so-called nonlinear stationary waves. For later need,

we will also introduce the stability of stationary waves results for 1-D case showed in [16].
For 1-D case, the system of (1.1), (1.3) and (1.5) can be written as follows

ﬁ[ + jX] = Oa
- J? -
Jot (7 +p(ﬁ>) —RE- ],
_ 3 X (2.1)
Eq=n—-bx1),
@, Dle=o = (lo(x1), Jo(x1)) = (n+, J+), asx; — oo,
Elxy=—oo = E_,
where Ji+ =nyuy. The corresponding 1-D steady-state equations are
J = const,
72 .
(T+p(ﬁ)> =nE -], (2.2)
n X
EX] = ﬁ - b(X]),
with the boundary condition
lim (@, E)(x1) = (n_, E_), lim fi=n,. (2.3)
X1—>—00 X1—>—00
Let
b, = inf b(xq) >0 and b* = supb(xq) > 0. (2.4)
Xx1€R x1€R

The existence and uniqueness of the stationary wave for the steady-state equations (2.2) and (2.3) are
given in [19,23] as follows.

Proposition 2.1. (See [19,23].) Assume that b’ (x1) € L1(R) N H*(R) and b./p’(b,) > [n_E_|, then there
exists a unique smooth solution (i, J, E)(x1) of (2.2) and (2.3), which satisfies

J=n_E_, (2.5)
. - _E_
(7, E)(+00) = (n+, ”n+ ) (2.6)
b, <n < b, (2.7)
i —b(x1)| = 0(De ™M asx; — Loo, (2.8)

I —bls < Ci(ar + oz +3), (2.9)
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_ 1
|ﬁX1 | + |ﬁX1X1 | + |ﬁX1X1X1 | + |ﬁX1X1X1X1| < CZOQf ’ (210)
~ — 1
[El < G3(IE-| + ), (211)
|EX1 | + |EX1X1 | + |EX1X1X1| + |EX1X1X1X1| < C4(X4, (212)

where C; (i=1, 2, 3, 4) are some positive constants dependentonn_, E_, b, and b*, a; (i =1, 2, 3,4) are
defined as follows

oy = ||b’Hi2 +|b'|l;+ + llogny —logn_|, (213)
oy =ar +ai + b+ '] . (214)
a3 =3 + ooy + b o + b1 + ] s (215)

2 6 2 2 2 2
0t = 0" A 7] o - 57 [ 415 N - 10 e 11"
2 11 2 11 11 11
b7 fixet o + b iwes of +onaz +ofoy +agog
+a1%a2% +a1%oz2a3%. (2.16)

As we know (see [16] for details), since both J(x1,t) — J(x1), E(x1,t) — E(x1) ¢ L%(R), such a
difficulty comes out from the state constants Ji # 0 and E4 # 0 (the switch-on case), so we need
technically to construct the so-called correction function (11, J, E)(x1,t) to delete these gaps, such that

fi(x1, t) —Ax1, t) —ii(x1) € L*(R),
J@i.6) = J(x1,t) — J(x1) € L2(R),
E(u,t) — E(,t) — E(x) e LA(R),

where such a correction function (4, ], E)(x1,t) is constructed in [16] as follows, which depends on
the given initial data:

%(m (1 4+ r)ert 4+ Ax(1 + rp)e*2hmg(xq), for 1 —4n, >0,
0.6 %((AA; + %Ag)e’%t + %A4te*%t)m0(x1), for1—4n, =0,
A(xq,t) =

2= ((As + /An, — 1 Ag) cos(Y1 )

+ (Ag — /4n, — 1 As) Sin(iﬂgﬂt))e‘%tmom), for1—4n, <0,
and
(A1t + Aze’2t) [ mo(y)dy + (J— —n_E_)e™",
for1—4n, >0,
Joen ) = (Aze™/2 4 Agte™72) [*1 mo(y)dy + (J— —n_E_)e™",

for1—4n, =0,
(As cos(LE=1) + Agsin(L=L))e ™2 [* mo(y)dy + (J- —n_E_)e™,
for1—4n, <0,

and
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A (A1 +2DeM + A (1 + a2)e*2)) [*L mo(y)dy, for 1 —4ny >0,
%((M + %A3)€_%t + %A4t9_%t) M mo(y)dy, for 1 —4n, =0,
ﬁ((/\s + mAg)cos(@t)

+ (Ag — AT —TAs)sin(L=1t))e=3t (M mo(y)dy, for1—4n, <0,

Ex,t0=

where mg(x1) > 0 satisfies

mp € C§°(R), suppmyg < [—Lo, Lo, /mo(y)dy =1
R

for a large number Ly > 0, and the other constants are given by

N v L I

1= 2 )

L Sl

2= >
2

E.=E_+ / [lo(y) —b(y)]dy,

Av=J4—]-— Ay

1
Az =~ LA+ A0 Us = Jo) —ny By +noE-].
A3=As= ] — ],

1
Ag=niEy —n_E_— 5(]+ =],

2 1
Ag = ﬁ[nﬂﬂ —-n_E_— 5(]+ - ]7)i|-

Now we introduce the stability results of stationary waves for 1-D case, which were given in our
previous work [16].

Proposition 2.2. (See [16].) Let (fi, ii, E)(x1) be stationary wave of (2.2) and (2.3). Denote

X1

zo(x1) = / [fio(y) —1i(y,0) —fi(y + x0)] dy.

—0o0

(217)

z1(x1) = Jo(x1) — J(x1,0) — J (X1 +x0),
and

4

§:=luyl+ u_|+1E_|+1Ex|+ Y ai+llzollys + lz1llys- (218)
i=1

Then there is a constant 8y > 0 such that when 8 < 8¢, the solution (i1, J, E) of the IVP (2.1) is unique and
globally exists, and satisfies the following decay estimates
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|9iad, G — ) ()| ;o0 < CoEHE,
|oia], @ — W) ()], <Ce™, i=0,1; j=0,1,2,3,4, (2.19)
<

|9i8d, (E — E)(®©)| joo < CS€™HE,

—

(x1) ,U(xq,t) = Jo.0 and p is a positive constant.

where li(x1) := L FTE)

=

3. Convergence to planar stationary waves

Let (n,u, w)(x,t) be the solution of the multi-dimensional system (1.1)-(1.5), and let u(x{,t) =
(@(x1,1),0,0), E(x1,t) = (E(x1, ), 0,0), where i1(xq,t) = ,{8{‘} 2 and (@, J, E)(x1,t) is the scalar solu-
tion of (2.1) in 1-D. Now we define

d(x,t) :=n(x,t) —n(x1,t), (31)
W (x,t):=ux,t) —u(xi,t). ’
From (1.1) and (2.1), we can reduce the system to
¢¢ +div(n¥ + ¢¥ + pu) =
n _
lIIt+'II+p( +¢)V¢ (Vw —E) =—L, (3.2)
n+¢
div(Vw — E) = ¢,
where
L=0Vn+uV¥ +¥Vu+vVy,
_p@+¢) p'@ ~é (3.3)
n+¢ n ’
Notice that
curl(Vw)=0 and curl(E)=0 whichimply curl(Vow —E)=0, (34)
so there exists a function H(x,t) such that
VH=Vw—E. (3.5)
Thus, we can reduce (3.2) into
¢ +div(n¥ + oW + ¢pu) =0
wt+w+wv¢—w=—u (3.6)
n+¢
AH=¢,
with the initial data
¢(x,0) =no(x) — g (x1) =: do(x) € H>(R?), 37)

W (x,0) = up(x) — g (x1) =: Wo(x) € H>(R?),

and the boundary condition
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|[VH(x,t)] = 0 as |x| — +oo. (3.8)

We also define

{AHO(X) ==np(x) — g (x1), (39)
Ho(x) — 0, as |x|] — +oo,
and

1= | (g0, Wo, VHO)| 3 z3)- (3.10)

Now we are ready to state the stability results for the planar stationary waves in R as follows.

Theorem 3.1. Let b(x) = b(x1) satisfy (1.7) and let § + n < 1, where § is defined in (2.18). Then there exists
a unique global smooth solution (n, u, Vw) for 3-D unipolar hydrodynamic model for semiconductor system
(1.1)-(1.5) and satisfies

n—i,u—u, Vo —Ee ([0, 00), H*(R?)) (3.11)

and

|(n—f,u—a, Vo —E)(t)| ;s < Cne™",  for some constant v > 0, (3.12)

s

which implies, by Sobolev’s inequalities in this 3-D case, that

[n—f,u—a, Vo —-E)®)| . <Cne ™ (313)

12

and

[(n—n,u—ua, Vo -E)©®)|,, <Cne™, for2<p<oo. (3.14)

|LP

As we mentioned before (originally, see the first part of [16]), there are some LP-gaps (1 < p < o0)
between the 1-D solution (i, i, E)(x, t) and the 1-D stationary wave (fi, i1, E)(x, t), so one has only the
L*-convergence (2.19) of 1-D solution (1, @, E)(x, t) and the 1-D stationary wave (71, @, E)(x, t). There-
fore, from Theorem 3.1 and Proposition 2.2, one can immediately obtain the following L°°-stability of
the planar stationary wave.

Corollary 3.2 (Convergence to planar stationary waves). Under the conditions of Theorem 3.1 and Proposi-
tion 2.2, the solution (n, u, Vw) for 3-D system (1.1)-(1.5) converges to its planar stationary wave (1, i, E)(x1)
(the steady-state solution of (2.2) and (2.3)) as follows

[(n =) ®) |, <O0Me™,
[u—@(©®)],~ <O@e™, (3.15)
[(Vo —E)(©)],~ < 0(De™",

where @i(x1) = (il(x1), 0, 0), E(x1) = (E(x1), 0, 0).
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4. A priori estimates

In order to prove Theorem 3.1 by the energy method with the continuous extension argument
(cf. [27]), as we know, the crucial step is to establish the a priori estimates for the solution. This will
be our main target in this section.

Letting T € (0, +o0], we define the solution space for

X(T) = {(¢, ¥, VH)(x,t) | (¢, ¥, VH)(x,t) € C(0, T; H}(R?)), 0<t < T} (4.1)

with the norm

N(TY? = sup |, %, VID®] - (42)
o<t<T

Xt

Let N(T)% < &%, where ¢ is sufficiently small which will be determined later. It is noted that, (4.2)
with the Sobolev inequality || f ;o (gs) < CI fII"/4|V2f|>/* gives

1

DIV VHY©O) | o g5, < Ce- (4.3)
k=0

It is easy to verify from (3.1) and (4.3) that, there exists a positive constant c¢ such that

O<E<n:¢+ﬁ<c. (4.4)

Remark 4.1. Before we deal with the a priori estimates, we can get an estimate about H(x, t), which
will be used later. Noticing that AH(x, t), VH(x, t) € L>(R?), we can easily obtain

1
|Hx,t)| = /—¢>(y,t)dy+C‘
A |x — I

1
= AH(y,t)dy—i—C‘
[ Ix—yl

R

= /V(p{iy')VH(y,t)dy—kC’<f<+oo. (4.5)
R3

Now we are going to establish the a priori estimates.

Proposition 4.2 (A priori estimate). It holds that

|(VH, 6, 9)(®)| 35 < C|[(VHo, g0, Wo) 53¢, (4.6)
provided € + 8 < 1.

In order to prove Proposition 4.2, we are going to establish the L2-energy estimate for the solution
first, then to establish for the first, the second, and the third derivatives of the solution.

Now we prove our first L2-energy estimate. Multiplying (3.6); by —(ii + ¢)VH and integrating the
resultant equation over R3 with respect to x, we obtain
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—/(ﬁ—l—qﬁ)'lltVde—f(ﬁ+¢)'IlVde

R3 R3
—/p/(r'l—i-q))quVde—i-/(ﬁ+¢)|VH|2dx
R3 R3
= / (1 + $)LVH dx. (4.7)
R3

Differentiating (3.6)3 with respect to t twice, and utilizing (3.6);, we have
AHy = —div((i 4+ @)¥¢ + ¢ ¥ + 0¥ + Pl + pig). (4.8)

Next multiplying (4.8) by H and integrating it by parts with respect to x over R3 and using (4.5), we
obtain

- /(ﬁ + @)W VH dx
R3

= / div((ii + ¢)W)H dx

R3
=—/AHttHdX—/diV(¢tlp +flt‘ll +¢tﬁ+¢flt)HdX
R3 R3

:/VHttVHdX+/(¢t'I’+Fl['I’+¢tﬁ+¢l_lt)VHdX

R3 R3

d — -— -
= a(/VHVHMX) - HVHt(t)||2 +/(¢HII + ;W + et + pui;) VH dx
3 R3

d
> E(/ VHVthx> — |[VH:®|? = c + )| (Vo, VW, VH, 6, 0)0) >, (49)
R3
where, in order to prove the last estimate in (4.9), namely,
/(¢[-1/ + W + ¢t + Ppit,) VH dx
R3
> —C(6+6)|(Vo, VI, VH, ¢, )0 |, (4.10)

we have used the Cauchy-Schwarz inequality |ab| < %az + %bz, the a priori assumption (4.3), and the
following smallness

|8ia], (1, w)| < €5, fori=0,1; j=0,1,2,3,4, (411)

which will be frequently used later. Such a smallness (4.11) can be easily obtained from Proposi-
tions 2.1 and 2.2. Here, in the estimate of (4.10), the following estimate is needed too:
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2
gell® < CIVE[* +C@E +o)||(Ve. b, )|, (4.12)
which can be easily obtained from (3.6); and (4.11).
Differentiating (3.6)3 with respect to t, and utilizing (3.6);, we have
AH; = —div((1 + ¢)¥ + ¢u). (4.13)
Integrating (4.13) - H by parts with respect to x over R> and using (4.5), we obtain
- f(ﬁ +Q)WVHdx = / div((n + ¢)¥)H dx
R3 R3
= —/AHtde—/div(d)ﬁ)de
R3 R3
d [VH|? _
= — dx uVHdx
w(/ 2 +f¢
R3 R3
d VH|?
> E(/ | > | dx) —C+8)|(9, VH)(t)HZ. (4.14)
R3
Noticing (3.6)3, we obtain
- / P+ ¢)VeVHdx = — / p'(+¢)V(AH)VHdx
R3 R3
2 2 2
>2Co|VPHO|" = C@+e)|[VHO)| (4.15)
and
/(ﬁ+¢)IVH|2dx22C0||VH(t)||2. (4.16)
R3
Using the Cauchy inequality and (3.3);, we obtain
/(ﬁ + ¢)LVHdx = /(ﬁ +¢)(OVN+uVW¥ +WVi +WVW)VHdx
R3 R3
<C(8+8)”(V!II,VH,¢,lI/)(t)|2, (4.17)

then, substituting (4.9), (4.14)-(4.17) into (4.7) and noticing the smallness of § and &, we obtain

2
%(/VHVHwﬂvg'm>+CﬂG”LV4U®W

R3

< ||VHe(0) HZ +COE+o)||(V¥, Ve, ¢, ¥)(1) ”2. (4.18)
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From (3.6)3, we can easily obtain

[V H®O|" = | (419)
and multiplying (4.13) by H; and integrating it by parts, we obtain
2 2 2
IVH:®|” < clw® | +cs|om]|” (4.20)
Combining (4.19) and (4.20), we reduce (4.18) into
d 2 2 2
7 F1O+C|(VH. o0 <c[ro[ +ce+ofve, v o, (4.21)
where
|VH|?
Fi1(t) = VHVH; + > dx. (4.22)
R3
On the other hand, by taking (n + ¢)(3.6)2 - ¥ and integrating the resultant equation, we get
[(ﬁ + )W, Wdx + /(ﬁ +¢)|W|?dx
/p N+ ¢)VoWdx — /(n—i—q))VHlIIdx
R3
— /(ﬁ + ¢)LW dx. (4.23)
Furthermore, we can prove
/(n L oW Wdx > — <f i+ ¢)|¥| dx) ce+e|wm| (4.24)
and
(4.25)

/(ﬁ+¢)|-11|2dx>co
3

and using (3.6)1, we obtain

/p’(ﬁ+¢>)V¢>'Ildx
R3
/p @ +¢¢)¢d1v((n+¢)lll dx—/(n+¢)V<p(++¢¢))¢>llldx

R3
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p'(ii+ ) /p’<ﬁ+¢) o 2
2[ g Pt | Fve ¢ div(iag) dx — C(3 +&) | (¥.9)(®) |
R R

i M 2 _ 2
2clt(/ R dx) CE+o)|w. vo. o).
R3

Similarly to (4.14), we have

2
- [+ o %(/ Ml dx) —c6+o]@. VhHo|’
R3

R3

and
—/(ﬁ+¢)L!Ildx:/(ﬁ+¢>)(9vﬁ+ﬁvlll+lIlVﬁ+lIIVlII)!IIdx
R3 R3

<CE+o) @, v

Substituting (4.24)-(4.28) into (4.23) and noticing the smallness of § and &, we obtain

2

d
Eﬂz(f) +Co|®(®) ||2 <C@+8)|(VH, V¢, $)()

where

VH|? (7 1 _
Fu(t):/[| 2' +I;((;:(Z)))¢2+i(n+¢)|lll|2]dx.
R3

Then, from (4.21) and (4.29), we have established the first energy estimate as follows.

Lemma 4.3. Let N1 be a positive and large number, and F1(t) := F11(t) + N1F12(t). Then,

d
PO+ G (VH. . 0 |> <c6+o)|(ve, vy o |

and

Cit | (VH, ¢, 9)©)|* < F1(0) < Ci2||(VH, 6, 9) 0 |%,

where Cq, C11 and Cq are some positive constants.

1317

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

Now we are going to establish the second energy estimate for the solution with the first deriva-

tives.

Let 81 be nonnegative multi-index, and |81| = 1. Taking 8,’?1 ((n+ ¢)(3.6)2) - (—3}?1VH) and inte-

grating the resultant equation, we have
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= > [ (@+eyw)al VHx— > [ o (3 +¢)w)af" VH dx

Br=173 BrI=173
-y /aﬂl (P'(i+¢)VP)af' VHdx + » /3’31 (7 + ¢)VH)dE' VH dx
1B11=1p3 1B1l=1p3
=Y | o (Gi+¢)L)af VHdx. (4.33)
1Brl=15

Integrating 8f 1(4.8) - 8f 'H by parts with respect to x over R3, we obtain

=Y | o (A + )W)l VHdx
Bri=1 45
d
:dt(/VZHVZthx> ”VZH (t)” + Z /aﬁl(‘l’t‘p+”t‘1’+¢tu+¢ut)8ﬂlv1-1dx
R3 1Brl=1p

d
= E(/VZHVZH[dX) - HVZHt(t)“ Z /(d)ﬂll +ne +¢tu+¢ut)3ﬂl+ﬂ1Vde

R3 1Bil=1p
> ;t (/ Vszthdx> — |[V2H @ |* = c + o) | (Vo Vi, 6, ) | (4.34)
R3

Similarly, integrating 87 (4.13) - 3% H by parts, we get

= > | o ((i+¢)w)af VH dx

1B11=1p3
d V2H|?
=E< | 5 | dx) /(¢u)aﬁ1+51vr1dx
R3 1B11=1p3
d |V2H |2 2
> — dx | — , 435
dt( 2 X) | (435)
R3
where we used
IVPHO|| = [Ve®]. (4.36)

Noticing (4.36), we obtain
_ ,31 B
> /a p'(A+¢)Ve)d, VHdx
1B11=1p3

> 3 [ p@+¢)Vef AR VHdx — C(5 + o) (V3H. V2H) )|
1B11=175
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>3Go|VPHO|? - G + o) (V3H, V2H)©) |

>2Co|| Vo )| (4.37)
and
SO [ 3@+ @ VH) VHAx > Co|VPH®) |* — 6 + &) [VHO |
BrI=173
= Coflo®]® (438)
and
Y [ G+ L)l VHAx < C(S +e) | (V. V. ¢, (4.39)
1B11=1p3
and by integrating 8,’?1 (4.13) - E)f] H; by parts to have
|V2H @ |* < | ve© | + 6 + o) (Vo 6, )0, (4.40)

then, by substituting (4.34)-(4.39) into (4.33), and noticing the estimates of (4.40) and the smallness
of 8, &, we obtain

d 2 2
aFﬂ )+ Co || Vo, ¢)(f)H < CHV‘I’(f) H

(4.41)

where

VZH|?
F21(t):/[V2HV2Ht+| 5 | ]dx.

R3

(4.42)

On the other hand, by taking 8f 1(3.6); - 3,’? '¥ and integrating the resultant equation, we get

d |V |2 2
E(/ 5 dx) + Ve
R3

+ Y /aﬂ1<p(”+¢) ¢>8’31!Ildx Z/ Vol Hol'w dx

|Brl=1p 1B11=1p3

=— Y /8’31L8’3"Ildx (4.43)

Br1=143

Notice also that
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Z/ ‘31<p("+¢)v¢>af"q/dx
n+¢

1Prl=1p

—ce+o)| Ve, v - 3 /p(”"j)a%afl div W dx.

1B1l=1p

In order to control the last integral of (4.44), we note that for index «, by using (3.6)1,

ol
1 _
O divi =———2302¢+ Y C ornag T divw
n+¢
lyl=1,y<a

o]
+ Y Gan T dive
lyl=1,y<a

+ 0 [¢pdiva+uVe +WVin+WVe]t.

So, utilizing (4.45), we have

-y /p("+¢)aﬁ1¢af‘l div W dx

1B11=1p3
p(n+e) s B 2 YsaB1—V g
=y / o )231 ploto+ Y. CoYng Y dive
1Brl=1p ¢ V=1, y<pB

A1

+ > Gl eal T dive + 3f' [pdivia + Qv + W Vil + lIIV¢]] dx

lyI=1.y<p1
d "(n
> — /MW([)FdX _
dt 2( + ¢)2
R3
where we have used the following estimates to complete (4.46):

) /p(n+¢>)a,s1 8ﬁ1¢tdx>%(/ p/5ﬁ+¢>)|v¢|2dx)_

.

iy, @ +¢)? J 2+ ¢)?
and

> /p("+¢) 1o Wi c,a)aal

=1, @t " e

and

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
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jpu 1811
) /Ma}% Y G ¢l divibdx > —C(5 + )| (V. VI)(©)
~ J (@+¢)? -
1B11=1p3 lyI=1,y<h

and

3 / POH9) 1yt (4 divia + GV + WV + W V) dx
~ J (+¢)?
1B11=1p3
>—CG+9)|(Ve, VI, 6, 90|
Applying (4.46) to (4.44), we obtain
3 / ab <7p/(ﬁ + @) qu)af‘] v dx
X T_l +¢ X

1B11=1p3

d p+¢) 2 2
> E(/W'V‘M dx) —CE+9o)|(ve, VI, ¢, ¥)(0)]".

R3

Notice that

-3 | vof'Ho{ wdx < %HVlIl(t)Hz—i—C”VZH(t)HZ
Bri=13s

1
=3lveo 1> +clow]’
and

- 3 [ o'l wdx < C6 + o) (Vo VI, ¢, W)(0) I>.
|131‘:1R3

Substituting (4.51)-(4.53) into (4.43), and noticing the smallness of § + ¢, we obtain

d 3 2 2 2
EFzz(f)-i-ZHV'I’(t)H <Cllo®]" +CG+o)| (Vo )0,

where

_ VW2 p'(n+¢) 2
Fzz(D—[( 5T 2(ﬁ+¢)2|V¢| >dx.
R

Then, from (4.41) and (4.54), we have established our second energy estimate as follows.

1321

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

Lemma 4.4. Let N, be a positive and suitably large number, and F,(t) := F21(t) + N2 F22(t). Then it holds

d 2 2
0 +C [(Vo, V) ()| < C|[(VH, ¢, ¥)(®)|

(4.56)
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and

Ca|| (V2H, Vo, VW) 0| = 6 + )| (¢, ¥) )|

< Fa(t) < Coa | (V2H, Vg, V) O |* + C(5 + ©) | (4. (4.57)

where C,, C1 and Cy, are some positive constants.

Next, we are going to establish the third energy estimate for the solution with the second deriva-
tives.

Let B, be nonnegative multi-index, and |82| = 2. Taking 822 ((fi + $)(3.6)2) - (=822 VH) and inte-
grating the resultant equation, one obtains

- Z o ((+¢)w)of>VHdx — > [ o2 (G +¢)w)af> VH dx
\B2l=2;, \Bal=235

- Y | o2 (p'Gi+¢)Ve)aL? VH dx
1B21=2p3

+ Y | 8*(Gi+¢)VH)3? VH dx
1B2l=275

- Z 3 (i + ¢)L)3> VH dx. (4.58)
IB21=2;,

Using the similar technique as before, we can estimate

- Z O (A + ¢)W¢)0f> VH dx

|B21=2;
d 3 3 3 2
> dt(/v HV thx> — IV’ H:||
R3
—C+o)||(V2¢, V2W, Vo, VW, ¢, W) (4.59)
and
- Z 2 (A + ¢)W)af2VH dx
IB2l=2,
d |V3H|2 )
> E(/ 5 dx) —CE+8)| (V. Ve, ¢) (4.60)
R3

and
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= > | o2 (p' @+ ¢) V) g2 VH dx
1B21=2p3

>— Y [ p@+¢)Va AHVHdx — C(5 + )| (V4. V) O]
1B21=2p3

>3Co| VAH®) |* = s+ )| (V2. Vo) )|

2
’

> 200 V2p()|* — €5+ &) | Vo o)

and
_ C
S | o2 ((+¢)VH) o VHdx > —70 v ®)|* - |, VIh® |,
b=233
and
3o [ 32 (G + pL)of? VHAx < C(5 + o) (V2. V2, Vg, VI, 6, W) )|,
=2
and

|V H @ | <[ V2o ® | + 6+ )| (V2. Vo, V¥, 6, %) (0]

Substituting (4.59)-(4.63) into (4.58), and utilizing (4.64), we obtain

dt

where
V3H?
F31(t) :/.I:V3HV3Ht + %] dx.
R3

Taking 8,’? 2(3.6), -afzw and integrating the resultant equation, we have

d V2w |? 5 2
E(/ 5 dx) + Ve
R3

B2 p'(+¢) B2 _ f B2 1yqB2
+ > fax ( e v¢>ax wdx— Y [ VoZHoL W dx

|B21=23 1B21=253

=— > [ of*Lof>w dx.
IB2l=2p5

Using similar technique as before, we can estimate

d
—F31(0) + Co | V2o 0)|* < C[V2w )| + C||(v¥, Vo, VH, ¥, $)(0) |,

1323

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)
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)3 / ﬂ2<p(n+¢)v¢>8ﬁzwx
n+¢

1B21=2p
>4 / ("+¢)| ¢]2dx —CE+8)| (V¢ VW, Ve, VW, $, W) (4.68)
“de\J 2+ ¢)? oo '
R3
and
- Y | vofrHa{ wdx < %||v2l1/(r) I +c|v*Ho|?
|B21=243
1,5 2 2
= g”V v(O)|"+C| Ve, (4.69)
and
=Y [ L wdx < CG+ o) (V2. VW, Ve, VI, 6, W) (0] . (4.70)
IB21=2p3
Substituting (4.51)-(4.53) into (4.43), and noticing the smallness of § + &, we obtain
d 3
7RO+ V20| <V ©)|* +C6 +e)|(V2e, V. W, ) (4.71)
where
F (t)_/(IVZ'I’IZ p(n+¢>)| |2)dx (472)
T 2 2[+¢)7 ' '

R3

Then, from (4.71) and (4.65), we immediately obtain the third energy estimate for the solution as
follows.

Lemma 4.5. Let N3 be a positive number which is suitably large, and F3(t) := F31(t) + N3F3(t). Then it
holds that

d
PO+ (V. VW) 0|” < C[[(Vo. V. VH. 0. ¥) 0| (4.73)
and

Ca1 | (V3H, V26, V20)0) | = C(5 + &) | (Vo, V¥, ¢, 9) (1) |

< F3(t) < Cxa | (V3H, V2, V2W)0)|* + CG3 +£) | (Vo, V¥, 6,

(4.74)
where C3, C31 and Csp are some positive constants.

Finally, we are going to establish the fourth energy estimate for the solution with the third deriva-
tives.

Let B3 be nonnegative multi-index, and |B3] = 3. Taking 82 ((fi + ¢)(3.6)2) - (=92 VH) and inte-
grating the resultant equation, we have



F. Huang et al. / ]. Differential Equations 251 (2011) 1305-1331

-y faf3((ﬁ+¢)wt)af3w1dx— > /afS((ﬁ+¢)-1/)af3Vde

1B31=343 1B31=3 53

-y /353(p’(ﬁ+¢)v¢)af3Vde+ > /af%(ﬁ +¢)VH)3*VH dx

1B31=3p3 1B31=3p3

=23 /353((ﬁ+¢)L)af3Vde.

1B31=3p3
Using similar technique as before, we can estimate

— > [ 4P (@+¢)we)a> VHdx
1B31=3 53

> %(/V“HV“thx) — |v*H:0?

R3

—CE+8)| (V9. VW, V23, ViU, Vo, VI, ¢, ¥)(0) HZ,

and
~ Y [ (G +)w)a> VHdx
1Bs1=335
d |V4H|2 3 2 2
> a(/ 2 d") —CE+9)|(V?6,V?6,V,4) 0],
R3
and
> /853((ﬁ+¢)VH)8f3Vde
1B51=333
C
> =2V = (v?9.Vo. 0. VH) O,
and
3 [ o (@ +g)L)a* VHdx
1Bs1=333
<CO+0)(Ve, V2, V29, V20, Vo, V.6, ) 0|,
and

|V H @ |* < | V2w @) | + C6 + )| (V3¢ V26, V2W, Vo, VI, ¢, W) (1) | *.

Here, the third term of the right-hand side of (4.75) can be estimated as follows

1325

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)
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-3 /8,’?3(p/(ﬁ+¢)v¢)3,’?3Vde
1B31=3p3

>- > /p’(ﬁ+¢)vaf3AHaf3Vde—c 3 f|v<ﬁ+¢)v3¢a,£’3v11|ax
1B51=3 5 1B31=373

—c Y [ (VGa+@)| + |V +)|)| V290 VH] dx
1B51=35

—c Y (V@ +d) + |V + o)V + )| + |V +¢)]) Vool VH|dx
1B31=3p3
2

>3Co| V3o () ||2 —CE+o)|(V2¢, Vo)D) (4.81)

where we have used the Gagliardo-Nirenberg inequality to obtain the following estimate to complete
(4.81):

[ 19194 ax < |00 | 70|
R3
1 3
<C[Vo@|* [V 0| |V*H®O|
|2

< Ce|(V3e, V2) ()] (4.82)

Substituting (4.76)-(4.79) and (4.81) into (4.75), and utilizing (4.80), we obtain

d
O+ G| Vo * < | V@ + | (V2W. V29, V. Vo, VH. ¥ 9) 0|, (483)

where
VAH|?
Far(t) = / [V“HV“Ht + %}dx. (4.84)
R3
Similarly, by taking 85 3(3.6)3 - 85 3¥ and integrating the resultant equation, we have
d V3w |? 3 2
— dx VoW (t
i[5 )+ 7wl
R3
p'n+¢)
+ > /353 (WW’ wdx— > | Vo Ho{*w dx
1B31=3p3 1B31=3p3
=- > [ of’Lof>wax. (4.85)
1B31=33

On the other hand, the Cauchy inequality and the Gagliardo-Nirenberg inequality imply that
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> /af3 <MV¢>8§3llldx
n+¢

1P31=3p3
B P@+¢) gy gy o B / = 3,93
> Z/ e WP’ divwdx—C | [V +¢)V3pViw|dx
\ﬂ3|=3R3 R3
—C/(|V(ﬁ+¢)|2+ |V2(@i +¢)|) | V2o VP dx
R3

- c/(|v<ﬁ+¢)\3 + V2@ + )V + )| + |V + ¢)|) VoV w|dx

R3
Pa+d) gy By / 2,293
> — —9 0y  divWdx — C A\ Vv |d
> [ B aaal divwax—c [ |v0f v ax
‘,33|=3R3 R3

—C+o)||(V3¢, VW, V29, V2W, Vo, VI, ¢, W)(0) ||2

P+d). g By
> — 0 p0y divw d
Z/ Ao - @0y divW dx
1B31=3 3

—CE+0)|(V3p, VPW, V2, V2W, Ve, VI, 6, W) ()|, (4.86)

Using (4.45) and the Gagliardo-Nirenberg inequality again, we can control the first term of the right-
hand side of (4.86) as follows:

-y fwafwa,’? div ¥ dx
n+¢

IB31=353
p'(+¢) 2
=y /ﬁaxﬁw W+ Y. Cpafial> 7 divw
1B31=3p3 2 lyI=1,y<B3
183l
+ Y Gl ea TV divie + o [pdivil + IV + Vil + ~IIV¢]} dx
lyI=1,y<B3
d p/(ﬁ+¢) 3,12
> — — |V d
dt(/Z(n—f-([))z‘ 9| dx
R3
—CE+0)|(VPe, VW, V2, V2W, Ve, V6, W) )], (4.87)
where we have used the following estimates to complete (4.87):
pPi+9) . 8 . .ps
Y| ok ok prdx
2 % X
1B31=343 (+¢)
d pP+eé) 3, 2 3 2
>—( | E—= V3| dx) —C(s V3o, 4388
([ 28 v ax) - co+ o) |00 (458)

R3



1328 F. Huang et al. / ]. Differential Equations 251 (2011) 1305-1331

and

183!

n - —
Z /lzn(Jr;i;) o Z C,aYmdl> ™" divw dx
1B51=3 5 s

—CE+o)|(V2h, ViU, V2u, V)|, (4.89)
and
|3l

Z /Izn(’l;;? e Z C,0Y ¢a> 7 divw dx
151=333 <,

—CG+9)| (V2 V)0 —c/ V3¢ V¢ V2w | dx
pé
—CE+0) (Vo V) O = [V O [ VPO 14| V*¥ ©) 14
~C6+0)|(Vo, V) 0| - | ow || Vo0 |}V [0
—C6+8)| (V3o V)07, (4.90)

and

)3 /p(”+‘752)aﬂ3 003 (¢ divid + GV + W Vil + W V) dx
‘ﬁl 3R3 ( +¢)

—CG+0)| (V3o V3W, V2p, V2W, Ve, Vi, 6, W) (1)| — c/ (V3 V2p V2w |dx

R3
—C+0)|(V3p, V3w, V26, V2W, Ve, VU, 6, W) (1), (4.91)
Applying (4.87) into (4.86), we obtain
Z / ﬁ3<19 (n+¢)V¢>8ﬁ3lI/dx
n+¢
1B31=343
i p/(ﬁ+¢) 3,12
g dt(/2<ﬁ+¢>2’v ¢! d")
R3
—CE+8)|(V3p, VPW, V29, VW, Ve, VU, 6, W) ()], (4.92)

Since the Cauchy inequality implies

-y | volPHo{ wax < %||V3lll(t)||2+C“V4H(t)||2
1B31=33;

1
= §||V3‘1’(f)||2+C||V2¢(t)||2, (4.93)
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and the Cauchy inequality and the Gagliardo-Nirenberg inequality imply that

3 [ WLl wdx<co+o)|(Vig, VW, V2P, V2, Ve, VI, §, W) (0|,
1B51=335

(4.94)

by substituting (4.92)—(4.94) into (4.85), and noticing the smallness of § + €, we obtain

d 3
G FeO+ Vo I> <c|V2o® | +C6 +o)|(V3¢, V20, Ve, VU, ¥, ¢)0)|°, (495)

where

(VPR P+ 52
Fa(t) _/< o+ LY |V>9| )dx. (4.96)
R3

Thus, from (4.95) and (4.83), we have established the fourth energy estimate for the solution with
the third derivatives as follows.

Lemma 4.6. Let N4 be a positive constant which is suitably large, and F4(t) := F41(t) + N4F4,(t). Then it
holds

d
PO+ Ca|[(V3p, V3W) (0| < C[|(V2¢, V2, Vo, V¥, VH, , %) ()| (4.97)
and

Car||(V*H, V29, V*0) ) |* — C3 + )| (Y29, V2W, Vg, VW, 6, W) (0|
< Fa(t) < Ca|[(V2H, V29, Vo) )|

+CE+6)|(V2, V2, Ve, Vi, ¢, w)(0) |,

(4.98)
where C4, C41 and Cy4; are some positive constants.

Proof of Proposition 4.2. Let A1, A, and A3 be suitably large numbers, and applying Lemmas 4.3-4.6,
we then obtain

& (3[2(a F1©) + Fa(0) + F3(©0] + Fa(0)
+Cs|[(VAH, V3¢, V3w, V3H, V3¢, VW, V2H, Vg, V¥, VH, ¢, %) (0)]° <0  (4.99)
and
Cs1|(V*H. V3, V2W, VP H, V2, V2W V2 H, Ve, V¥, VH, . W) (O |

< As[A2(MF1(0) 4 F2(0)) + F3(t)] + Fa(t)

<C52||(V4H,V3¢,V3lII,V3H,V2¢,VZIII,V2H,V(]),VW,VH,(b,'II)(t)”Z (4.100)

provided with § + € « 1, where Cs, C51 and Cs; are some positive constants.
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Thus, applying the Gronwall inequality to (4.99), we obtain

2 2
[(VH. ¢, 9)(®)] s < C[[(VHo. do. Wo) ;567" (4101)
for some positive constant v > 0, provided with § 4+ & <« 1. The proof is complete. O

Acknowledgments

The research of FMH was supported in part by NSFC Grant No. 10825102 for distinguished youth
scholar, NSFC-NSAF Grant No. 10676037 and 973 project of China under Grant No. 2006CB805902,
the research of MM was supported in part by Natural Sciences and Engineering Research Council of
Canada under the NSERC grant RGPIN 354724-08, the research of HMY was supported in part by NSFC
Grant No. 10901095 and the Promotive research fund for excellent young and middle-aged scientists
of Shandong Province Grant No. BS2010SF025.

References

[1] G. Chen, ]. Jerome, B. Zhang, Particle hydrodynamic moment models in biology and microelectronics: singular relaxation
limits, Nonlinear Anal. 30 (1997) 233-244.
[2] G. Chen, D. Wang, Convergence of shock capturing schemes for the compressible Euler-Poisson equations, Comm. Math.
Phys. 179 (1996) 333-364.
[3] P. Degond, P.A. Markowich, On a one-dimensional steady-state hydrodynamic model, Appl. Math. Lett. 3 (1990) 25-29.
[4] P. Degond, P.A. Markowich, A steady-state potential flow model for semiconductors, Ann. Mat. Pura Appl. 4 (1993) 87-98.
[5] W. Fang, K. Ito, Steady-state solutions of a one-dimensional hydrodynamic model for semiconductors, ]. Differential Equa-
tions 133 (1997) 224-244.
[6] I. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor, Comm. Partial Dif-
ferential Equations 17 (1992) 553-577.
[7] Y. Guo, W. Strauss, Stability of semiconductor states with insulating and contact boundary conditions, Arch. Ration. Mech.
Anal. 179 (2005) 1-30.
[8] I. Gasser, L. Hsiao, H.-L. Li, Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors,
J. Differential Equations 192 (2003) 326-359.
[9] L Gasser, R. Natalini, The energy transport and the drift diffusion equations as relaxation limits of the hydrodynamic model
for semiconductors, Quart. Appl. Math. 57 (1996) 269-282.
[10] L. Hsiao, T.-P. Liu, Convergence to nonlinear diffusive waves for solutions of a system of hyperbolic conservation laws with
damping, Comm. Math. Phys. 143 (1992) 599-605.
[11] L. Hsiao, PA. Markowich, S. Wang, The asymptotic behavior of globally smooth solutions of the multidimensional isentropic
hydrodynamic model for semiconductors, J. Differential Equations 192 (2003) 111-133.
[12] L. Hsiao, K. Zhang, The global weak solution and relaxation limits of the initial boundary value problem to the bipolar
hydrodynamic model for semiconductors, Math. Models Methods Appl. Sci. 10 (2000) 1333-1361.
[13] L. Hsiao, K. Zhang, The relaxation of the hydrodynamic model for semiconductors to drift diffusion equations, J. Differential
Equations 165 (2000) 315-354.
[14] F-M. Huang, Y.-P. Li, Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large
data and vacuum, Discrete Contin. Dyn. Syst. 24 (2009) 455-470.
[15] E-M. Huang, M. Mei, Y. Wang, Large time behavior of solutions to n-dimensional bipolar hydrodynamic model for semi-
conductors, SIAM ]. Math. Anal., in press.
[16] F-M. Huang, M. Mei, Y. Wang, H. Yu, Asymptotic convergence to stationary waves for unipolar hydrodynamic model of
semiconductors, SIAM J. Math. Anal. 43 (2011) 411-429.
[17] E-M. Huang, R.-H. Pan, H.-M. Yu, Large time behavior of Euler-Poisson system for semiconductor, Sci. China Ser. A 51 (5)
(2008) 965-972.
[18] A. Jiingel, Quasi-hydrodynamic Semiconductor Equations, Progr. Nonlinear Differential Equations Appl., vol. 41, Birkhduser
Verlag, Basel, Boston, Berlin, 2001.
[19] H.-L. Li, P. Markowich, M. Mei, Asymptotic behavior of solutions of the hydrodynamic model of semiconductors, Proc. Roy.
Soc. Edinburgh Sect. A 132 (2002) 359-378.
[20] H.-L. Li, P. Markowich, M. Mei, Asymptotic behavior of subsonic shock solutions of the isentropic Euler-Poisson equations,
Quart. Appl. Math. 60 (2002) 773-796.
[21] Y.-P. Li, Global existence and asymptotic behavior for a multidimensional nonisentropic hydrodynamic semiconductor
model with the heat source, ]. Differential Equations 225 (2006) 134-167.
[22] Y.-P. Li, Diffusion relaxation limit of a nonisentropic hydrodynamic model for semiconductors, Math. Methods Appl. Sci. 30
(2007) 2247-2261.
[23] T. Luo, R. Natalini, Z. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM ]. Appl.
Math. 59 (1998) 810-830.



F. Huang et al. / ]. Differential Equations 251 (2011) 1305-1331 1331

[24] P. Marcati, R. Natalini, Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem, Proc. Roy. Soc.
Edinburgh Sect. A 125 (1995) 115-131.

[25] P. Marcati, R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion
equation, Arch. Ration. Mech. Anal. 129 (1995) 129-145.

[26] P.A. Markowich, C.A. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990.

[27] A. Matsumura, Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equation with
the first-order dissipation, Publ. Res. Inst. Math. Sci. 13 (1977) 349-379.

[28] R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations, J. Math. Anal. Appl. 198
(1996) 262-281.

[29] S. Nishibata, M. Suzuki, Asymptotic stability of a stationary solution to a hydrodynamic model for semiconductors, Osaka
J. Math. 44 (2007) 639-665.

[30] S. Nishibata, M. Suzuki, Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors,
Arch. Ration. Mech. Anal. 192 (2009) 187-215.

[31] E. Poupaud, M. Rascle, ].-P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrarily large data, ]. Dif-
ferential Equations 123 (1995) 93-121.

[32] A. Sitenko, V. Malnev, Plasma Physics Theory, Appl. Math. Math. Comput., vol. 10, Chapman & Hall, London, 1995.

[33] N. Tsuge, Uniqueness of the stationary solutions for a fluid dynamical model of semiconductors, Osaka J. Math. 46 (2009)
931-937.

[34] B. Zhang, Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor
devices, Comm. Math. Phys. 157 (1993) 1-22.

[35] C. Zhu, H. Hattori, Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two
species, J. Differential Equations 166 (2000) 1-32.



	Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors
	Introduction
	Planar stationary waves and some preliminaries
	Convergence to planar stationary waves
	A priori estimates
	Acknowledgments
	References


