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STEADY HYDRODYNAMIC MODEL OF SEMICONDUCTORS
WITH SONIC BOUNDARY: (I) SUBSONIC DOPING PROFILE∗

JINGYU LI† , MING MEI‡ , GUOJING ZHANG§ , AND KAIJUN ZHANG¶

Abstract. This series of papers concerns the structure of stationary solutions to the hydrody-
namic model of semiconductors with sonic boundary represented by Euler–Poisson equations. The
physical solutions are characterized according to different types of doping profiles. In the first part of
the series, we consider the case of the subsonic doping profile and prove that the steady-state equa-
tions with sonic boundary possess a unique interior subsonic solution, at least one interior supersonic
solution, infinitely many shock transonic solutions when the relaxation time is large, and infinitely
many C1-smooth transonic solutions when the relaxation time is small. In particular, the interior
subsonic/supersonic solutions are proved to be globally C

1
2 Hölder continuous, and the Hölder ex-

ponent 1
2 is optimal. The regularity of transonic solutions is dependent on the size of the relaxation

time, equivalently, the effect of semiconductors. The proof of the existence of subsonic/supersonic
solutions is the technical compactness analysis combining the energy method and the phase-plane
analysis, while the approach for the existence of multiple shock/smooth transonic solutions is the
artful construction. The results obtained significantly improve and develop existing studies.

Key words. Euler–Poisson equations, hydrodynamic model of semiconductors, sonic boundary,
subsonic doping profile, subsonic solutions, supersonic solutions, transonic solutions with shock, C1-
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1. Introduction. The hydrodynamic model of semiconductors, first introduced
by Bløtekjær in [5], is usually described for the charged fluid particles such as electrons
and holes in semiconductor devices [5, 19, 24], and positively and negatively charged
ions in plasma [28]. The governing equations are Euler–Poisson equations as follows
[15, 16, 17, 20]:

(1)


ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P (ρ))x = ρE − ρu

τ
,

Ex = ρ− b(x).
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4768 J. LI, M. MEI, G. ZHANG, AND K. ZHANG

Here ρ, u, and E represent the electron density, the velocity, and the electric field,
respectively. P (ρ) is the pressure function of the electron density. When the fluid is
isothermal, the pressure function is physically represented by

(2) P (ρ) = Tρ, with the constant temperature T > 0.

The function b(x) > 0 is the doping profile standing for the density of impurities in
semiconductor device. The constant τ > 0 denotes the momentum relaxation time.

In this series of papers, we are mainly interested in investigating the existence
and large-time behaviors of the solutions to (1) with sonic boundary condition. At
the first, but important, stage, we focus on the existence and classification of all
stationary solutions. Throughout this paper, we consider the following steady-state
equations to (1) in the bounded domain [0, 1] with subsonic doping profile. Denote
J = ρu, the current density; then we have the stationary equations of (1) as follows:

(3)


J = constant,(
J2

ρ
+ P (ρ)

)
x

= ρE − J

τ
, x ∈ (0, 1).

Ex = ρ− b(x).

Using the terminology from gas dynamics, we call c :=
√
P ′(ρ) =

√
T > 0 the

sound speed for P (ρ) = Tρ (see (2)). Thus, the stationary flow of (3) is called to be
subsonic/sonic/supersonic if the fluid velocity satisfies

(4) fluid velocity: u =
J

ρ
S c =

√
P ′(ρ) =

√
T : sound speed.

We consider the current driven flow; thus the current density J is a prescribed con-
stant. Note that if (ρ(x), E(x)) is a solution to (3) with a given constant current
density J , then (ρ(1 − x),−E(1 − x)) is a solution to (3) with respect to −J and
b(1− x). So, we may consider only the case of J > 0. Without loss of generality, let
us assume throughout the paper that

T = J = 1.

Thus, (3) is transformed into

(5)


(

1− 1
ρ2

)
ρx = ρE − 1

τ
,

Ex = ρ− b(x).

From (4), it can be identified that the flow is subsonic if ρ > 1, sonic if ρ = 1, and
supersonic if 0 < ρ < 1. Therefore, our sonic boundary conditions to (3) are proposed
as follows:

(6) sonic boundary: ρ(0) = ρ(1) = 1.

Dividing the first equation of (5) by ρ and differentiating the resultant equation with
respect to x, and substituting the second equation of (5) into this modified equation,
we have

(7)


[(

1
ρ
− 1
ρ3

)
ρx

]
x

+
1
τ

(
1
ρ

)
x

− [ρ− b(x)] = 0, x ∈ (0, 1),

ρ(0) = ρ(1) = 1.
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HD MODEL OF SEMICONDUCTORS WITH SONIC BOUNDARY (I) 4769

When ρ(x) > 1 or 0 < ρ(x) < 1 for x ∈ (0, 1), equation (7) is elliptic but degenerate at
the sonic boundary. When ρ(x) > 0 varies around the sonic line ρ = 1 for x ∈ (0, 1),
the system then changes its property and the phenomena of phase transitions occur.

The existence of subsonic/supersonic/transonic solutions to the steady-state
Euler–Poisson equations for the hydrodynamic model of semiconductors has been
intensively studied. In 1990, Degond and Markowich [9] first showed the existence of
the subsonic solution when the flow and its boundary are completely subsonic. The
uniqueness was obtained with a very strongly subsonic background, namely, |J | � 1.
Then, the steady subsonic flows were studied in great depth with different boundaries
as well as the higher dimensions case in [2, 3, 10, 11, 15, 18, 25]; see the references
therein. For the case of steady supersonic flows, Peng and Violet [26] obtained the
existence and uniqueness of the supersonic solution when the flow and the bound-
ary are strongly supersonic (i.e., J � 1). On the other hand, much attention has
been given to the case of steady transonic flows. By a phase-plane analysis, Ascher
et al. [1] first tested the existence of the transonic solution when the doping profile b
is a supersonic constant, which was then extended by Rosini [27] to the nonisentropic
flow. When the doping profile b(x) is nonconstant, by using the method of vanishing
viscosity, Gamba constructed 1-D transonic solutions with shocks in [12], and 2-D
transonic solutions with shocks in [13], but the solutions as the limits of vanishing
viscosity yield boundary layers. Recently, Luo and Xin [23] and Luo et al. [22] stud-
ied the Euler–Poisson equations without the effect of the semiconductor, namely, the
momentum equation (1)2 is missing the term of −Jτ . This means either the current
density J = 0 (the absence of the semiconductor effect for the device) or the relaxation
time τ = ∞ (the huge relaxation time). Some interesting results on the structure of
steady solutions with nonsonic boundary condition are obtained. Precisely, based on
phase-plane analysis, Luo and Xin [23] thoroughly studied the existence/nonexistence
and the uniqueness/nonuniqueness of the transonic solutions with one side supersonic
boundary and the other side subsonic boundary when the doping profile b(x) is a con-
stant either in the supersonic regime or the subsonic regime. Some restrictions on the
boundary and the domain are also needed. Then, Luo et al. [22] showed the existence
of transonic solutions with shocks in the case of variable supersonic doping profile
b(x), which is regarded as a small perturbation of a constant, and further proved the
time-asymptotic stability of the transonic shock profiles.

In this paper, the subjected boundary is sonic, which is a critical case for bound-
ary and causes the problem to be more complicated and challenging. We are interested
in how the doping profile, the semiconductor effect, and the sonic boundary affect the
structures of solutions to system (5). All these features not only cause us some essen-
tial difficulties in the study of well-posedness and regularity of the solutions, but also
bring us fairly rich and interesting phenomena on the structure of solutions. In fact,
we have the following: (1) the elliptic equation (7) is degenerate at the boundary, and
hence the standard approaches on uniformly elliptic equations adopted in [9, 26, 22]
do not work; (2) because of the degeneracy of the equation, all subsonic/supersonic
solutions are expected only to be globally C

1
2 Hölder continuous, and the C

1
2 reg-

ularity is proved to be optimal; (3) unlike in the phase-plane analysis in [23], the
presence of relaxation causes a difficulty in that the electric field E cannot be explic-
itly formulated as a function of ρ; and (4) most importantly, under the large effect
of semiconductor (i.e., τ � 1) in combination with the degeneracy at the boundary,
the steady-state equations possess C1 transonic solutions rather than transonic shock
solutions, while, when τ � 1, the equations admit transonic shock solutions, which
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4770 J. LI, M. MEI, G. ZHANG, AND K. ZHANG

coincides with the works of Luo and Xin [23] on Euler–Poisson equations without the
effect of a semiconductor (i.e., τ = +∞). To get the transonic solutions, inspired by
[23, 22], the approach adopted in this paper is also the artful construction method but
with a new development due to the difficulty caused by the sonic boundary. Precisely,
since there are many possibilities for the stationary solutions starting on the sonic
boundary, it is impossible for us to construct a supersonic solution directly from the
sonic boundary. Instead of the sonic boundary at x = 0, we first consider a supersonic
boundary ρδ|x=0 = 1 − δ for 0 < δ � 1. We can technically construct an approx-
imate supersonic solution ρδ < 1 in [0, x0), where the location x0 will be specified
such that the Rankine–Hugoniot condition and the entropy condition are satisfied.
Connecting by the Rankine–Hugoniot condition and the entropy condition, we fur-
ther construct a subsonic solution ρδ(x) > 1 in (x0, 1] with the subsonic condition
ρδ|x=1 = 1 + δ. By carrying out the compactness analysis, we can technically prove
the weak convergence of the approximate transonic solution to the desired transonic
solution (ρtrans, Etrans)(x) with the sonic boundary condition. The procedure pre-
sented in this paper is technical, explicit, and instructive. Remarkably, different from
the previous studies [23, 22] without the semiconductor effect (i.e., τ = ∞), there
also exist infinitely many C1 transonic solutions when τ � 1. As we know, this is a
physical case for the semiconductor industry and represents the first attempt to show
C1 transonic solutions for semiconductor models.

We now state the main results of this paper. To do so, we need to make our
notation and assumptions more precise. Throughout this paper we assume that the
doping profile b(x) ∈ L∞(0, 1) is subsonic:

subsonic doping profile: b(x) > 1 for all x ∈ [0, 1].

We denote
b := essinf

x∈(0,1)
b(x) and b := esssup

x∈(0,1)
b(x).

Because equation (7) is degenerate, we have to introduce the concepts of interior
subsonic/supersonic/transonic solutions in the weak sense.

Definition 1.1. ρ(x) is called an interior subsonic (correspondingly, interior su-
personic) solution of equation (7) if ρ(0) = ρ(1) = 1 but ρ(x) > 1 (correspondingly,
0 < ρ(x) < 1) for x ∈ (0, 1), and (ρ(x) − 1)2 ∈ H1

0 (0, 1), and it holds that for any
ϕ ∈ H1

0 (0, 1) ∫ 1

0

(
1
ρ
− 1
ρ3

)
ρxϕxdx+

1
τ

∫ 1

0

ϕx
ρ
dx+

∫ 1

0
(ρ− b)ϕdx = 0,

which is equivalent to

(8)
1
2

∫ 1

0

ρ+ 1
ρ3

(
(ρ− 1)2)

x
ϕxdx+

1
τ

∫ 1

0

ϕx
ρ
dx+

∫ 1

0
(ρ− b)ϕdx = 0.

Once ρ = ρ(x) is determined by (7), in view of the first equation of (5), the
electric field E(x) can be solved by

E(x) =
(

1
ρ
− 1
ρ3

)
ρx +

1
τρ

=
(ρ+ 1)[(ρ− 1)2]x

2ρ3 +
1
τρ
.

In this way, we could obtain the interior subsonic/supersonic solutions to system
(5)–(6).
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HD MODEL OF SEMICONDUCTORS WITH SONIC BOUNDARY (I) 4771

Definition 1.2. ρ(x) > 0 is called a C1 transonic solution of system (5)–(6) if
ρ(x) ∈ C1(0, 1) with ρ(0) = ρ(1) = 1 and there exists a number x0 ∈ (0, 1) such that

ρ(x) =
{
ρsup(x), x ∈ [0, x0],
ρsub(x), x ∈ [x0, 1],

where 0 < ρsup(x) ≤ 1 on (0, x0), ρsub(x) ≥ 1 on (x0, 1), and

(9) ρsup(x0) = ρsub(x0) = 1 and ρ′sup(x0) = ρ′sub(x0).

ρ(x) > 0 is called a transonic shock solution of system (5)–(6) if ρ(0) = ρ(1) = 1
and it is separated by a point x0 ∈ (0, 1) in the form

ρ(x) =
{
ρsup(x), x ∈ (0, x0),
ρsub(x), x ∈ (x0, 1),

where 0 < ρsup(x) < 1 and ρsub(x) > 1 satisfy the entropy condition at x0,

(10) 0 < ρsup(x−0 ) < 1 < ρsub(x+
0 ),

and the Rankine–Hugoniot condition,

ρsup(x−0 ) +
1

ρsup(x−0 )
= ρsub(x+

0 ) +
1

ρsub(x+
0 )
,

Esup(x−0 ) = Esub(x+
0 ).

(11)

Set ρl = ρsup(x−0 ) and ρr = ρsub(x+
0 ); a simple computation from (11) shows that

(12) ρlρr = 1.

Our main results on the structures of solutions to (5)–(6) are as follows.

Theorem 1.3. Let the doping profile be subsonic such that b(x) ∈ L∞(0, 1) and
b > 1. Then the steady-state Euler–Poisson equations (5)–(6) admit the following:

1. A unique pair of interior subsonic solutions (ρsub, Esub)(x) ∈ C
1
2 [0, 1] ×

H1(0, 1) satisfying

(13) 1 +m sin(πx) ≤ ρsub(x) ≤ b, x ∈ [0, 1],

and particularly,

(14)

{
C1(1− x)

1
2 ≤ ρsub(x)− 1 ≤ C2(1− x)

1
2

−C3(1− x)−
1
2 ≤ ρ′sub(x) ≤ −C4(1− x)−

1
2

for x near 1,

where m = m(τ, b) is a positive constant and C2 > C1 > 0 and C3 > C4 > 0
are some positive constants.

2. At least one pair of interior supersonic solutions (ρsup, Esup)(x) ∈ C 1
2 [0, 1]×

H1(0, 1) satisfying

(15)

{
C5x

1
2 ≤ 1− ρsup(x) ≤ C6x

1
2

−C7x
− 1

2 ≤ ρ′sup(x) ≤ −C8x
− 1

2
for x near 0,

where C6 > C5 > 0 and C7 > C8 > 0 are some positive constants. ρsup has
only one critical point z0 over (0, 1), such that (ρsup)x < 0 on (0, z0) and
(ρsup)x > 0 on (z0, 1).
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3. Assume further that τ is large and that b̄−b� 1; then (5)–(6) have infinitely
many transonic solutions (ρtrans, Etrans)(x) combining stationary shocks which
satisfy the entropy condition (10) and the Rankine–Hugoniot jump condition
(11) at different jump locations x0, where x0 can be uniquely determined when
ρr satisfying ρr − ρl � 1 is fixed, but the choice of ρl can be infinitely many.

4. Assume further that b(x) = b > 1 is a constant; then when τ is small enough,
(5)–(6) have infinitely many C1 transonic solution; moreover, in this case
there is no transonic shock solution.

Remark 1.4.
1. In parts 1 and 2 of Theorem 1.3, the estimates (14) and (15) imply that
C

1
2 [0, 1] is the optimal Hölder space for the global regularity of the subsonic

solution ρsub(x) and the supersonic solution ρsup(x). We notice that the
same regularity C

1
2 was also obtained for the subsonic/sonic flow in nozzles

in [29, 30]. Regarding the other interesting studies on the subsonic/sonic flow
in nozzles, we refer interested readers to [4, 7, 8, 33].

2. The existence of infinitely many transonic shock solutions obtained in part 3
of Theorem 1.3 also holds for the Euler–Poisson equations without relaxation
term (i.e., τ =∞) that were studied in [23].

3. Part 4 of Theorem 1.3 implies that if b(x) is a constant and τ � 1, the
regularity of the interior subsonic solution on the left boundary, as well as
the regularity for the interior supersonic solution on the right boundary, can
be lifted up to C1. To the best of our knowledge, such a C1 regularity of
transonic solutions is the first result obtained for semiconductor models so
far. Essentially, the strong damping effect (the semiconductor effect) of −Jτ
causes the transonic solutions to be C1-smooth. Notice that the C2 transonic
flow also arises in the finite de Laval nozzles, where the geometry structure
causes the transonic flow to be smooth. For details, we refer to the interesting
works of Wang and Xin [31, 32].

4. When the doping profile b is supersonic, a further study on the interesting
structures of solutions to (5)–(6) will be discussed in the second part of this
series of papers [21].

The paper is organized as follows. Sections 2 and 3 are devoted to the existence
of subsonic/supersonic solutions to (5)–(6), respectively. The proof is long and tech-
nical. To regularize the degeneracy of (7), for the fixed sonic boundary, by taking the
current densities j > 1 for the subsonic case and j < 1 for the supersonic case, re-
spectively, we then have the approximate equations for the subsonic/supersonic cases
both to be uniformly elliptic, and hence the approximate solutions are always sub-
sonic/supersonic, respectively. We observe that (ρj − 1)2 can be estimated in H1

0 ,
where ρj(x) are the approximate subsonic/supersonic solutions for j > 1 and j < 1,
respectively. By using a compactness analysis, after taking the limits as j → 1− for
the subsonic case and j → 1+ for the supersonic case, we finally obtain the existence
of the interior subsonic/supersonic solution. Furthermore, we analyze the regularities
of these two types of solutions and show their optimal regularity as C1/2. In sections
4 and 5, we artfully construct infinitely many transonic shock solutions when τ � 1,
and infinitely many C1-smooth transonic solutions when τ � 1, respectively. For
τ � 1, to regularize the degeneracy, different from the skill mentioned before, here we
keep the equations fixed but regularize the boundary condition as ρδtran(0) = 1−δ and
ρδtran(1) = 1+δ for any small enough δ > 0. Then by the shooting method, we obtain
approximate supersonic solutions first, and then the approximate transonic solutions
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can be easily constructed by matching a subsonic solution to the obtained supersonic
solution satisfying the entropy condition and Rankine–Hugoniot condition. Letting
δ → 0+, the diagonal argument finally picks up a transonic solution to (5)–(6). Since
the left side ρ− for the Rankine–Hugoniot condition can be arbitrarily chosen, we
get the infinitely many shock transonic solutions. For τ � 1, we recognize that the
semiconductor effect J

τ � 1 makes the transonic solutions C1-smooth, and no shock
transonic solutions exists. Finally, at the end of the paper, in order to understand bet-
ter the structure of all solutions as shown in Theorem 1.3, we present some examples
in section 6.

2. Existence and uniqueness of interior subsonic solution. First, we prove
that there exists a unique interior subsonic solution to (7). The adopted approach
is the technical compactness method, which is inspired by the vanishing viscosity
method.

Theorem 2.1. Assume that b ∈ L∞(0, 1) and b > 1; then (7) has a unique
interior subsonic solution ρsub satisfying

(16) 1 +m sin(πx) ≤ ρsub ≤ b, x ∈ [0, 1],

where m = m(τ, b) is a positive constant.

Since (7) is partially elliptic but degenerates at the boundary, the corresponding
solution to (7) will lack the necessary regularity, and we cannot directly work on (7).
In order to prove Theorem 2.1, we consider the following approximate equation:

(17)


[(

1
ρj
− j2

(ρj)3

)
(ρj)x

]
x

+
(

j

τρj

)
x

− [ρj − b(x)] = 0, x ∈ (0, 1),

ρj(0) = ρj(1) = 1,

where the parameter j is a constant such that 0 < j < 1. Thus, (17) is expected to be
uniformly elliptic in [0, 1], because 1

ρj
− j2

ρ3j
= 1

ρ3j
(ρj + j)(ρj − j) > 0 for the expected

solution ρj ≥ 1. To show the well-posedness of the approximate equation (17) and to
establish the lower bound estimate in (16), we need the following comparison principle.

Lemma 2.2 (comparison principle). Let U ∈ C1[0, 1] be a weak solution of (17)
satisfying U ≥ 1 on [0, 1], and that

(18)
∫ 1

0

[(
1
U
− j2

U3

)
Ux +

j

τU

]
ϕxdx+

∫ 1

0
(U − b)ϕdx = 0 for any ϕ ∈ H1

0 (0, 1),

where 0 < j < 1 is a constant, and let V ∈ C1[0, 1] be such that V (x) > 0 for x ∈ [0, 1],
V (0) ≤ 1, V (1) ≤ 1, and∫ 1

0

[(
1
V
− j2

V 3

)
Vx +

j

τV

]
ϕxdx+

∫ 1

0
(V − b)ϕdx ≤ 0 for any ϕ ≥ 0, ϕ ∈ H1

0 (0, 1).

Then U(x) ≥ V (x) over [0, 1].

Proof. Inspired by the textbook [14] (see Theorem 2.7 in section 10.4), we can
prove this comparison principle. Let us denote

A(z, p) :=
(

1
z
− j2

z3

)
p+

j

τz
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for simplicity. Then, for any ϕ ∈ H1
0 (0, 1), ϕ ≥ 0, we have

(19)
∫ 1

0
[A(V, Vx)−A(U,Ux)]ϕxdx+

∫ 1

0
(V − U)ϕdx ≤ 0.

Set e(x) := V (x)− U(x). A simple calculation gives

A(V, Vx)−A(U,Ux) = A(V, Vx)−A(U, Vx) +A(U, Vx)−A(U,Ux)

=
∫ 1

0

∂A

∂z
(Vt, Vx)dt · e(x) +

∫ 1

0

∂A

∂p
(U, (Vt)x)dt · ex(x),

where Vt(x) := tV (x)+(1−t)U(x). Taking ϕ(x) = e+(x)
e+(x)+h with e+(x) := max{0, e(x)}

and h > 0 a constant, a straightforward computation yields[
ln
(

1 +
e+(x)
h

)]
x

=
e+
x (x)

e+(x) + h
and ϕx =

h

e+(x) + h

[
ln
(

1 +
e+(x)
h

)]
x

.

Since 0 < j < 1, V ∈ C1[0, 1], and minx∈[0,1]V (x) > 0, it is easy to see that∫ 1

0

∂A

∂p
(U, (Vt)x)dt =

1
U
− 1
U3 +

1− j2

U3 ≥ 1− j2

‖U‖3L∞
,∫ 1

0

∂A

∂z
(Vt, Vx)dt ≤ C‖Vx‖C[0,1] +

Cj

τ
≤ C.

It then follows from (19) that

h(1− j2)
‖U‖3L∞

∫ 1

0

∣∣∣∣[ln(1 +
e+(x)
h

)]
x

∣∣∣∣2 dx+
∫ 1

0

(e+(x))2

e+(x) + h
dx

≤ Ch
∫ 1

0

e+(x)
e+(x) + h

∣∣∣∣[ln(1 +
e+(x)
h

)]
x

∣∣∣∣ dx
≤ h(1− j2)

2‖U‖3L∞

∫ 1

0

∣∣∣∣[ln(1 +
e+(x)
h

)]
x

∣∣∣∣2 dx+
C2h‖U‖3L∞
2(1− j2)

,

where we have used Young’s inequality in the second inequality. Thus,∫ 1

0

∣∣∣∣[ln(1 +
e+(x)
h

)]
x

∣∣∣∣2 dx ≤ C2‖U‖6L∞
(1− j2)2 for any h > 0.

This inequality together with Poincaré’s inequality leads to∫ 1

0

[
ln
(

1 +
e+(x)
h

)]2

dx ≤
∫ 1

0

∣∣∣∣[ln(1 +
e+(x)
h

)]
x

∣∣∣∣2 dx
≤ C2‖U‖6L∞

(1− j2)2 for any h > 0.(20)

Now letting h→ 0+, one can see that if e+(x) 6= 0 for some x ∈ (0, 1), then

lim
h→0+

∫ 1

0

∣∣∣∣[ln(1 +
e+(x)
h

)]∣∣∣∣2 dx =∞,

which is a contradiction to (20). Therefore, U(x) ≥ V (x) over [0, 1].
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Let us now prove the well-posedness of (17).

Lemma 2.3. Assume that b(x) ∈ L∞(0, 1) and b > 1; then (17) admits a unique
weak solution ρj satisfying ρj − 1 ∈ H1

0 (0, 1) and

(21) 1 +m sin(πx) ≤ ρj(x) ≤ b, x ∈ [0, 1],

where m = m(τ, b) is a positive constant independent of j.

Remark 2.4. In [9], Degond and Markowich also obtained the uniqueness of the
subsonic solution, but they needed to restrict the current density to be sufficiently
small j � 1 (the completely subsonic case). Here, we still have the uniqueness of the
subsonic solution for any j with 0 < j < 1.

Proof. Because 0 < j < 1, the fluid velocity of (17) is j/ρj , which is subsonic if
ρj ≥ 1. In other words, (17) is uniformly elliptic for ρj ≥ 1. Recalling Theorem 1 of
[9], (17) has a subsonic weak solution ρj ∈ H2(0, 1) satisfying 1 ≤ ρj(x) ≤ b. Thus,
we only need to show that such ρj is unique for any 0 < j < 1, and to establish the
lower bound estimate in (21).

Suppose that there are two solutions u and v satisfying u, v ≥ 1, u, v ∈ H2(0, 1).
By the Sobolev imbedding theorem, u, v ∈ C1[0, 1]. Hence, the comparison principle
(Lemma 2.2) gives u(x) = v(x) over [0, 1].

We now derive the lower bound estimate for ρj(x). Denote

q(x) := 1 +m sin(πx),

where m > 0 is a constant to be determined later. Since 0 < j < 1, it is easy to
calculate that

−
[(

1
q
− j2

q3

)
qx

]
x

−
(
j

τq

)
x

+(q−b) ≤ C(m2 +m)+(1−b) ≤ C(m2 +m)+(1−b) < 0

if m is small enough such that C(m2 + m) < (b − 1). Here C = C(τ) is a positive
constant independent of j. Thus, by Lemma 2.2 again, we have ρj(x) ≥ q(x) =
1 +m sin(πx) on [0, 1].

Proof of Theorem 2.1. Multiplying (17) by (ρj − 1), we have

(1− j2)
∫ 1

0

|(ρj)x|2

(ρj)3 dx+
4
9

∫ 1

0

(ρj + 1)
(ρj)3 · |((ρj − 1)

3
2 )x|2dx

+
j

τ

∫ 1

0

(ρj)x
ρj

dx+
∫ 1

0
(ρj − b)(ρj − 1)dx = 0.

(22)

Noting that

j

τ

∫ 1

0

(ρj)x
ρj

dx =
j

τ

∫ 1

0
(ln ρj)xdx = 0,∫ 1

0
(ρj − b)(ρj − 1)dx =

∫ 1

0
(ρj − 1)2dx+

∫ 1

0
(1− b)(ρj − 1)dx

≥ 1
2

∫ 1

0
(ρj − 1)2dx− 1

2

∫ 1

0
(b− 1)2dx,
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0 < j < 1, and 1 ≤ ρj ≤ b, it follows from (22) that

(1− j2)

b
3

∫ 1

0
|(ρj)x|2dx+

8

9b
3

∫ 1

0

∣∣∣((ρj − 1)
3
2 )x
∣∣∣2 dx+

1
2

∫ 1

0
(ρj − 1)2dx

≤ 1
2

∫ 1

0
[b(x)− 1]2dx,

which gives

(23)
∥∥∥(ρj − 1)

3
2

∥∥∥
H1
≤ C and

∥∥(1− j2)(ρj)x
∥∥
L2 ≤ C(1− j2)

1
2 .

Thus, by the compact imbedding H1(0, 1) ↪→ C1/2[0, 1], there exists a function ρ such
that, as j → 1−, up to a subsequence,

(ρj − 1)
3
2 ⇀ (ρ− 1)

3
2 weakly in H1(0, 1),(24)

(ρj − 1)
3
2 → (ρ− 1)

3
2 strongly in C

1
2 [0, 1],(25)

(1− j2)(ρj)x → 0 strongly in L2(0, 1).(26)

Observing that ((ρj − 1)2)x = 4
3 (ρj − 1)

1
2 ((ρj − 1)

3
2 )x, we get from (23) that∥∥(ρj − 1)2

∥∥
H1 =

∥∥(ρj − 1)2
∥∥
L2 +

∥∥((ρj − 1)2)x
∥∥
L2 ≤ C

∥∥∥(ρj − 1)
3
2

∥∥∥
H1
≤ C,

which leads to

(27) (ρj − 1)2 ⇀ (ρ− 1)2 weakly in H1(0, 1) as j → 1−.

Now we multiply (17) by ϕ ∈ H1
0 (0, 1) to derive

1
2

∫ 1

0

ρj + 1
ρ3
j

[(ρj − 1)2]xϕxdx+
∫ 1

0

1
ρ3
j

(1− j2)(ρj)xϕxdx

+
j

τ

∫ 1

0

ϕx
ρj
dx+

∫ 1

0
[ρj(x)− b(x)]ϕdx = 0.

Letting j → 1−, and applying (25)–(27), we prove the existence of weak solution
ρ(x) = ρsub(x) satisfying (8). Since m presented in (21) is independent of j, then the
lower bound estimate in (16) immediately follows from (21) and (25).

To prove the uniqueness of the interior subsonic solution, we first need to inves-
tigate the regularity of w(x) defined by w(x) := (ρ(x) − 1)2. Clearly, w ∈ H1

0 (0, 1).
From (7), it can be verified that w satisfies

(28)

(
(2 +

√
w(x))wx

2(1 +
√
w(x))3

+
1

τ(1 +
√
w(x))

)
x

− (
√
w(x) + 1− b) = 0, x ∈ (0, 1).

For simplicity, we set

f1(x) :=
2 +

√
w(x)

(1 +
√
w(x))3

, f2(x) :=
1

1 +
√
w(x)

, f3(x) :=
f1(x)wx(x)

2
+
f2(x)
τ

.

Because (28) holds in the sense of distribution, we have f3 ∈ H1(0, 1). By the Sobolev
imbedding theorem, we have w, f3 ∈ C1/2[0, 1]. Since w ≥ 0 on [0, 1], then

|
√
w(y)−

√
w(x)| = |w(y)− w(x)|√

w(y) +
√
w(x)

≤ |w(y)− w(x)|√
|w(y)− w(x)|

≤ C|y − x|1/4.
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On the other hand, for any x, y ∈ [0, 1], it holds that

f2(x)− f2(y) =
1

1 +
√
w(x)

− 1
1 +

√
w(y)

=

√
w(y)−

√
w(x)

(1 +
√
w(x))(1 +

√
w(y))

.

Thus,
|f2(x)− f2(y)| ≤ |

√
w(y)−

√
w(x)| ≤ C|y − x|1/4.

This means f2 ∈ C1/4[0, 1]. Similarly, we have f1 ∈ C1/4[0, 1]. Notice that wx =
2f3−2f2/τ

f1
∈ C1/4[0, 1]; then

(29) w ∈ C1+1/4[0, 1].

Now, integrating (28) over [0, x] and setting

Gw(x) :=
(2 +

√
w(x))wx(x)

2(1 +
√
w(x))3

+
1

τ(1 +
√
w(x))

,

we have

(30)


(2 +

√
w)wx

2(1 +
√
w)3 = Gw −

1
τ(1 +

√
w)
,

Gw(x) = Gw(0) +
∫ x

0
[
√
w(s) + 1− b(s)]ds.

We are now ready to prove the uniqueness of the interior subsonic solution. Sup-
pose ρ1(x) and ρ2(x) are two different interior subsonic solutions to (7). Thus, there
exists at least a number z ∈ (0, 1) such that ρ1(z) 6= ρ2(z). Without loss of generality,
we may assume that ρ1(z) > ρ2(z); then w1(z) > w2(z). Since w1, w2 ∈ C1+1/4[0, 1],
there exists a maximal interval [a, c] ⊂ [0, 1] such that z ∈ (a, c),

w1(a) = w2(a), w1(c) = w2(c), and w1(x) > w2(x), x ∈ (a, c).

Obviously, it holds that

(w1)x(a) = lim
x→a+

w1(x)− w1(a)
x− a

≥ lim
x→a+

w2(x)− w2(a)
x− a

= (w2)x(a),(31)

(w1)x(c) = lim
x→c−

w1(x)− w1(c)
x− c

≤ lim
x→c−

w2(x)− w2(c)
x− c

= (w2)x(c).(32)

Owing to (32) and the first equation of (30),

Gw1(c) ≤ Gw2(c).

Substituting this inequality into the second equation of (30), we have

Gw1(a) +
∫ c

a

[√
w1(x) + 1− b(x)

]
dx ≤ Gw2(a) +

∫ c

a

[√
w2(x) + 1− b(x)

]
dx.

Since w1(x) > w2(x) over (a, c), then

Gw1(a) < Gw2(a).

Using the first equation of (30) again, we obtain

(w1)x(a) < (w2)x(a),

which contradicts (31). Therefore, ρ1(x) = ρ2(x) over [0, 1], namely, the interior
subsonic solution ρsub(x) is unique.
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We proceed to study the regularity of this interior subsonic solution.

Proposition 2.5. ρsub ∈ C1/2[0, 1], and there exist 0 < s1 < 1, Ci (i = 1, 2, 3, 4)
such that

C1(1− x)1/2 < ρsub(x)− 1 < C2(1− x)1/2

−C3(1− x)−1/2 < (ρsub)x(x) < −C4(1− x)−1/2
for x ∈ [1− s1, 1].(33)

Remark 2.6. This proposition indicates that 1
2 is the optimal exponent in Hölder

space for the global regularity of the unique interior subsonic solution ρsub(x). And
the derivative of the approximate subsonic solution sequence {ρj}0<j<1 constructed
in Lemma 2.3 blows up as j → 1− at x = 1, namely, limj→1−ρ

′
j(1) = −∞.

Proof. For convenience, we denote by ρ the interior subsonic solution of (5). By
(29), we have (ρ− 1)2 = w ∈ C1[0, 1]. Since ρ ≥ 1 on [0, 1], then

|ρ(x)−1 +ρ(y)−1| = |ρ(x)−1|+ |ρ(y)−1| ≥ |(ρ(x)−1)− (ρ(y)−1)| = |ρ(x)−ρ(y)|.

Thus, we have

|ρ(x)− ρ(y)|2

|x− y|
=
|ρ(x)− ρ(y)||(ρ(x)− 1)2 − (ρ(y)− 1)2|

|x− y||ρ(x)− 1 + ρ(y)− 1|
≤ |w(x)− w(y)|

|x− y|
≤ C

for any x, y ∈ [0, 1], which indicates that ρ ∈ C1/2[0, 1].
Now we are going to prove the estimates in (33). We first claim E(1) < 1

τ .
Otherwise, if E(1) ≥ 1

τ , then it will imply a contradiction. In fact, since ρ ∈ C[0, 1]
and ρ(1) = 1 < b ≤ b(x) for x ∈ [0, 1], there exists ε̂ > 0 such that ρ(x)− b(x) < 0 for
a.e. x ∈ [1− ε̂, 1]. By integrating the second equation of (5) over [x, 1] for x ∈ [1− ε̂, 1],
we have

E(x) = E(1)−
∫ 1

x

[ρ(s)− b(s)]ds > E(1) ≥ 1
τ

for x ∈ [1− ε̂, 1].

Noting ρ(x) > 1 over (0, 1), we have E(x)− 1
τρ(x) >

1
τ

(
1− 1

ρ(x)

)
≥ 0 for x ∈ [1− ε̂, 1].

It then follows from the first equation of (5) that ρx(x) > 0 on [1 − ε̂, 1], which
contradicts the fact that ρ(1) = 1 and ρ(x) > 1 over (0, 1).

Now let q := E(1) − 1
τ ; then q < 0. Based on the continuity of the function(

E(x)− 1
τρ(x)

)
, there exists a number 0 < s1 < ε̂ such that

(34)
3q
2
≤ E(x)− 1

τρ(x)
≤ q

2
< 0 for x ∈ [1− s1, 1].

From the first equation of (5), we have

E(x)− 1
τρ(x)

=
(

1− 1
ρ2

)ρx
ρ

=
ρ+ 1
ρ3 (ρ− 1)ρx =

ρ+ 1
2ρ3

(
(ρ− 1)2

)
x
.

Applying (34) to the above equation, we then have

3qρ3(x)
ρ(x) + 1

≤
(

(ρ−1)2
)
x

=
[
E(x)− 1

τρ(x)

]
2ρ3(x)
ρ(x) + 1

≤ qρ3(x)
ρ(x) + 1

< 0 for x ∈ [1−s1, 1].

Applying (16) to the above inequalities, we can estimate

(35)
3qb̄3

2
<
(

(ρ(x)− 1)2
)
x
<

q

b̄+ 1
< 0 for x ∈ [1− s1, 1].
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Integrating (35) over [x, 1] for x ∈ [1− s1, 1], we get

(36) C1(1− x)
1
2 < ρ(x)− 1 < C2(1− x)

1
2 for x ∈ [1− s1, 1],

with

C1 :=

√
|q|
b̄+ 1

and C2 :=

√
3|q|b̄3

2
.

Furthermore, from (35), we have

3qb̄3

4(ρ(x)− 1)
< ρx(x) <

q

2(b̄+ 1)(ρ(x)− 1)
< 0 for x ∈ [1− s1, 1].

This with (36) together implies

−C3(1− x)−
1
2 < ρx(x) < −C4(1− x)−

1
2 , x ∈ [1− s1, 1],

for some positive constants C3 and C4. The proof is complete.

3. Existence of interior supersonic solutions. We next prove the existence
of interior supersonic solutions of (7).

Theorem 3.1. Assume that b ∈ L∞(0, 1) and b > 1; then (7) admits an interior
supersonic solution ρsup(x) satisfying ` ≤ ρsup(x) ≤ 1 over [0, 1] for some positive
constant `. Moreover, ρsup satisfies the following properties:

1. For any 1
2 > ε > 0, there exists a number δ > 0 such that ρsup(x) ≤ 1− δ for

any x ∈ [ε, 1− ε].
2. ρsup has only one critical point z0 over (0, 1) such that (ρsup)x < 0 on (0, z0)

and (ρsup)x > 0 on (z0, 1); i.e., z0 is the minimal point.

As shown in the proof of Theorem 2.1, we consider the approximate equation

(37)


[(

1
ρk
− k2

(ρk)3

)
(ρk)x

]
x

+
(

k

τρk

)
x

− [ρk(x)− b(x)] = 0, x ∈ (0, 1),

ρk(0) = ρk(1) = 1,

but with the parameter 1 < k <∞.

Lemma 3.2. Let the doping profile be subsonic with b(x) ∈ L∞(0, 1) and b > 1.
Then (37) admits a weak solution ρk(x) satisfying

(38) ρk ∈ H1(0, 1) and 0 < ρk(x) ≤ 1 over [0, 1].

Remark 3.3. Peng and Violet [26] showed that if k is large enough, then (37) has
a supersonic solution. Our Lemma 3.2 further shows that, in the case of the subsonic
doping profile, for all 1 < k < ∞, (37) has a supersonic solution. Thus, our result
essentially improves the previous study in [26].

Proof. The velocity uk(x) = k
ρk(x) satisfies

(39)


[(
uk −

1
uk

)
(uk)x

]
x

+
(uk)x
τ
−
(
k

uk
− b
)

= 0, x ∈ (0, 1).

uk(0) = uk(1) = k.
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So we only need to show that (39) has a weak solution uk ∈ H1(0, 1) satisfying
k ≤ uk < ∞. To this end, we define an operator T : ψ → u by solving the following
linear elliptic equation:

(40)


[(
ψ − 1

ψ

)
ux

]
x

+
ux
τ
−
(
k

ψ
− b
)

= 0, x ∈ (0, 1),

u(0) = u(1) = k.

Set

X :=
{
ψ(x) : ψ ∈ C1[0, 1], k ≤ ψ(x) ≤M, ψ(0) = ψ(1) = k,

‖ψ‖Cα[0,1] ≤ Λ, ‖ψ‖C1[0,1] ≤ Υ(Λ)
}
,

where 0 < α < 1/2, M , Λ, and Υ(Λ) are some positive constants to be determined
later. Suppose that ψ ∈ X . By the L2 theory of elliptic equations and the Sobolev
imbedding theorem, we see that (40) has a unique solution u ∈ C1+α[0, 1] for 0 < α <
1. Multiplying (40) by (u− k)−(x) := min{0, (u− k)(x)}, we have∫ 1

0

(
ψ − 1

ψ

)
|[(u− k)−]x|2dx−

1
τ

∫ 1

0
ux(u− k)−dx

+
∫ 1

0

(
k

ψ
− b
)

(u− k)−dx = 0.(41)

Because k > 1 and ψ ≥ k, we have ψ − 1
ψ ≥ k − 1 > 0, and noting that

1
τ

∫ 1

0
ux(u− k)−dx =

1
2τ

∫ 1

0
([(u− k)−]2)xdx = 0,

it follows from (41) that

(42) (k − 1)
∫ 1

0
|[(u− k)−]x|2dx+

∫ 1

0

(
k

ψ
− b
)

(u− k)−dx ≤ 0.

This inequality in combination with the fact that k
ψ(x)−b(x) < 0 gives (u−k)−(x) = 0

for all x ∈ [0, 1]. Thus, u(x) ≥ k over [0, 1]. Now multiplying (40) by (u− k), just as
shown in (42), and using Young’s inequality and Poincaré’s inequality, we get

(k − 1)
∫ 1

0
|(u− k)x|2dx ≤

∫ 1

0

(
b− 1

ψ

)
(u− k)dx

≤ k − 1
2

∫ 1

0
(u− k)2dx+

1
2(k − 1)

∫ 1

0

(
b(x)− k

ψ

)2

dx

≤ k − 1
2

∫ 1

0
|(u− k)x|2dx+

1
2(k − 1)

∫ 1

0
b2(x)dx.

It then follows that

‖ux‖L2(0,1) ≤
‖b‖L2

k − 1
.

Furthermore, a straightforward computation yields

0 < u(x) ≤ k +
‖b‖L2

k − 1
.
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Thus, the compact imbedding of H1(0, 1) into Cα0 [0, 1] with 0 < α0 < 1/2 gives

‖u‖Cα0 [0,1] ≤ C0(k, ‖b‖L2) for a constant C0 > 0.

Hence we determine M = 1 + ‖b‖L2

k−1 , α = α0, and Λ = C0(k, ‖b‖L2). By the Hölder
estimate for the first order derivative of divergence-form elliptic equation [14], we
derive

‖u‖C1+α[0,1] ≤ C1(k, ‖b‖L2 ,Λ).

Now we take Υ(Λ) = C1(k, ‖b‖L2 ,Λ) with Λ = C0(k, ‖b‖L2). Then it is easy to see
that u ∈ X and X is a nonempty bounded and closed convex set in C1[0, 1]. On the
other hand, by the Arzelà–Ascoli theorem, the imbedding C1+α[0, 1] ↪→ C1[0, 1] is
compact. Thus, the operator T is a compact map of X into itself. By the Schauder
fixed point theorem (see Corollary 2.3.10 in [6]), there exists a fixed point u ∈ X such
that

T (u) = u.

Therefore, (39) has a weak solution uk ∈ C1[0, 1], and ρk(x) = k/uk(x) is a desired
weak supersonic solution of (37).

Proof of Theorem 3.1. Multiplying (39) by (uk−k) and using Young’s inequality,
we have

(k − 1)
∫ 1

0

uk + 1
uk

|(uk)x|2dx+
4
9

∫ 1

0

uk + 1
uk

|[(uk − k)3/2]x|2dx

=
∫ 1

0

(
b− k

uk

)
(uk − k)dx

≤ 1
3

∫ 1

0
(uk − k)3dx+

2
3

∫ 1

0

(
b− k

uk

)3/2

dx

≤ 1
3

∫ 1

0
|[(uk − k)3/2]x|2dx+

2
3

∫ 1

0
b3/2(x)dx.

Thus, we have

(43) ‖(k − 1)
1
2 (uk)x‖L2 + ‖(uk − k)

3
2 ‖H1 ≤ C

for a constant C independent of k, where we have used k > 1 and uk ≥ k. This
inequality together with the Sobolev imbedding theorem yields

(44) ‖uk‖L∞ ≤ k + C
2
3 .

Hence

(45) ρk(x) =
k

uk(x)
≥ k

‖uk‖L∞
≥ k

k + C
2
3
≥ 1

1 + C
2
3

, ` for all x ∈ [0, 1].

A direct calculation yields

(ρk)x = −k(uk)x
u2
k

and ((1− ρk)2)x =
4k(uk − 1)

1
2 ((uk − 1)

3
2 )x

3u3
k

.
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It then follows from (43) and (44) that

‖(1− ρk)2‖H1 + ‖(1− ρk)3/2‖H1 ≤ C1,

‖(k − 1)(ρk)x‖L2 ≤ C1(k − 1)
1
2 .

Thus, there exists a function ρsup(x) such that, as k → 1+, up to a subsequence,

(1− ρk)2 ⇀ (1− ρsup)2 weakly in H1(0, 1),

(1− ρk)3/2 ⇀ (1− ρsup)3/2 weakly in H1(0, 1),

(1− ρk)3/2 → (1− ρsup)3/2 strongly in C
1
2 [0, 1],

(k − 1)(ρk)x → 0 strongly in L2(0, 1).

(46)

Applying the same procedure as in the proof of Theorem 2.1, one can show that ρsup
satisfies (8). The lower bound of ρsup follows from (45) and the third convergence of
(46).

Let us now prove that ρsup(x) < 1 for any interior point x ∈ (0, 1). We observe
that if a function ρ satisfies ρ(x) ≡ 1 on an interval [â, ĉ] ⊂ [0, 1], then ρ is not a
solution of (7) because b > 1. Thus, for any 1 � ε > 0, there exist a δ > 0 and two
points âε ∈ (0, ε] and ĉε ∈ [1− ε, 1) such that ρsup(âε), ρsup(ĉε) ≤ 1− δ < 1. We only
need to show that ρsup(x) ≤ 1 − δ over [âε, ĉε]. Actually, set w := (1 − ρsup)2; then
w ∈ H1

0 (0, 1), w(âε), w(ĉε) ≥ δ2, and it follows from (8) that for any ϕ ∈ H1
0 (âε, ĉε)

1
2

∫ ĉε

âε

2−
√
w

(1−
√
w)3wxϕxdx+

1
τ

∫ ĉε

âε

ϕx
1−
√
w
dx+

∫ ĉε

âε

(1−
√
w − b)ϕdx = 0.

Taking ϕ(x) = (w − δ2)−(x), we have

1
2

∫ ĉε

âε

2−
√
w

(1−
√
w)3 |[(w − δ

2)−]x|2dx+
1
τ

∫ ĉε

âε

[(w − δ2)−]x
1−
√
w

dx

+
∫ ĉε

âε

(1−
√
w − b)(w − δ2)−dx = 0.

Observing that ρsup ≥ `, hence 2 −
√
w > 1 −

√
w ≥ ` > 0. This implies that the

first term of the equality is nonnegative. Because b > b > 1, the third term is also
nonnegative. On the other hand, a simple computation gives −2(

√
w+ln(1−

√
w))x =

wx
1−
√
w

, which implies that the second term is zero. Thus, (w−δ2)−(x) = 0 over [âε, ĉε].
And as a result, ρsup(x) ≤ 1− δ over [âε, ĉε].

It remains to show part 2 of Theorem 3.1. We only need to show that if z0 ∈ (0, 1)
is a critical point of ρsup, then it must be a local minimal point. Because ρsup ∈ C[0, 1]
and ρsup < 1 over (0, 1), by the interior regularity theory of elliptic equations and the
Sobolev imbedding, for any z0 ∈ (0, 1), there exists an interval I ⊂ (0, 1) such that
z0 ∈ I, ρsup ∈ W 2,p(I) for any 1 < p < ∞, and ρsup ∈ C1(I). Now if z0 is a critical
point, then (ρsup)x(z0) = 0. Since ρsup ∈ C1(I), there exists a δ > 0 such that

|(ρsup)x(x)| < τ(b− 1)
2

for any x ∈ (z0 − δ, z0 + δ).
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If x ∈ (z0, z0 + δ), we integrate (7) over (z0, x) to derive(
1

ρsup
− 1
ρ3
sup

)
(ρsup)x =

∫ x

z0

[
ρsup − b+

(ρsup)x
τρ2

sup

]
ds

<

∫ x

z0

(
1− b+

|(ρsup)x|
τρ2

sup

)
ds

<

∫ x

z0

(
1− b+

b− 1
2

)
ds

=
(1− b)(x− z0)

2
< 0,

where we have used (ρsup)x(z0) = 0 and ρsup < 1. Thus,

(ρsup)x(x) > 0 on (z0, z0 + δ).

Similarly, integrating (7) over (x, z0) with x ∈ (z0 − δ, z0), one can get that

(ρsup)x(x) < 0 on (z0 − δ, z0).

Therefore, z0 is a local minimal point of ρsup. The proof is complete.

As in Proposition 2.5, we also study the optimal global regularity of the interior
supersonic solution.

Proposition 3.4. ρsup ∈ C1/2[0, 1], and there exist s2 � 1, Ci (i = 5, 6, 7, 8)
such that

−C5x
1/2 < ρsup − 1 < −C6x

1/2

−C7x
−1/2 < (ρsup)x < −C8x

−1/2
for x ∈ [0, s2].(47)

Proof. The proof is similar to that of Proposition 2.5. Here for supersonic solu-
tions, we need the local analysis for the solution near x = 0. We omit the details.

4. Infinitely many transonic shock solutions. We turn to study the exis-
tence of transonic solutions of (5)–(6). We first consider Euler–Poisson equations (5)
with constant doping profile b but without the semiconductor effect (namely, 1

τ = 0,
or, say, τ =∞), and the imposed boundary condition is completely supersonic. That
is,

(48)


(

1− 1
ρ2

)
ρx = ρE,

Ex = ρ− b,
ρ(0) = ρ(L) = 1− δ (supersonic boundary),

where L ≥ 1
4 is the parameter of length and δ > 0 is a small constant. As shown in

the proof of Theorem 3.1, for any δ > 0, (48) has a supersonic solution. We have the
following uniform estimates with respect to δ for the supersonic solutions of (48).

Lemma 4.1. Assume that b > 1, and that (ρL, EL)(x) are supersonic solutions of
(48). Then

β(L, b) ≤ min
x∈[0,L]

ρL(x) ≤ γ(L, b) and EL(0) ≥ C(L, b),

where β(L, b), γ(L, b), and C(L, b) are positive constants independent of δ.
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Proof. For convenience, we denote (ρL, EL) by (ρ,E). In the phase-plane (ρ,E),
we have

dE

dρ
=

(ρ+ 1)(ρ− b)(ρ− 1)
Eρ3 .

Integrating the above equation with respect to ρ, we obtain the part of trajectory
through (1− δ, E(0)) as follows:

(49)
E2(x)

2
=
E2(0)

2
− 2ρ(0)− b

2ρ2(0)
− ρ(0) + b ln ρ(0) +

2ρ(x)− b
2ρ2(x)

+ ρ(x)− b ln ρ(x)

and

E(x) = ±
√

2

√
E2(0)

2
− 2ρ(0)− b

2ρ2(0)
− ρ(0) + b ln ρ(0) +

2ρ(x)− b
2ρ2(x)

+ ρ(x)− b ln ρ(x).

Thus, the supersonic solution obtained satisfies 0 < ρ(x) < 1− δ and is symmetric in
x ∈ (0, L). Set ρ := minx∈[0,L]ρ(x). By the symmetry of ρ(x) in (0, L), we know that
ρ(x) reaches its minimum at x = L

2 . Thus,

(50) ρ = ρ(L/2) and ρ′(L/2) = 0.

We next estimate ρ. The velocity u(x) = 1/ρ(x) satisfies u(x) ≥ 1
1−δ and

(51)
((

u− 1
u

)
ux

)
x

=
1− bu
u

, u(0) = u(L) =
1

1− δ
.

Multiplying (51) by (u− 1
1−δ )2, we get

(52) 2
∫ L

0

(
u− 1

u

)(
u− 1

1− δ

)
(ux)2dx =

∫ L

0

bu− 1
u

(
u− 1

1− δ

)2
dx.

Artfully, we can reduce the left-hand side of (52) to

2
∫ L

0

(
u− 1

u

)(
u− 1

1− δ

)
(ux)2dx

= 2
∫ L

0

u+ 1
u

(u− 1)
(
u− 1

1− δ

)
(ux)2dx

= 2
∫ L

0

u+ 1
u

( δ

1− δ
+ u− 1

1− δ

)(
u− 1

1− δ

)
(ux)2dx

=
2δ

1− δ

∫ L

0

u+ 1
u

(
u− 1

1− δ

)
(ux)2dx

+ 2
∫ L

0

u+ 1
u

(
u− 1

1− δ

)2
(ux)2dx

=
2δ

1− δ

∫ L

0

u+ 1
u

(
u− 1

1− δ

)
(ux)2dx

+
1
2

∫ L

0

u+ 1
u

∣∣∣((u− 1
1− δ

)2)
x

∣∣∣2dx.

(53)

D
ow

nl
oa

de
d 

11
/2

9/
17

 to
 1

32
.2

16
.2

38
.2

23
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HD MODEL OF SEMICONDUCTORS WITH SONIC BOUNDARY (I) 4785

Further, by using the Cauchy–Schwarz inequality, |ab| ≤ µa2 + 1
4µb

2 with any µ > 0,
and by using Poincaré’s inequality, ‖g‖L2(0,L) ≤ L

π ‖gx‖L2(0,L), where L
π is the best

number for Poincaré’s inequality, because λ := π2

L2 is the minimum eigenvalue of
−gxx = λg with g(0) = g(L) = 0, we can estimate the right-hand side of (52) as
follows: ∫ L

0

bu− 1
u

(
u− 1

1− δ

)2
dx ≤ 1

2L2

∫ L

0

(
u− 1

1− δ

)4
dx+

b2L3

2

≤ 1
2π2

∫ L

0

∣∣∣((u− 1
1− δ

)2)
x

∣∣∣2dx+
b2L3

2
.

(54)

Substituting (53) and (54) to (52), we then have

2δ
1− δ

∫ L

0

u+ 1
u

(
u− 1

1− δ

)
u2
xdx+

∫ L

0

(π2 − 1)u+ π2

2π2u

∣∣∣∣((u− 1
1− δ

)2)
x

∣∣∣∣2 ≤ b2L3

2
,

which gives

(55)
∥∥∥∥((u− 1

1− δ

)2)
x

∥∥∥∥
L2(0,L)

≤ πbL
√
L.

Notice that, for φ ∈ H1
0 (0, L), it holds that

‖φ‖L∞ ≤
√
L‖φx‖L2 .

Thus, from (55) we have(
u(x)− 1

1− δ

)2

≤
√
L

∥∥∥∥((u− 1
1− δ

)2)
x

∥∥∥∥
L2(0,L)

≤ πbL2,

which gives

u(x) ≤ 1
1− δ

+
√
πb · L.

Thus, we can estimate the minimum of ρ(x) by

ρ ≥
(

1
1− δ

+
√
πb · L

)−1

≥
(

2 +
√
πb · L

)−1
, β(L), when δ ≤ 1

2
.

On the other hand, by (48), since b ≥ 1 > ρ, we have

(56) ρxx =
ρ3

ρ+ 1

[
1

ρ2(1− ρ)

(
3
ρ2 − 1

)
ρ2
x +

b− ρ
(1− ρ)

]
≥
ρ3

2
≥ β3(L)

2
on [0, L].

By Taylor expansion

ρ(0) = ρ(L/2)− ρ′(L/2)L/2 + ρ
′′
(ξ)(L/2)2/2 with ξ ∈ [0, L/2],

it then follows from (50) and (56) that

(57) ρ ≤ 1− δ − L2β3(L)
24 ≤ 1− L2

24 ·
1(

2 +
√
πb · L

)3 , γ(L).
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Since ρ = ρ(L/2) is the minimum value, from (48) and the fact ρx(L/2) = 0, we have
E(L/2) = 0. Thus, in view of (49), we further obtain

E2(0)
2

=
2− b− 2δ
2(1− δ)2 + 1− δ − b ln(1− δ)−

[
2ρ− b

2ρ2 + ρ− b ln ρ
]

=
δ[2− 2b− (2− b)δ]

2(1− δ)2 − δ − b ln(1− δ) + 1

+
(2− b)(ρ− 1)2 + (2− 2b)(ρ− 1)

2ρ2 − ρ+ b ln ρ

≥ δ[2− 2b− (2− b)δ]
2(1− δ)2 − δ + f(ρ),

where

f(s) := 1 +
(2− b)(s− 1)2 + (2− 2b)(s− 1)

2s2 − s+ b ln s, s ∈ (0, 1).

Notice that f(1) = 0 and f ′(s) := − (b−s)(1−s2)
s3 < 0 for s ∈ (0, 1), namely, f(s) is

decreasing and positive for s ∈ (0, 1). Using the boundness estimates carried out in
(57), i.e., ρ ≤ γ(L), when δ is small such that δ((2−δ)(b−1)+δ)

2(1−δ)2 + δ ≤ f(γ(L))
2 , we have

E2(0) ≥ 2
[
−δ((2− δ)(b− 1) + δ)

2(1− δ)2 − δ + f(ρ)
]

≥ 2
[
−δ((2− δ)(b− 1) + δ)

2(1− δ)2 − δ + f(γ(L))
]

≥ f(γ(L)).

(58)

Integrating the second equation of (48) over [0, L/2], we get

E(0) = E(L/2) +
∫ L/2

0
(b− ρ)dt =

∫ L/2

0
(b− ρ)dt > 0.

Hence, it follows from (58) that E(0) has a positive lower bound,

(59) E(0) ≥
√
f(γ(L)),

which is independent of δ.

Theorem 4.2. If b > 1, τ � 1, and 0 ≤ b̄ − b � 1, then system (5)–(6) has
infinitely many transonic shock solutions over [0, 1].

Proof. The proof is technical and longer. We divide it into seven steps.
Step 1. Let η be a small number to be determined later such that δ < η � 1.

Denote by (ρ1, E1)(x) the solution of (48) with L = 1
2 . Then by (59),

(60) E1(0) ≥
√
f(γ(1/2)) , Λ1.

Let us consider system (5) with the supersonic initial value:

(61)


(

1− 1
ρ2

)
ρx = ρE − 1

τ
,

Ex = ρ− b(x),
(ρ(0), E(0)) = (1− δ, E1(0)).
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In this step, we will show that when τ � 1, there exists a number x1 ≤ Cη such that
ρ(x1) = 1 − η, and E(x1) ≥ E1(0) − Cη2, where C > 0 is a constant independent of
τ , δ and η.

It is easy to see that if τ ≥ 4
Λ1
≥ 4

E1(0) and δ ≤ 1
4 , then the initial data of (61)

satisfies

ρ(0)E(0)− 1
τ

= (1− δ)E1(0)− 1
τ
≥ E1(0)

2
> 0.

Observing that (61) is a standard initial value problem for the ODE system without
degeneracy, it follows that (61) has a unique supersonic solution on some interval.
Because b ≥ b > 1 > ρ, the solution component E keeps decreasing. Using result 2 of
Theorem 3.1, ρ is decreasing until it attains the unique critical point, after which ρ
keeps increasing. Denote by x1 the first number for which ρ(x) attains 1− η, namely,
ρ(x1) = 1− η. By the second equation of (61),

E(x) = E1(0) +
∫ x

0
(ρ− b)ds ≥ E1(0)− b̄x for x ∈ (0, x1).

Since ρ ∈ (1− η, 1− δ) on (0, x1), if η ≤ 1
2 and τ ≥ 4

Λ1
≥ 4

E1(0) , then

ρE − 1
τ
≥ (1− η)(E1(0)− b̄x)− E1(0)

4
≥ (1− η)

(
E1(0)

4
− b̄x

)
for x ∈ (0, x1),

which in combination with the first equation of (61) leads to
(62)

x1 =
ρ(x1)− ρ(0)

ρx(ξ)
=

(η − δ)(1− ρ2(ξ))
(ρ(ξ)E(ξ)− 1

τ )ρ2(ξ)
≤ 2η2

(1− η)3(E1(0)
4 − b̄x1)

with ξ ∈ (0, x1).

To solve this inequality, we notice that when η is small such that η ≤ min
{E1(0)

24
√
b
, 1

2

}
,

then
E2

1(0)
4
− 8b̄η2

(1− η)3 ≥
E2

1(0)
4
− 26b̄η2 ≥ 1

4
(E2

1(0)− 28b̄η2) ≥ 0.

Thus, we get from inequality (62) that

x1 ≤
1
2b̄

(
E1(0)

4
−
(
E2

1(0)
42 − 8b̄η2

(1− η)3

)1/2
)

=
4η2

(1− η)3
(
E1(0)

4 + (E
2
1(0)
42 − 8b̄η2

(1−η)3 )1/2
)

≤ 16η2

(1− η)3E1(0)
≤ 27η2

Λ1
,

where we have used (60) in the last inequality. In view of the second equation of (61),
we further get

(63) E(x1) = E1(0) +
∫ x1

0
(ρ− b)ds ≥ E1(0)− b̄x1 ≥ E1(0)− 27b̄η2

Λ1
.

Step 2. Now let us consider the initial value problem for the ODE system without
semiconductor effect

(64)


(

1− 1
ρ̂2

)
ρ̂x = ρ̂Ê,

Êx = ρ̂− b,
(ρ̂(0), Ê(0)) = (1− δ, Ê0).
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In this step, we prove that there exist numbers x2 > 0 and Ê0 > 0 such that x2 ≤ Cη2

and the solution of (64) satisfies ρ̂(x2) = 1 − η and Ê(x2) = E(x1). Here E and x1
are given by Step 1, and C > 0 is a constant independent of τ , δ, and η.

We argue by the shooting method. Using phase-plane analysis, it is easy to
see that, for any Ê0 > 0, there exists L̂(Ê0) > 0, such that (64) has a symmetric
supersonic solution on [0, L̂(Ê0)] satisfying

ρ̂(0) = ρ̂(L̂(Ê0)) = 1− δ, Ê(0) = −Ê(L̂(Ê0)) = Ê0.

Now taking Ê0 = 2E1(0), suppose x̄2 is the first number for which ρ̂ attains 1−η.
Since ρ̂ ∈ (1− η, 1− δ) on (0, x̄2), by the second equation of (64),

(65) Ê(x) = Ê(0) +
∫ x

0
(ρ̂− b)ds ≥ 2E1(0)− b̄x for x ∈ (0, x̄2).

Hence

ρ̂Ê(x) ≥ (1− η)(2E1(0)− b̄x),

which in combination with the first equation of (64) leads to

(66) x̄2 =
ρ̂(x̄2)− ρ̂(0)

ρ̂x(ξ̂)
=

(η − δ)(1− ρ̂2(ξ̂))

ρ̂3(ξ̂)Ê(ξ̂)
≤ 2η2

(1− η)3(2E1(0)− b̄x̄2)
.

Notice that when η ≤ min
{E1(0)

4
√
b̄
, 1

2

}
, it holds that

4E2
1(0)− 8b̄η2

(1− η)3 ≥ 4(E2
1(0)− 24b̄η2) ≥ 0.

It then follows from (66) that

x̄2 ≤
1
2b̄

(
2E1(0)−

(
4E2

1(0)− 8b̄η2

(1− η)3

)1/2
)

=
2η2

(1− η)3
(
E1(0) + (E2

1(0)− 2b̄η2

(1−η)3 )1/2
)

≤ 2η2

(1− η)3E1(0)
≤ 24η2

Λ1
,

(67)

where we have used (60) in the last inequality. This inequality together with (65)
gives

Ê(x̄2) ≥ 2E1(0)− b̄x̄2 ≥ 2E1(0)− 24b̄η2

E1(0)
≥ 2E1(0)− 24b̄η2

E1(0)
· E

2
1(0)

16b̄η2
= E1(0) > E(x1).

Here we have used E1(0) = E(0) > E(x1) because E is decreasing.

On the other hand, if Ê0 = E1(0)
2 , by (63), one can easily see that if η < 1

24

√
Λ1
b̄

,

it holds that E(x1) > E1(0)
2 . Thus, Ê(x) < Ê0 = E1(0)

2 < E(x1) for any x > 0 because
Ê is decreasing. Now by the continuity of the solution with respect to the initial data,
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there exist Ê0 ∈ (E1(0)
2 , 2E1(0)) and length L̂ > 0 such that (64) has a supersonic

solution (ρ̂, Ê) satisfying

ρ̂(0) = ρ̂(L̂) = 1− δ, Ê(0) = −Ê(L̂) = Ê0.

Moreover, as in (67), there exists a number x2 ≤ Cη2 such that

(68) ρ̂(x2) = 1− η and Ê(x2) = E(x1).

Thus,

0 < Ê0 − E(x1) = Ê0 − Ê(x2) = −
∫ x2

0
Êxdx =

∫ x2

0
(b− ρ̂)dx < b̄x2 < C1η

2,

which in combination with (63) yields

Ê0 − E1(0) = Ê0 − E(x1) + E(x1)− E1(0) > E(x1)− E1(0) > −C2η
2,

Ê0 − E1(0) = Ê0 − E(x1) + E(x1)− E1(0) < C1η
2,

where we have used the fact that E is decreasing. Thus,

|Ê0 − E1(0)| ≤ C3η
2 with C3 = min{C1, C2}.

Observing that the length L̂ of solution is also continuous with respect to the initial
data, since the length of the solution (ρ1, E1) to (48) with initial data (1 − δ, E1(0))
is 1

2 , there exists l0 > 0 independent of τ , δ, and η, such that if C3η
2 < l0, then

1
4
≤ L̂ ≤ 3

4
.

Step 3. In this step, we show that when τ � 1 and b̄− b� 1, system (61) has a
unique solution (ρ,E) on [0, x4] with

1
4
− Cη2 ≤ x4 ≤

3
4

+ Cη2, ρ(0) = ρ(x4) = 1− δ

for some constant C independent of τ , δ, and η. Set (ρ̄, Ē)(x) := (ρ̂, Ê)(x− x1 + x2).
Then (ρ̄, Ē) satisfies (64) with initial-boundary data

(ρ̄, Ē)(x1) = (1− η, Ê(x2)) = (ρ,E)(x1) and ρ̄(x3) = 1− η

with x3 := L̂ + x1 − 2x2, where we have used the symmetry of (ρ̂, Ê), and hence
ρ̂(L̂−x2) = ρ̂(x2) = 1− η. Set φ := ρ̄− ρ, ψ := Ē−E. Then by (61) and (64), (φ, ψ)
satisfies

(69)


φx = ρ̄3ψ

(ρ̄+1)(ρ̄−1) + (ρ̄2ρ2−ρ̄2−ρ̄ρ−ρ2)φE
(ρ̄+1)(ρ̄−1)(ρ+1)(ρ−1) + ρ2

τ(ρ+1)(ρ−1) ,

ψx = φ+ b− b,
(φ(x1), ψ(x1)) = 0.

Define the solution space XT := {(φ, ψ) ∈ C[x1, T ] |φ(x1) = ψ(x1) = 0, |φ| ≤ η/2,
|ψ| ≤ η/2}. We only need to show the a priori estimate

(70) φ2(x) + ψ2(x) ≤ η2/4 on x ∈ [x1, x3].
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Multiplying the first equation of (69) by φ and the second one by ψ and adding them,
and noting |ρ− ρ̄| ≤ η/2, by Young’s inequality, one can easily get

(φ2 + ψ2)x ≤
C

η2 (φ2 + ψ2) +
C

τ2 + C(b̄− b)2,

where C is a constant independent of τ , δ, and η. It then follows from Gronwall’s
inequality that

φ2 + ψ2 ≤ C
[
C

τ2 + (b̄− b)2
]
η2eCx/η

2
≤ C

[
C

τ2 + (b̄− b)2
]
η2eC/η

2
for x ∈ [x1, x3].

Now taking τ � 1 and b̄− b� 1 such that
[
C
τ2 + (b̄− b)2

]
eC/η

2 ≤ 1
4 , we derive (70).

Moreover, we also get

|ρ− ρ̄| ≤ η/2 and |E − Ē| ≤ η/2,

which gives ρ(x3) ≤ ρ̄(x3) + η
2 = 1− η

2 , and further by (68) and (63),

E(x3) ≤ Ē(x3) +
η

2
= Ê(L̂− x2) +

η

2
= −Ê(x2) +

η

2
= −E(x1) +

η

2
≤ −E1(0) + Cη.

(71)

Now taking x3 as the initial data, we can extend (ρ,E), the solution of (61), to
the state satisfying ρ = 1− δ. Denote by x4 the number for which ρ(x4) = 1− δ. As
in the proof of Step 2, we have

x4 − x3 ≤ Cη2

for some constant C independent of τ , δ, and η. And then by (71),

E(x4) ≤ E(x3) ≤ −E1(0) + Cη.

Now we obtain a solution of (61) on [0, x4] satisfying

(72) ρ(0) = ρ(x4) = 1− δ, E(0) = E1(0), E(x4) ≤ −E1(0) + Cη.

Moreover,

(73)
1
4
−Cη2 ≤ L̂+x1−2x2 = x3 ≤ x4 ≤ x3 +Cη2 = L̂+x1−2x2 +Cη2 ≤ 3

4
+Cη2.

Step 4. In this step, we construct a transonic solution of (61) on an interval [0, x5]
with

1
4
− Cη ≤ x5 ≤

3
4

+ Cη, ρ(0) = 1− δ, ρ(x5) = 1 + δ.

Set ρl = 1− η; then ρr = 1/ρl > 1. We take the jump location x̄0 ∈ (0, x4) as the
last number for which ρ(x̄0) = ρl, and restrict our supersonic solution (ρsup, Esup)(x)
only on [0, x̄0]. We denote Esup(x̄0) , El. As in the proof of Step 2,

(74) x4 − x̄0 ≤ Cη.

Thus, owing to the inequality of (72), the supersonic solution satisfies

(75) ρl = 1− η, El ≤ E(x4) + Cη ≤ −E1(0) + Cη.
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It is then easy to see that

ρlEl −
1
τ
≤ (1− η)(−E1(0) + Cη) ≤− E1(0) + (C + E1(0))η.

Thus, when η � 1 such that (C + E1(0))η ≤ E1(0)
2 , it holds that

(76) ρlEl −
1
τ
≤ −E1(0)

2
< 0 and El < 0.

Next we construct the corresponding subsonic solution. For x ≥ x̄0, let us consider
the system (61) with initial data

ρ(x̄0) = ρr, E(x̄0) = Er = El.

By the standard ODE theory, the initial value problem admits a unique solution
(ρ,E)(x) for x > x̄0. By (76), a simple calculation gives

ρrEr −
1
τ

= ρlEl −
1
τ

+
(

1
ρl
− ρl

)
El

≤ −E1(0)
2

+
[

1
1− η

− (1− η)
]
(−E1(0) + Cη)

≤ −E1(0)
2

+ Cη2.

It hence follows that when Cη2 < E1(0)
4 ,

ρrEr −
1
τ
≤ −E1(0)

4
< 0.

From the first equation of (61), we know the component ρ of such a solution is de-
creasing in a neighborhood of x̄+

0 . We denote this subsonic solution by (ρsub, Esub)(x).
If η < 1− 1

b , then

Esub(x) = Er +
∫ x

x̄0

(ρsub − b)dx

≤ Er +
∫ x

x̄0

( 1
1− η

− b
)
dx

< Er < 0,

where we have used the second inequality of (76) and Er = El. Noting that the
function g(s) = s3

s2−1 is monotone decreasing on (1,
√

3), we thus get from (75) that

(ρsub)x =
ρsubEsub − 1

τ

1− 1
ρ2sub

≤ ρ3
rEr

ρ2
r − 1

=
Er

η(1− η)(2− η)
≤ −E1(0) + Cη

η(1− η)(2− η)
< −E1(0)

2

if η < min
{E1(0)

2C , 1
2

}
. This inequality implies ρsub will keep decreasing and attain

1 + δ at a finite number x5 and

(77) x5 − x̄0 =
δ − η

1−η∫ 1
0 (ρsub)x(sx5 + (1− s)x̄0)ds

≤ Cη if η < min
{
E1(0)

2C
,

1
2

}
.
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Now we have constructed the transonic solution to (61) in [0, x5] as follows:

(ρtrans, Etrans)(x) =

{
(ρsup, Esup)(x), x ∈ [0, x̄0),
(ρsub, Esub)(x), x ∈ (x̄0, x5],

which satisfies the boundary condition

ρsup(0) = 1− δ, ρsub(x5) = 1 + δ,

the entropy condition at x̄0

0 < ρsup(x̄−0 ) = 1− η < 1 < ρsub(x̄+
0 ),

and the Rankine–Hugoniot condition (11) at x̄0. Furthermore, it follows from (73),
(74), and (77) that

1
4
− Cη ≤ x5 ≤

3
4

+ Cη.

Step 5. In this step, we construct a transonic solution of (61) on an interval [0, x7]
with 5

4 − Cη ≤ x7 ≤ 7
4 + Cη, ρ(0) = 1− δ, and ρ(x7) = 1 + δ.

We take L = 3
2 in (48) and denote by (ρ2, E2) its solution. As shown in Steps 1–3,

we know that there exists an interval [0, x6] with

5
4
− Cη2 ≤ x6 ≤

7
4

+ Cη2,

such that system (61) has a supersonic solution on [0, x6] satisfying

ρ(0) = ρ(x6) = 1− δ, E(0) = E2(0), E(x6) ≤ −E2(0) + Cη.

As in Step 4, we may construct another transonic solution for (61) in the form of

(ρtrans, Etrans)(x) =

{
(ρsup, Esup)(x), x ∈ [0, x̃0),
(ρsub, Esub)(x), x ∈ (x̃0, x7],

where x̃0 ∈ (0, x6) and 5
4 −Cη

2 ≤ x7 ≤ 7
4 +Cη2 are some determined numbers. This

transonic solution satisfies the boundary condition

ρsup(0) = 1− δ, ρsub(x7) = 1 + δ,

the entropy condition at x̃0

0 < ρsup(x̃−0 ) = 1− η < 1 < ρsub(x̃+
0 ),

and the Rankine–Hugoniot condition (11) at x̃0.
Step 6. We next construct transonic solutions of (61) on [0, 1]. Without loss

of generality, we assume that E1(0) < E2(0). As in Step 4, one can see that when
0 < δ < η � 1, τ � 1, for any E0 ∈ (E1(0), E2(0)), there exist a number x8 > 0 and
a transonic solution of (61) on the interval [0, x8] satisfying the boundary condition

ρsup(0) = 1− δ, Esup(0) = E0, ρsub(x8) = 1 + δ,

the entropy condition at ˜̄x0

0 < ρsup(˜̄x−0 ) = 1− η < 1 < ρsub(˜̄x+
0 ),
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and the Rankine–Hugoniot condition. Applying the continuation argument in the
length of the interval L, we realize that system (61) has some transonic solutions
(ρtrans, Etrans)(x) for x ∈ [0, 1] and satisfies the boundary condition

ρsup(0) = 1− δ, ρsub(1) = 1 + δ,

the entropy condition

0 < ρsup(xδ0) = 1− η < 1 < ρsub(xδ0),

and the Rankine–Hugoniot condition at some jump location xδ0 in (0, 1).
Step 7. Let us now prove the existence of transonic solutions of (5)–(6) on [0, 1].
For any δ > 0, denote by (ρδ, Eδ) the transonic solution of (61) on [0, 1] obtained

in Step 6. Multiplying the first equation of (61) by 1
ρδ

((1− δ−ρδ)2)x, integrating the
resultant equation on (0, xδ0), and using the second equation of (61), noting

((1− δ − ρδ)2)x
ρδ

= (−2(1− δ) ln ρδ + 2ρδ)x,

∫ xδ0

0
(b− ρδ)(1− δ − ρδ)2dx ≤

∫ xδ0

0
b(1− δ − ρδ)2dx

≤ 1
4

∫ xδ0

0
(1− δ − ρδ)4dx+

∫ xδ0

0
b2dx

≤ 1
4

∫ xδ0

0
|((1− δ − ρδ)2)x|2dx+ b2,

we have ∫ xδ0

0

2δ(ρδ + 1)(1− δ − ρδ)(ρx)2

(ρδ)3 +
(ρδ + 1)|((1− δ − ρδ)2)x|2

2(ρδ)3 dx

≤ 1
4

∫ xδ0

0
|((1− δ − ρδ)2)x|2dx+ b2 + El(1− δ − ρl)2

− 2
τ

[−(1− δ) ln ρl + ρl + (1− δ) ln(1− δ)− (1− δ)].

(78)

Similarly, multiplying the first equation of (61) by 1
ρδ

((ρδ − 1− δ)2)x, integrating the
resultant equation on (xδ0, 1), we have∫ 1

xδ0

2δ(ρδ + 1)(ρδ − 1− δ)((ρδ)x)2

ρ3 +
(ρδ + 1)|((ρδ − 1− δ)2)x|2

2(ρδ)3 dx

≤ 1
4

∫ 1

xδ0

|((ρδ − 1− δ)2)x|2dx+ b2 − Er(ρδ − 1− δ)2

+
2
τ

[ρr − (1 + δ) ln ρr − 1 + (1 + δ) ln(1 + δ)].

Substituting this inequality into (78), we get

‖(1− δ − ρδsup)2‖H1(0,xδ0) ≤ C, ‖(ρδsub − 1− δ)2‖H1(xδ0,1) ≤ C.
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Since η > 0, as δ → 0+, up to a subsequence, xδ0 → x0 ∈ (0, 1). Thus, for integer k
large enough, there exists a subsequence, still denoted by {ρδ}, such that

(1− δ − ρδsup)2 ⇀ (1− ρ0
sup)

2 weakly in H1(0, x0 − 1/k),

(ρδsub − 1− δ)2 ⇀ (ρ0
sub − 1)2 weakly in H1(x0 + 1/k, 1).

Applying the diagonal argument for (ρδtrans, E
δ
trans), we know that (5)–(6) has a

transonic solution (ρtrans, Etrans)(x) for x ∈ [0, 1] that satisfies the sonic boundary
condition, the entropy condition, and the Rankine–Hugoniot condition at the jump
location x0 in (0, 1).

Because τ depends only on (E1(0), E2(0), η), and η depends only on (E1(0), E2(0)),
there exists a η0 > 0 such that for any η ∈ (0, η0), there exists a transonic solution
jump location at ρl = 1 − η. Thus, such transonic solutions are infinitely many due
to an arbitrary choice of 0 < η < η0. The proof is complete.

5. Infinitely many C1 transonic solutions. In this subsection, we assume
that the doping profile b(x) = b > 1 is a given constant. We will construct C1-
smooth transonic solutions on the basis of refined local analysis of the interior subsonic
solutions and interior supersonic solutions on the boundary. The approach relies on
the phase-plane analysis.

We first study the structure of the interior subsonic solution. For convenience,
we set

(79) F = E − 1
τρ

and n = ρ− 1.

Then system (5) is transformed into

(80)


nx =

(1 + n)3F

(2 + n)n
,

Fx = n+ 1− b+
(1 + n)F
τ(2 + n)n

.

Clearly, (b− 1, 0) is a saddle point of (80). In the (n, F ) plane, all trajectories satisfy

dF

dn
=

(n+ 1− b)(2 + n)
(1 + n)3 · n

F
+

1
τ(1 + n)2 , H1(n, F ).(81)

Here and in what follows, to avoid confusion, F = F (n) denotes the function of the
trajectory. The equation H1(n, F ) = 0 determines a curve

(82) Ξ = Ξ(n) = −τ(n+ 1− b)(2 + n)n
1 + n

.

Obviously, if a trajectory interacts with the curve Ξ = Ξ(n), then the interacting
point is a critical point of the trajectory, and all critical points of a trajectory lie on
the curve Ξ(n). We draw the phase-plane of (n, F ) in Figure 1 with τ = 0.5 and
b = 1.5. To state our results more precisely, we need the following definition.

Definition 5.1. If (ρ,E) is an interior subsonic (resp., interior supersonic) so-
lution to system (5) on an interval [0, L] satisfying ρ(0) = ρ(L) = 1, then the corre-
sponding trajectory E = E(ρ) in the phase-plane (ρ,E) is called an interior subsonic
(resp., interior supersonic) trajectory to system (5). And the transformed trajectory
F = F (n) in the (n, F ) plane is called an interior positive (resp., interior negative)
trajectory to system (80).
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−0.3
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0

0.1

0.2

0.3

0.4

0.5

n

F

Fig. 1. Phase-plane of (n, F ) with τ = 0.5 and b = 1.5. ∗ is the saddle point (0.5, 0); the red
line is the function Ξ(n) = − τ(n+1−b)(2+n)n

1+n .

Clearly, an interior subsonic (resp., interior supersonic) trajectory corresponds
to an interior subsonic (resp., interior supersonic) solution to system (5) on some
interval. Instead of studying system (5) directly, we turn to analyzing the structure
of solutions to the transformed system (80). Based on the analysis of the relation
between F (n) and Ξ(n), we first obtain the following important lemma.

Lemma 5.2. When 0 < τ < 1
2
√
b3+b

, all interior positive trajectories to system
(80) start from the point (0, 0).

Proof. It is easy to see that there are two zero points of Ξ(n) on [0,+∞): n1 = 0,
n2 = b− 1, and

(83) Ξ′(n) = −τ
(

2− b+ 2n− b

(1 + n)2

)
for n ≥ 0,

(84) Ξ′′(n) = −2τ
(

1 +
b

(1 + n)3

)
< 0 for n ≥ 0,

Ξ′(0) = 2(b− 1)τ > 0 and Ξ′(b− 1) = −τ
(
b− 1

b

)
< 0.

Thus, Ξ(n) is concave on [0,∞) and has only one maximal point denoted by n∗ that
depends only on b. We just focus on the region F ≥ 0. By (81) and (82),

(85)
dF

dn
= − Ξ

τ(1 + n)2F
+

1
τ(1 + n)2 ,

which is equivalent to

(86)
dF

dn
=

1
τ(1 + n)2 ·

F − βΞ
F

+
(β − 1)Ξ
τ(1 + n)2F

,

where β > 0 is a constant to be determined later. This equation in combination with
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(83) leads to

(
F 2 − β2Ξ2)′ =

2(F − βΞ)
τ(1 + n)2 + 2Ξ

[
β − 1

τ(1 + n)2 + τβ2
(

2− b+ 2n− b

(1 + n)2

)]
=
(
F 2 − β2Ξ2) · 2

τ(1 + n)2(F + βΞ)
+ 2Ξ · I,

(87)

where I := β−1
τ(1+n)2 + τβ2

(
2− b+ 2n− b

(1+n)2
)
. Since Ξ(0) = 0, if F (0) = h > 0, then

we have F 2(0) − β2Ξ2(0) = h2 > 0 for any β > 0. We next determine β such that
I > 0 for n ∈ [0, b− 1]. To do this, we set β = c0

τ2 with c0 = 1
2(b3+b) . When τ2 < c0

2 ,
we have for n ∈ [0, b− 1]

I =
1

τ(1 + n)2 ·
[
c0
τ2 − 1 +

c20
τ2 · (2(1 + n)3 − b(1 + n)2 − b)

]
≥ 1
τ(1 + n)2 ·

[
c0
τ2 − 1− c20

τ2 · (b
3 + b)

]
=

1
τ(1 + n)2 ·

[ c0
τ2 · (1− c0(b3 + b))− 1

]
=

1
τ(1 + n)2 ·

( c0
2τ2 − 1

)
> 0.

Noting Ξ(n) > 0 on (0, b− 1), it then follows from (87) that

(88) F 2(n) > β2Ξ2(n) for n ∈ [0, b− 1].

Since (b− 1, 0) is a saddle point lying on the curve Ξ = Ξ(n), the trajectories starting
from (0, h) with h > 0 cannot go back to the line n = 0, but go to infinity. Obviously,
a trajectory cannot start from (0,−h). Therefore, when τ < 1

2
√
b3+b

, all interior
positive trajectories to system (80) must start from (0, 0).

Lemma 5.3. When 0 < τ < 1
3
√
b3+b

, all interior positive trajectories to system
(80) satisfy

(89) F (n) ≤ 3
2
· Ξ(n) for n ≥ 0.

Proof. Taking β = 3
2 in (87), when τ2 < 1

9(b3+b) , we have for n ∈ [0, b− 1]

I =
1

τ(1 + n)2 ·
[

1
2

+
9τ2

4
· (2(1 + n)3 − b(1 + n)2 − b)

]
≥ 1
τ(1 + n)2 ·

[
1
2
− 9τ2

4
· (b3 + b)

]
> 0.

If there is a point n̄ ∈ (0, b−1) on the trajectory such that F (n̄) > 3
2Ξ(n̄), then noting

Ξ(n) > 0 and I > 0 on (n̄, b− 1), we get from (87) that F (n) > 3
2Ξ(n) on (n̄, b− 1).

Because (b − 1, 0) is a saddle point, this trajectory will go to infinity. We hence get
(89).
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Lemma 5.4. When 0 < τ < 1
2
√
b3+b

, all interior positive trajectories to system
(80) with F ≥ 0 are Lipschitz continuous on a neighborhood of n = 0.

Proof. We first present a lower bound of dF
dn . Notice that all critical points of

trajectories lie on the curve Ξ = Ξ(n). We claim that an interior positive trajectory
to system (80) must have at least one critical point on (0, b − 1). Otherwise, the
trajectory has no critical point on (0, b− 1); then

F ′(n) > 0 on (0, b− 1) or F ′(n) < 0 on (0, b− 1).

If the former case holds, by (81) and (82),

(F − Ξ)′(n) > 0 on (0, b− 1).

By Lemma 5.2, when τ < 1
2
√
b3+b

, it holds that F (0) = 0 = Ξ(0); then it follows that
F (n) > Ξ(n) on (0, b − 1). Since (b − 1, 0) is a saddle point, this indicates that the
trajectory cannot go back to the line n = 0, but goes to infinity. If the latter case
holds, since F (0) = 0, we get

F (n) < 0 for any n ∈ (0, b− 1).

Using (81) again, noting n+ 1− b < 0 for n ∈ (0, b− 1), we derive

F ′(n) >
1

τ(1 + n)2 > 0 on (0, b− 1),

which is a contradiction. Thus, an interior positive trajectory to system (80) has at
least one critical point over (0, b− 1).

We next claim that an interior positive trajectory has at most one critical point.
Denote by n0 a critical point of this trajectory. Taking β = 1 in (87), and using (83),
we have (

F 2 − Ξ2)′ =
2(F − Ξ)
τ(1 + n)2 + 2Ξτ

(
2− b+ 2n− b

(1 + n)2

)
=
(
F 2 − Ξ2) · 2

τ(1 + n)2(F + Ξ)
− 2ΞΞ′.

(90)

Recall that n∗ is the maximal point of the function Ξ(n) on (0, b − 1). If n0 ≥ n∗,
noting F (n0) = Ξ(n0) and Ξ(n) > 0, Ξ′(n) < 0 on (n∗, b − 1), it follows from (90)
that

F (n) > Ξ(n) over (n∗, b− 1).

Because (b−1, 0) is a saddle point, this trajectory will go to infinity. Thus, n0 ∈ (0, n∗).
Now since Ξ(n) > 0, Ξ′(n) > 0 on (n0, n

∗) and F (n0) = Ξ(n0), by (90) again, we
have

(91) F (n) < Ξ(n) over (n0, n
∗].

Since all critical points of the trajectory are on the curve Ξ(n), (91) indicates that
there is no other critical point on (n0, n

∗] for this trajectory. On the other hand,
suppose that there is a critical point n1 ∈ (0, n0) for this trajectory; then

F (n1) = Ξ(n1), Ξ(n) > 0, and Ξ′(n) > 0 on (n1, n
∗].
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Applying (90) repeatedly, we get

F (n) < Ξ(n) for n ∈ (n1, n
∗].

This contradicts the fact that F (n0) = Ξ(n0) because n0 ∈ (n1, n
∗). Thus, there is

no critical point on (0, n0) for this trajectory, and n0 is the unique critical point of
this interior positive trajectory. As a consequence, we conclude that

(92)
dF (n)
dn

> 0 on (0, n0).

We next derive an upper bound of dF
dn . By (80), we get

(93) Fx = n+ 1− b+
nx

τ(1 + n)2 = n+ 1− b− 1
τ
·
(

1
1 + n

)
x

.

Noting n(0) = 0, by the continuity of the trajectory, 0 ≤ n < b− 1 on [0, z] for some
z > 0. Noting F (0) = 0, hence, for x ∈ [0, z],

F (x) < −1
τ

∫ x

0

(
1

1 + n

)
x

dx =
1
τ
− 1
τ(1 + n)

.

It then follows that for n ∈ [0, b− 1] and F ≥ 0,

dF (n)
dn

<
τ(n+ 1− b)(2 + n)

(1 + n)2 +
1

τ(1 + n)2 ≤
1
τ
.

This estimate together with (92) implies the trajectory is Lipschitz continuous on
(0, n0).

Lemma 5.5. When 0 < τ < min{ 1
3
√
b3+b

, 1
4
√
b−1
}, all interior positive trajectories

to system (80) with F ≥ 0 are C1-smooth on a neighborhood of n = 0 and

(94)
dF

dn
(0) =

1
2

(
1
τ
−
√

1
τ2 − 8(b− 1)

)
.

Proof. By Lemma 5.4, we only need to show that the second order derivative of
the trajectory does not change sign on a neighborhood of n = 0, i.e.,

(95)
d2F

dn2 does not change sign if 0 < n� 1.

Step 1. We first compute d2F
dn2 . By (81) and (82),

(96) (1 + n)2FF ′ =
1
τ

(F − Ξ).

Notice that F (n) is C∞ over (0, b − 1). Differentiating (96) in n and using the first
equality of (85), a direct calculation yields

(1 + n)2FF ′′

= −2(1 + n)FF ′ − (1 + n)2(F ′)2 +
1
τ

(F ′ − Ξ′)

= − 1
τ(1 + n)F 2

[
2F 3 − (2Ξ− (1 + n)Ξ′)F 2 − ΞF

τ(1 + n)
+

Ξ2

τ(1 + n)

]
.(97)
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By (82) and (83), it is easy to see that

2Ξ− (1 + n)Ξ′ = −2τ(n+ 1− b)(2 + n)n
1 + n

+ τ(1 + n)
(

2− b+ 2n− b

(1 + n)2

)
=

τ

1 + n
[2(n+ 1− b) + bn(2 + n)] .

It then follows that

F ′′ = − 2
τ(1 + n)3F 3

{
F 3 − τ [2(n+ 1− b) + bn(2 + n)]

2(1 + n)
· F 2

+
(2 + n)n(n+ 1− b)

2(1 + n)2 · F +
τ(2 + n)2n2(n+ 1− b)2

2(1 + n)3

}
, − 2

τ(1 + n)3F 3 ·H2(n, F ).

(98)

Step 2. We next solve the equation H2(n, F ) = 0, which is a third order algebraic
equation in the form

(99) F 3 + kF 2 +mF + ` = 0,

where

k = −τ [2(n+ 1− b) + bn(2 + n)]
2(1 + n)

, m =
(2 + n)n(n+ 1− b)

2(1 + n)2 ,

` =
τ(2 + n)2n2(n+ 1− b)2

2(1 + n)3 .

(100)

Denote p = −k
2

3 +m, q = 2(k3 )3 − km
3 + `; by Cardan’s formula, (99) has three roots:

F1 = A
1
3 +B

1
3 , F2 = $A

1
3 +$2B

1
3 , F3 = $2A

1
3 +$B

1
3 ,

where $ = −1+
√

3i
2 , A = − q2 + [( q2 )2 + (p3 )3]

1
2 , and B = − q2 − [( q2 )2 + (p3 )3]

1
2 . Fur-

thermore, if ( q2 )2 + (p3 )3 ≤ 0, then all roots are real valued. We claim that when
τ < 1

4
√
b−1

and 0 < n� 1, then ( q2 )2 + (p3 )3 ≤ 0. Actually, a simple calculation gives

(101)
(q

2

)2
+
(p

3

)3
=

1
4 · 34 [(km− 9`)2 − 4(k2 − 3m)(m2 − 3k`)].

When 0 < n� 1, by (100),

k = τ(b− 1) +O(n), m = (1− b)n+O(n2), ` = 2τ(b− 1)2n2 +O(n3).

It then follows that

km− 9` = −τ(b− 1)2n+O(n2), k2 − 3m = (b− 1)2τ2 +O(n),

m2 − 3k` = (b− 1)2n2 − 6τ2(b− 1)3n2 +O(n3).

Substituting these three estimates into (101) yields(q
2

)2
+
(p

3

)3

=
1

4 · 34 · [(b− 1)4τ2n2 − 4(b− 1)2τ2((b− 1)2 − 6τ2(b− 1)3)n2 +O(n3)]

=
1

4 · 34 · [3(b− 1)4τ2(−1 + 8τ2(b− 1))n2 +O(n3)].
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Thus, when τ < 1
4
√
b−1

and 0 < n� 1, we have ( q2 )2 + (p3 )3 < 0.
Now all roots of the equation H2(n, F ) = 0 are real valued functions. And clearly,

they are analytic in n on (0, b− 1). We then take an expansion of the roots denoted
by F0(n) as

F0(n) = θ0 + θ1n+O(n2),

and substitute this formula into H2(n, F ) = 0 to get

θ0 = 0 or θ0 = −τ(b− 1) < 0,

and

θ1 =
1
2

(
1
τ

+

√
1
τ2 − 8(b− 1)

)
or θ1 =

1
2

(
1
τ
−
√

1
τ2 − 8(b− 1)

)
.

Notice that when τ � 1, 1
2

( 1
τ +
√

1
τ2 − 8(b− 1)

)
= O( 1

τ ) and 1
2

( 1
τ−
√

1
τ2 − 8(b− 1)

)
=

4(b−1)τ
1+
√

1−8(b−1)τ2
= O(τ). Because we are interested in the interior positive trajectories

with F ≥ 0, by Lemma 5.3, it holds that

(102) θ0 = 0 and θ1 =
1
2

(
1
τ
−
√

1
τ2 − 8(b− 1)

)
.

Thus, the solution curve of the equation H2(n, F ) = 0 satisfies

(103) F0(n) = θ1n+O(n2) =
4(b− 1)τ

1 +
√

1− 8(b− 1)τ2
· n+O(n2).

Step 3. We proceed to show that when 0 < n � 1, the function dF
dn (n) is

monotone.
Assume that n̂0 > 0 is a critical point of the function dF

dn (n); then d2F
dn2 (n̂0) = 0.

We claim that when n̂0 is small enough, it holds that d3F
dn3 (n̂0) > 0. Differentiating

(97) in n, we have

2(1 + n)FF ′′ + (1 + n)2F ′F ′′ + (1 + n)2FF ′′′

= −2FF ′ − 4(1 + n)(F ′)2 − 2(1 + n)FF ′′ − 2(1 + n)2F ′F ′′ +
1
τ

(F ′′ − Ξ′′).

Noting F ′′(n̂0) = 0, it then follows from (84) that

(1 + n̂0)2FF ′′′(n̂0) = −2FF ′(n̂0)− 4(1 + n̂0)(F ′(n̂0))2 − Ξ′′(n̂0)
τ

= −2FF ′(n̂0)− 4(1 + n̂0)(F ′(n̂0))2 + 2 +
2b

(1 + n̂0)3 .
(104)

Using (97) again, since F ′′(n̂0) = 0, it holds that

(1 + n̂0)2(F ′(n̂0))2 = −2(1 + n̂0)FF ′(n̂0) +
1
τ

(F ′(n̂0)− Ξ′(n̂0)).
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Substituting this equality into (104) and using (85) leads to

(1 + n̂0)3FF ′′′(n̂0)

=− 2(1 + n̂0)FF ′(n̂0)− 4(1 + n̂0)2(F ′(n̂0))2 + 2(1 + n̂0) +
2b

(1 + n̂0)2

= 6(1 + n̂0)FF ′(n̂0)− 4F ′(n̂0)
τ

+
4Ξ′(n̂0)

τ
+ 2(1 + n̂0) +

2b
(1 + n̂0)2

=
6(F (n̂0)− Ξ(n̂0))

τ(1 + n̂0)
− 4(F (n̂0)− Ξ(n̂0))
τ2(1 + n̂0)2F (n̂0)

+
4Ξ′(n̂0)

τ
+ 2(1 + n̂0) +

2b
(1 + n̂0)2

=
2

(1 + n̂0)2F
·
[3F (F − Ξ)(1 + n̂0)

τ
− 2(F − Ξ)

τ2 +
2(1 + n̂0)2FΞ′

τ
+ (1 + n̂0)3F + bF

]
,

2
(1 + n̂0)2F

· J(n̂0).

(105)

By (82), (83), and (103), when n̂0 � 1,

F (n̂0) = θ1n̂0 +O(n̂2
0), F (n̂0)− Ξ(n̂0) = (θ1 − 2τ(b− 1))n̂0 +O(n̂2

0),

Ξ̂′(n̂0) = 2τ(b− 1) +O(n̂0).

Thus,

J(n̂0) =− 2(θ1 − 2τ(b− 1))
τ2 n̂0 + 4(b− 1)θ1n̂0 + θ1n̂0 + bθ1n̂0 +O(n̂2

0)

=
[

4(b− 1)
τ

− 2θ1

τ2 + (5b− 3)θ1

]
n̂0 +O(n̂2

0).
(106)

By (102),
4(b− 1)

τ
− 2θ1

τ2 = −θ1 ·
8(b− 1)

1 +
√

1− 8(b− 1)τ2
.

It hence follows that if τ � 1 such that τ2 < 1
16(b−1) <

2
25(b−1) , then

4(b− 1)
τ

− 2θ1

τ2 + (5b− 3)θ1 = θ1

[
5b− 3− 8(b− 1)

1 +
√

1− 8(b− 1)τ2

]
> θ1(5b− 3− 5(b− 1))
= 2θ1 > 0.

Substituting this inequality into (106) and then (105), we conclude that

F ′′′(n̂0) > 0 if n̂0 � 1 and τ <
1

4
√
b− 1

.

Thus, the critical point n̂0 must be the local minimal point of dFdn (n), and hence there
exists n2 > 0 such that the function dF

dn (n) has at most one critical point over (0, n2).
This implies d2F

dn2 could change sign at most once on (0, n2). As a consequence, there
exists n3 ∈ (0, n2) such that the function dF

dn (n) is monotone on (0, n3).
Step 4. Now by Lemma 5.4 and the monotonicity of dF

dn , one can easily see that

lim
n→0+

F ′(n) exists , F ′(0).
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Then F ′(n) is continuous on [0, n2]. It remains to show (94). Applying L’Hôpital’s
principle to (81) at n = 0, it holds that

F ′(0) =
2(1− b)
F ′(0)

+
1
τ
.

Thus,

F ′(0) =
1
2

(
1
τ

+

√
1
τ2 − 8(b− 1)

)
= O

(
1
τ

)
or

F ′(0) =
1
2

(
1
τ
−
√

1
τ2 − 8(b− 1)

)
= O(τ).

By Lemma 5.3, F ′(0) = 1
2

( 1
τ −

√
1
τ2 − 8(b− 1)

)
.

Theorem 5.6. Assume that b(x) = b > 1 is a constant. There exists a constant
τ0 = τ0(b) depending only on b, such that for any 0 < τ < τ0 the interior subsonic
solution to system (5) satisfies

(107) ρ ∈ C1[0, ε], ρ(0) = 1, E(0) =
1
τ
, and ρx(0) =

1
4

(
1
τ
−
√

1
τ2 − 8(b− 1)

)

for some ε > 0.

Proof. Recalling the transformation (79), ρ = n + 1 and E = F + 1
τ(n+1) . By

Lemma 5.2, one can find that all interior subsonic trajectories to system (5) must
start from (1, 1

τ ). In other words, all interior subsonic solutions to system (5) must
satisfy ρ(0) = 1 and E(0) = 1

τ . By L’Hôpital’s principle and (94),

lim
n→0+

n

F (n)
= lim
n→0+

1
F ′(n)

=
1
θ1
,

which together with the first equation of (80) gives

nx(0) = lim
x→0+

F (x)
2n(x)

=
θ1

2
.

Thus, n ∈ C1[0, ε] for some ε > 0. Recalling n = ρ− 1, we have ρ ∈ C1[0, ε] for some
ε > 0, and

ρx(0) =
θ1

2
=

1
4

(
1
τ
−
√

1
τ2 − 8(b− 1)

)
,

where we have used θ1 = 1
2

( 1
τ −

√
1
τ2 − 8(b− 1)

)
.

We next study the structure of the interior supersonic solutions. To do so, we
still study the transformed equations (80) and (81) but with n ∈ (−1, 0].

Lemma 5.7. When 0 < τ < 1
3
√
b
, all interior negative trajectories to system (80)

end at the point (0, 0).

Proof. By (82)–(84),

(108) Ξ(n) ≤ 0, Ξ′(n) > 2τ(b− 1) > 0, Ξ′′(n) < 0 for n ∈ (−1, 0],
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(109) lim
n→−1

Ξ(n) = −∞.

We next focus on the region F ≤ 0. Notice that (87) still holds. If F (n) = −h < 0,
then F 2(0) − β2Ξ2(0) = h2 > 0 for any β > 0. To ensure F 2(n) > β2Ξ2(n) for any
n ∈ (−1, 0], we also need to determine β such that I > 0 for n ∈ (−1, 0]. Setting
β = c1

τ2 with c1 = 1
3b , when τ < 1

3
√
b
, we have for n ∈ (−1, 0]

I =
1

τ(1 + n)2 ·
[
c1
τ2 − 1 +

c21
τ2 · (2(1 + n)3 − b(1 + n)2 − b)

]
≥ 1
τ(1 + n)2 ·

[
c1
τ2 − 1− 2bc21

τ2

]
=

1
τ(1 + n)2 ·

(
1

9bτ2 − 1
)

> 0.

It then follows from (87) that F 2(n) > Ξ2(n)
3bτ2 for n ∈ (−1, 0). Noting F (0) < 0 and

Ξ(n) < 0 on (−1, 0), we get

F (n) < Ξ(n) for n ∈ (−1, 0).

It hence follows from (109) that

lim
n→−1

F (n) = −∞,

and the trajectory ending at (0,−h) with h > 0 does not start from a point of the
line n = 0. Thus, when τ < 1

3
√
b
, all interior negative trajectories should end at the

point (0, 0).

Lemma 5.8. When τ < 1
3
√
b
, all interior negative trajectories to system (80) sat-

isfy

(110) F (n) ≥ 3
2
· Ξ(n) for n ∈ (−1, 0].

Proof. Taking β = 3
2 in (87), when τ < 1

3
√
b
, we have for n ∈ (−1, 0]

I =
1

τ(1 + n)2 ·
[

1
2

+
9τ2

4
· (2(1 + n)3 − b(1 + n)2 − b)

]
≥ 1
τ(1 + n)2 ·

[
1
2
− 9τ2

4
· 2b
]

> 0.

If there is a point n̄ ∈ (−1, 0) on the trajectory such that F (n̄) < 3
2 · Ξ(n̄) < 0, then

noting Ξ(n) < 0 and I > 0 on (−1, n̄), by (87), we have

F 2(n) >
9
4
· Ξ2(n) on (−1, n̄).

Because Ξ(n̄) < 0 and F (n̄) < 0 on (−1, n̄), we have F (n) < 3
2 · Ξ(n) for n ∈ (−1, n̄).

Thus, by (109), limn→−1 F (n) = −∞, and this trajectory starts from infinity and
cannot be an interior negative trajectory to system (80). We hence get (110).
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Lemma 5.9. When τ < 1
3
√
b
, all interior negative trajectories to system (80) with

F ≤ 0 are Lipschitz continuous on a neighborhood of n = 0.

Proof. We first show that an interior negative trajectory must have at least one
critical point on (−1, 0). Otherwise, the trajectory has no critical point over (−1, 0);
then

F ′(n) > 0 on (−1, 0) or F ′(n) < 0 on (−1, 0).

If F ′(n) > 0 on (−1, 0), then

(F − Ξ)′(n) > 0 on (−1, 0).

By Lemma 5.7, when τ < 1
3
√
b
, F (0) = Ξ(0) = 0, we then have F (n) < Ξ(n) < 0 on

(−1, 0). Thus, by (109),

lim
n→−1

F (n) < lim
n→−1

Ξ(n) = −∞.

This implies the trajectory cannot start from a point of the line n = 0. If F ′(n) < 0
on (−1, 0), noting F (0) = 0, it holds that F (n) > 0 for n ∈ (−1, 0). By (81), since
(n+1−b)(2−n)n

(1+n)3F > 0, we have

F ′(n) >
1

τ(1 + n)2 > 0 on (−1, 0),

which is a contradiction. Thus, an interior negative trajectory to system (80) has at
least one critical point on (−1, 0).

We next claim that this interior negative trajectory has at most one critical point.
Denote by ñ0 ∈ (−1, 0) a critical point of this trajectory. Then by (108),

(111) F (ñ0) = Ξ(ñ0) < 0, Ξ(n) < 0, Ξ′(n) > 0 on (−1, ñ0).

Noting (90) still holds, it follows from (111) and (90) that when F ≤ 0,

0 ≥ F (n) > Ξ(n) for n ∈ (n∗, ñ0),

where n∗ is the point such that F (n∗) = 0. In other words, there is no critical point
on (−1, ñ0). On the other hand, if there is a critical point ñ1 ∈ (ñ0, 0), then

F (ñ1) = Ξ(ñ1) < 0, Ξ(n) < 0, and Ξ′(n) > 0 on (ñ0, ñ1).

Applying (90) again, we have

F (n) > Ξ(n) for n ∈ (n∗, ñ1),

which contradicts the fact that F (ñ0) = Ξ(ñ0). Thus, there is no critical point on
(ñ0, 0) for this trajectory, and ñ0 is the unique critical point of this trajectory. As a
consequence, we obtain

(112)
dF (n)
dn

> 0 on (ñ0, 0).

We next derive an upper bound of dFdn . Integrating (93) on (x, 1), noting F (1) = 0,
we have

F (x) >
1
τ

∫ 1

x

(
1

1 + n

)
x

dx =
1
τ
− 1
τ(1 + n)

=
n

τ(1 + n)
.
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Noting F < 0 on (x, 1), it follows that n
F > τ(1 + n). By (81), we obtain

dF (n)
dn

<
τ(n+ 1− b)(2 + n)

(1 + n)2 +
1

τ(1 + n)2 ≤
1

τ(1 + n)2 <
1

τ(1 + ñ0)2 for n ∈ (ñ0, 0).

This estimate together with (112) implies the trajectory is Lipschitz continuous on
(ñ0, 0).

Lemma 5.10. When τ < min{ 1
3
√
b
, 1

4
√
b−1
}, all interior negative trajectories to

system (80) with F ≤ 0 are C1-smooth on a neighborhood of n = 0 and

dF

dn
(0) =

1
2

(
1
τ
−
√

1
τ2 − 8(b− 1)

)
.

Proof. The proof is quite similar to that of Lemma 5.5. The main difference is
that now the unique critical point of the function dF

dn is the maximal point of dF
dn .

Other changes are obvious.

On the basis of Lemma 5.10, analogously to Theorem 5.6, one can obtain the
refined structure of the interior supersonic solution established in Theorem 3.1.

Theorem 5.11. Assume that b(x) = b > 1 is a constant. There exists a constant
τ0 = τ0(b) such that for any 0 < τ < τ0 the interior supersonic solution (ρ,E) on an
interval [0, L] satisfies
(113)

ρ ∈ C1[L−ε, L], ρ(0) = ρ(L) = 1, E(L) =
1
τ
, and ρx(L) =

1
4

(
1
τ
−
√

1
τ2 − 8(b− 1)

)

for some ε > 0.

On the basis of Theorems 5.6 and 5.11, we are able to construct interior C1-
smooth transonic solutions to system (5)–(6).

Theorem 5.12. Assume that b(x) = b > 1 is a constant. There exists a constant
τ0 = τ0(b) such that for any 0 < τ < τ0, there exist infinitely many interior C1-smooth
transonic solutions to system (5)–(6) in the form

ρ(x) =
{
ρsup(x), x ∈ (0, x0),
ρsub(x), x ∈ (x0, 1),

where x0 ∈ (0, 1) is the location of transition, and 0 < ρsup(x) ≤ 1 and ρsub(x) ≥ 1
satisfy

(114) ρsup(x0) = ρsub(x0) = 1,

(ρsup)x(x0) = (ρsub)x(x0) =
1
4

(
1
τ
−
√

1
τ2 − 8(b− 1)

)
,

Esup(x0) = Esub(x0) =
1
τ
.

(115)

Proof. For any x0 ∈ (0, 1), by Theorem 3.1, system (5) admits an interior super-
sonic solution ρsup on [0, x0] satisfying

ρsup(0) = ρsup(x0) = 1.
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By Theorem 5.11, there exists a constant τ0 = τ0(b) such that for any 0 < τ < τ0

(116)

{
ρsup ∈ C1[x0 − ε0, x0], Esup(x0) = 1

τ ,

(ρsup)x(x0) = 1
4

(
1
τ −

√
1
τ2 − 8(b− 1)

)
for some ε0 > 0.

On the other hand, by Theorem 2.1, system (5) has a unique interior subsonic
solution ρsub on [x0, 1] satisfying

ρsub(x0) = ρsub(1) = 1.

By Theorem 5.6, there exists a constant τ1 = τ1(b) such that for any 0 < τ < τ1

(117)

{
ρsub ∈ C1[x0, x0 + ε1], Esub(x0) = 1

τ ,

(ρsub)x(x0) = 1
4

(
1
τ −

√
1
τ2 − 8(b− 1)

)
for some ε1 > 0. We can now construct an interior C1-smooth transonic solution by

ρ(x) =
{
ρsup(x), x ∈ [0, x0],
ρsub(x), x ∈ [x0, 1].

Furthermore, (114) and (115) follow from (116) and (117). Because x0 ∈ (0, 1) is
arbitrary, the C1-smooth transonic solutions are infinitely many.

As a by-product, one can easily see that when 0 < τ � 1, there is no transonic
solution with shock. In other words, when τ is small, system (5) admits transonic
solution of C1-smooth type only.

Theorem 5.13. Assume that b(x) = b > 1 is a constant. There exists a constant
τ0 = τ0(b) such that for any 0 < τ < τ0, system (5)–(6) has no transonic shock
solution.

Proof. We argue by contradiction. Assume that there is a transonic solution with
shock. Denote by x0 the jump location. By the Rankine–Hugoniot condition (11)
and (12),

(118) El = Er and ρlρr = 1.

Because the solution is discontinuous, it holds that 0 < ρl < 1 < ρr. Clearly, there
are two cases for the value of El:

El ≤
1
τ

or El >
1
τ
.

If the former case holds, observing that at x0, ρsup(x0)Esup(x0)− 1
τ = ρlEl − 1

τ < 0,
it follows from the first equation of (5) that

(ρsup)x(x0) =
ρlEl − 1

τ

1− 1
ρ2l

> 0.

Thus, we can extend this supersonic solution to an interval [0, L] such that

ρsup(L) = 1 and Esup(L) < Esup(x0) = El <
1
τ
.
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Here we have used the fact that Esup is monotone decreasing. Recalling the transfor-
mation (79), this implies

Fsup(L) = Esup(L)− 1
τ
< 0.

In view of the proof of Lemma 5.7, we find that the corresponding trajectory satisfies

lim
n→−1+

Fsup(n) = −∞.

Thus, this supersonic solution cannot satisfy the left boundary condition ρsup(0) = 1,
which is a contradiction.

If the latter case happens, by (118), we get

Er >
1
τ

and ρr > 1.

Thus, we can extend backward this subsonic part to an interior subsonic solution of
system (5), still denoted by (ρsub, Esub) such that for some x−1 ∈ R,

ρsub(x−1) = 1, Esub(x−1) > Er >
1
τ
,

where we have used the fact that Esub is monotone decreasing. Recalling the trans-
formation again, we have

Fsub(x−1) = Esub(x−1)− 1
τ
> Er −

1
τ
> 0.

In view of the proof of Lemma 5.2, one can see that the corresponding trajectory will
go to infinity, which contradicts the right boundary condition ρsub(1) = 1. Therefore,
there is no transonic solution with shock.

Proof of Theorem 1.3. Combining Theorems 2.1, 3.1, 4.2, 5.12, and 5.13, we im-
mediately obtain Theorem 1.3.

6. Examples. Let us test a special case when b(x) ≡ b > 1 (constant). We
may clearly observe the structure of stationary solutions to system (5)–(6) from the
phase-plane analysis, which also further confirms our main theorem mentioned above.
Notice that, when b > 1, the critical point of system (5) is A =

(
b, 1
τb

)
, and the

Jacobian matrix of system (5) at A is

J(A) =

 b

τ(b2 − 1)
b3

b2 − 1
1 0

 .
It is easy to see that the eigenvalues λ of matrix J(A) satisfy the following character-
istic equation:

(119) λ2 − bλ

τ(b2 − 1)
− b3

b2 − 1
= 0.

Notice that λ1λ2 = − b3

b2 − 1
< 0, where λ1 and λ2 are the roots of (119). Thus, A is

a saddle point. On the other hand, it follows from system (5) that

(120)
dE

dρ
=

(ρ− b)(1− 1
ρ2 )

ρE − 1
τ

,
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Fig. 2. Phase-plane of (ρ,E) with τ = 15 and b = 1.5. ∗ is the saddle point A = (1.5, 2/45).

 

0 1 

Interior subsonic  

solution 

Interior supersonic  

solution 

Sonic line 1 

Fig. 3. Interior subsonic solution and interior supersonic solution.

which helps to determine the directions of all trajectories. Here and in what follows,
to avoid confusion, we denote by E = E(ρ) the function of the trajectory.

Example 1: Subsonic/supersonic solutions. Let τ = 15 and b = 1.5. We draw
the phase-plane of (ρ,E) for (5) in Figure 2, from which we observe that there exist
at least one interior subsonic solution and one interior supersonic solution. These
interior subsonic/supersonic solutions can be roughly sketched in Figure 3.

Example 2: Transonic shock solutions. In this example, we show in Figure 4 how
to construct an interior transonic shock solution when τ is large: the discontinuous
trajectory in blue stands for a transonic shock solution with smaller length (e.g.,
1
2 ) and is structured by a stationary shock at x0 with the Rankine–Hugoniot jump
condition (11) linking the other two solutions. One is a supersonic solution ρsup(x)
with ρsup(0) = 1 and ρsup(x−0 ) = ρl < 1, and the other is a subsonic solution ρsub(x)
with ρsub(x+

0 ) = ρr > 1 and ρsub( 1
2 ) = 1. The discontinuous trajectory in red (color

available online) represents a similar transonic shock solution with larger length (e.g.,
3
2 ) satisfying the entropy condition and the Rankine–Hugoniot condition at some jump
location. By continuity, there is an interior transonic shock solution to (5) on [0, 1].
Since the choice of ρl = ρsup(x+

0 ) can be infinitely many when ρr − ρl � 1, there are
infinitely many transonic shock solutions. In Figure 5, we draw two transonic shock
solutions to system (5) with different ρl.

Example 3: Smooth transonic solutions. When τ is small, for example, by taking
τ = 0.5, we see in Figure 6 that the phase-plane changes dramatically: many subsonic
trajectories start from the same point (1, 1

τ ), and many supersonic trajectories end
at the same point (1, 1

τ ). As a result, one can see that there are possibly smooth
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   A 

ρl 1 ρr 

0  

E 

Fig. 4. Transonic shock trajectories in the phase-plane of (ρ,E) when τ is large.

 x01   x02 1 

Transonic shock solution 

Sonic line 
1 

Fig. 5. Transonic shock solutions when τ is large.

0 0.5 1 1.5 2
0.5

1

1.5

2

2.5

3

3.5

ρ

E

Fig. 6. Phase-plane of (ρ,E) with τ = 0.5 and b = 1.5. ∗ is the saddle point A = (1.5, 4/3).

transonic solutions, which are constructed by two solutions at some location x0: one
is an interior supersonic solution with ρsup(0) = 1 = ρsup(x0), and the other is an
interior subsonic solution with ρsub(x0) = 1 = ρsub(1). Since the transition location
x0 can be chosen arbitrarily in (0, 1), these smooth transonic solutions are infinitely
many.
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