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This paper is to study the stability of shock profiles for nonconvex scalar viscous con-
servation laws with the nondegenerate and the degenerate shock conditions by means
of an elementary energy method. In both cases, the shock profiles are proved to be
asymptotically stable for suitably small initial disturbances. Moreover, in the case of
nondegenerate shock condition, time decay rates of asymptotics are also obtained.

1. Introduction

In this paper we investigate the asymptotic stability of shock profiles for nonconvex
scalar viscous conservation laws of the form

e+ f(u)y = patge, ¢ €RY, t>0, (1.1)
with the initial data
u(z,0) = up(x), ze€R!, (1.2)

where p > 0 is a constant, f(u) is a smooth function satisfying
f"(u) S0 for ©S0 under consideration, (1.3)

and the initial data satisfy
llI:E uo(z) = U4 (14)

-+ 00

for some given constants u4. Let uy # u_ and let s be a constant. If u = U(z — st)
is a smooth solution of (1.1) satisfying U(+o00) = u4., then we call U(z — st) a shock
profile of (1.1) which connects v and u_, and call s a shock speed. Note that f(u)
has a point of inflection at u = 0.
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The stability problem of the shock profiles U(z — st) have a long history be-
ginning from the paper of I'in-Oleinik.? Based on the maximum principle, they
showed the asymptotic stability and a time decay rate of convergence when f(u) is
strictly convex, i.e. f”(u) > 0. A new different approach based on an energy method
which can also be applied to systems was introduced independently by Matsumura—
Nishihara” and by Goodman.! Since then, the stability problem has been studied
by many mathematicians (see Refs. 3-6, 8 and 9). Among them, Kawashima-
Matsumura? proved the asymptotic stability and an algebraic time decay rate of
asymptotics like t™7 (y > 0) of shock profiles for problem (1.1), (1.2) with the
convex nonlinearity by an energy method in some weighted Sobolev spaces. After
this paper, by applying a similar energy method which makes use of a weight func-
tion depending on the shock profiles, they obtained in Ref. 5 a stability result also
in the nonconvex case (1.3) with the nondegenerate shock condition [f'(u4) < s <
f'(u_)], but they did not show any time decay rate of the asymptotics. On the other
hand, applying the spectral analysis, Jones—Gardner—Kapitula® proved the stability
and a time decay rate for a general class of nonconvex scalar viscous conservation
laws with the nondegenerate shock condition. However, their time decay rate is less
sufficient than that of Kawashima-Matsumura? in the case where f”(u) > 0. Here
we should emphasize that all the previous works do not cover the case of degenerate
shock condition [f'(uy) = s < f'(u_)].

In this paper we discuss the stability of the shock profiles in the case of the
nonconvex nonlinearity (1.3). Our main goal is to show the stability under the
degenerate shock condition and also to obtain time decay rates of the asymptotics
under the nondegenerate shock condition. In Sec. 2, we give a statement on the
existence and uniqueness of shock profiles together with their properties. In Sec. 3,
we discuss the stability of the shock profiles and prove time decay rates under the
nondegenerate shock condition. When the integral of the initial disturbance over
(=00, ], say ¢o(z), has a polynomial decay order O(|z|~*/2) in the sense that
|z|*/2¢y € L? for some a > 0, we obtain a time decay rate t™ (y = [a]/2).
This time decay rate is better than that in Jones-Gardner-Kapitula,> and seems
to be almost optimal from a view point of the optimality shown by Nishihara® for
f = u?/2. Moreover, we obtain a better time decay rate like e~ % (§ > 0) for a
class of ¢o(x) which has an exponential decay order. This exponential time decay
corresponds to the one shown by II'in—Oleinik? in the case of convex nonlinearity.
In Sec. 4, under the degenerate shock condition, we prove the stability of the shock
profiles by introducing a suitable weight function and changing the unknown func-
tion. Finally in Sec. 5, we make a short remark on the stability results when f(u)
verifies the opposite sign condition to (1.3).

Notations. L2 denotes the space of measurable functions on R which are square

integrable, with the norm
1/2
= f f@)as) .
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H! (I > 0) denotes the Sobolev space of L2-functions f on R whose derivatives 87 f,
j=1,...,1, are also L?-functions, with the norm

! 1/2
Il = (Z H@’;f||2> :
3=0

L2 (a € R) denotes the space of measurable functions on R which satisfy
(x)*/2f € L?, with the norm

fla = ( [@1f@)Paz) "

where (z) = (14 22)'/2. Note that L2 = H =LZ and |- || = - llo =" lo-

Let T and B be a positive constant and a Banach space, respectively.
C*(0,T; B) (k > 0) denotes the space of B-valued k times continuously differentiable
functions on [0,77], and L?(0,T; B) denotes the space of B-valued L?-functions on
[0,T]. The corresponding spaces of B-valued function on [0, 00) are defined simi-
larly.

2. Properties of Shock Profiles

Under the assumption (1.3), Kawashima-Matsumura® proved that there exists a
shock profile U(z — st) connecting u; and u_ if and only if vy and s satisfy the
Rankine-Hugoniot condition

—s(ug —u) + (Flus) - F(uo)) =0 (2.1)
and the generalized shock condition
flus) <s< flu). (22)
It includes the following two cases: the nondegenerate shock condition
fllug) <s < f'(u-) (2:2)
and the degenerate shock condition
fluy)=s< fu). (22)s

We also call the conditions (2.2); and (2.2); Lax’s shock condition and Oleinik’s
shock condition respectively. It is easy to see that under the conditions (2.1) and
(2.2), a shock profile U () (¢ = z— st) must satisfy the following ordinary differential
equation

wUe = —sU + f(U) —a=h({U), (2.3)

where a is an integral constant defined by @ = —suy + f(us). To simplify the
situation, we may assume without loss of generality

u- <0< wuy, (2.4)
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in the rest of this paper. Now we are ready to summarize a characterization of the
generalized shock condition (2.2) and the results on the existence of shock profiles
studied in Ref. 5:

Proposition 2.1.5 Suppose that (1.3) and (2.4) hold. Then the following statements

are equivalent:

(i) The generalized shock condition (2.2) holds.

(i) h(u) >0 foru € (u_,uy).

(iii) There exists a unique u, € (u—,uy) such that f'(u.) = s and the following
holds

Ffwy<s for ue (us,ug), s<f(u) for ue (u_,u.). (2.5)

Moreover, the u. in (iii) verifies u. < 0.

Proposition 2.2.° Suppose that (1.3) and (2.4) hold.

(i) If (1.1) admits a shock profile U(x — st) connecting u— and u,, then uy and
s must satisfy the Rankine—Hugoniot condition (2.1) and the generalized shock
condition (2.2).

(ii) Conversely, suppose that (2.1) and (2.2) hold, then there exists a shock profile
U(z — st) of (1.1) which connects us. The U(€) (£ = x — st) is unique up to a
shift in £ and is a monotone function of £. In particular, we have

u_ <UE) <uy, Ug()>0 (2.6)

for all £ € R. Moreover, U(§) — uy exponentially as &€ — oo, with the
following ezceptional case: when f'(uy) = s, U(£) — uy at the rate [£|7! as
£ — +o0.

In later sections, we often make use of a function Z (u) defined by

mw=$ww—#—iﬂwwm 27)

whose basic properties are given by

Lemma 2.3. (Properties of Z(u)) Suppose that (1.3), (2.2) and (2.4) hold. More-
over, suppose that

f"(u) >0 for ue€fu_,uy], u#0. (2.8)

Then the function Z{u) satisfies the following properties:

(i) Z is a positive and decreasing function in (u_,uy).

(i) Z(u) 2 4;(f'(ug) —5)*  for u€fu_,uq].

(iii) In the case (2.2)2, it holds that |h(u)| = O(|u — u+|?) and Z(u) = O(ju —us[?)
in a neighborhood of u = uy .

(iv) There exists a constant Cy such that

(f'(w) — s)2|h(w)|Y/? < CoZ(u) for u€ [u_,uy}.
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Proof. All these assertions are easily proved by elementary calculations. In fact,
if we differentiate Z(u) with respect to u, we have

Z'(u) = ;—;f”’(u)h(u)

which implies, by Proposition 2.1 and (2.8), that Z’'(u) < 0 for all v € (u_,uy),
u # 0. Hence, noting that h(uy) = 0, we easily get (i) and (ii). For the proof of
(iii) and (iv), we may use Taylor’s formula around u = uw;. We omit the details.

O

3. Time Decay Estimates (Nondegenerate Case)

In this section, we assume the Rankine-Hugoniot condition (2.1) and the non-
degenerate shock condition (2.2);. Let U(x — st) be a shock profile connecting u4,
and let us define z¢ by

+o0
/ (up(z) — Ulx))de = zo(u4 —u_). (3.1)

— o0
We note that zg is uniquely determined by (3.1), provided that ug — U is integrable
over R. Then the shifted function U(z — st + xg) is also a shock profile connecting
u4 such that
+o00
—00

In Kawashima—Matsumura,’ this shifted shock profile U(x — st + z,) was proved to
be stable as t — oo, provided the following function ¢o(z) is suitably small:

#o(@) = [ " (uo(y) — Uy + 20))dy. (3.3);

In this paper, we show not only the stability but also its time decay of convergence
with the same rate as in the case of convex nonlinearity studied in Ref. 4.

Theorem 3.1. Suppose that (1.3), (2.1), (2.2)1, (2.4) and (2.8) hold. Let U(x — st)
be a shock profile connecting uy, and suppose ug(z) — U(z) is integrable over R.
We define zo and ¢o(x) by (3.1) and (3.3)1. Suppose that ¢po € H? N LE for some
a > 0. Then there exists a positive constant 8y such that if ||uo — Ul|1 + |doja < o,
the Cauchy problem (1.1), (1.2) has a unique global solution u(t,z) satisfying

u—U € C°0,00; H') N L?(0, 00; H?),

where U = U(x — st+xq) 1s the shifted shock profile. Moreover, the solution verifies
the following decay rate estimate

sup [u(t, z) — Uz — st + o) < C(1+ £)™"?(lluo — Ullx + |$ola) (34)
€

where ¥ = [a].
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The decay rate t~[®/2 in Theorem 3.1 is better than that in Jones-Gardner—
Kapitula® because they showed the rate t~[*/2/2 for the corresponding o. For
positive integers a, this rate also seems optimal in L?-framework from the argu-
ments in Nishihara.® Furthermore, we can show the asymptotic stability with an
exponential decay rate e~%/2 (with some positive constant ) for a class of initial
data such that the following function ®¢(z) is suitably small:

Bo(z) = /ado(z — zo)h(U(x)) /2. (3.3)2

This exponential time decay rate is somehow corresponding to that in II'in-Oleinik?
in the case of convex nonlinearity.

Theorem 3.2. Suppose that (1.3), (2.1), (2.2)1, (2.4) and (2.8) hold. Let U(x — st)
be a shock profile connecting uy, and suppose that ug(z) —U{x) is integrable over R
and that ®o(x) is well defined by (3.3); and is in H2. Then there exists a positive
constant 8, such that if | ®oll2 < 61, the Cauchy problem (1.1), (1.2) has a unique
global solution u(t,x) satisfying

u—U € C°%0,00; H) N L%(0, 00; H?),

where U = U(x — st +xq) is the shifted shock profile. Moreover, the solution verifies
the decay rate estimate

sup |u(t,z) — U(z — st + xo)| < C’e_ot/2||<1>0||2 , (3.5)
z€RR

where 0 is any fized constant satisfying 0 < 0 < 51;( Fuy) —8)%

Remark. By using Proposition 2.2, we can see that the weight function h(U(z)) /2

in (3.3)2 has an exponential decay order O(e~C%1?l) (Cy = |s — f'(us)|/2p > 0)
as £ — Foo. Therefore, the condition ||®¢||2 < 6; implies that the initial function
¢o(x) must have at least the same exponential decay order as the weight function
has.

3.1. Proof of Theorem 3.1

The proof is given by combining the arguments in Refs. 4 and 5. As in the previous
papers, we seek solutions of (1.1), (1.2) in the form

u(t,z) = U(£)+¢E(ta§), §=z—st+zo. (3.6)
Then the problem (1.1}, (1.2) is reduced to
¢t — (5 — F'(U)) e — nodee = F(U, ), 3.7)
¢(0a 5) = ¢0(£ - 1;0) ) (38)
where
F = —{f(U +6¢) — f(U) — ' U)e}. (39)

The problem (3.7), (3.8) can be solved globally in time as follows.
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Theorem 3.3. Suppose that ¢ € H? N L% for some o > 0, and the conditions in
Theorem 3.1 hold. Then there ezists a positive constant &3 such that if ||goll2 < b2,
the problem (3.7), (3.8) has a unique global solution ¢(t,&) satisfying

¢ € C°(0,00; H*) N C*(0,00; L?), ¢ € L*(0,00; H?), (3.10)

and the decay estimate

@+ ) ()3 + /0 (1+ ) ige(m)l13dr < C(Idoli + lIgoell}) (3-11)

holds for t > 0.

Since we can easily prove Theorem 3.1 from Theorem 3.3, it is sufficient to prove
Theorem 3.3 for our purpose. To do that, we shall combine a local existence result
together with a priori estimates.

Proposition 3.4. (local existence) Suppose that ¢9 € H? and the conditions in
Theorem 3.1 hold. Then there is a positive constant Ty such that the problem (3.7),
(3.8) has a unique solution ¢(t,£) satisfying

¢ € CO(Ov TO;H2) ﬂCl(O, TO;Lz)y ¢§ € L2(07 TO;Hz),

sup ||¢(t)ll2 < 2[|oll2 -
G[O,To]

Moreover, if ¢o € L2 for some a > 0, then ¢ € C°(0,To;L2) and ¢¢ €
L2(0,T0;Li).

(3.12)

Proposition 3.5. (a priori estimate) Let T be a positive constant, and ¢(t,£) be
a solution of the problem (3.7), (3.8) satisfying

¢ € C°(0, T; H*NL2)NCY(0,T;L?), ¢ € L3(0,T; H2NL2) (3.13)

for some a > 0. Then there exist positive constants 63 and C independent of T
such that if sup ||@¢(t)||2 < 83, then the estimate
0<t<T

t
1+ ) o(®))13 +/0 (1 + ) llge(r)I3dr < C(Igol2 + libo.elI?) (3.14)

holds for t € [0,T.

Since Proposition 3.4 can be proved in the standard way, we omit its proof.
Once Proposition 3.5 is proved, using the continuation arguments based on Propo-
sitions 3.4 and 3.5, we can show Theorem 3.3. This scheme is the same as in Refs. 4
and 5, so we also omit its proof. To prove Proposition 3.5, we prepare the following
several lemmas. Now, setting

N(t) = Sup le@llz, (¢ € [0,T]), (3.15)

No = |#ola + llPoellr (3.16)
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we first have

Key Lemma 3.6. For any 3,7 € [0,q], there exists a positive constant C inde-
pendent of T, B and ~y such that the estimate

t t '
L+ 016 + 8 /0 (1+7)[6(r) o ydr + /0 (14 7)7|g(r) 2dr
SC{|¢o|fa+7 Javarowiz+o [(asnigeitar
+ /0 f (1+T)"’(€)"I¢IIF(U,¢5)Id€dT} (317)

holds for t € [0,T].

Proof. Thanks to Propositions 2.1 and 2.2, there exists a unique number &, such
that u, = U(&,) and u_ < U(&,) < 0. Multiplying (3.7) by (1+1t)7 (¢ — £.)Pw(U)g,
where w(u) is a weight function which will be chosen such that w(u) € Ct[u_,u4]
and w(u) > 0, we have

{a+ore-eroe ] -Jary e e o

-{Jar - rone- o)
13

— {1+ £)7(E — £ u(U)dde e
O~ £)P OB~ FOE-€)THE- &)

)l - &)+ ((U)) Uele — (s — £/(0))} 2

by UNIVERSITY OF MICHIGAN on 09/12/15. For personal use only.

+ ﬂ(l + t)’y<§ - 5*) w(U)¢§ + /J'w(U){IB(l + t)’y(é. - §*>B_2(£ - 5*)
w'(U)

w(U)

= (L+1)7(€ — &) w(U)Fo. (3.18)

Math. Models Methods Appl. Sci. 1995.05:279-296. Downloaded from www.worldscientific.com
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Since the Schwarz inequality gives

w(U)e¢
w(U)
w'(U),,

<entt+ 76— 621+ Larore -6 [2u] ¢ @)

| (1+8)7(€ - &) |
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for any € > 0, after substituting (3.19) into (3.18), we have
{3a+0E-eru0e] -Ja+iie-e) o)
t

-{Fure-rone-eruoe |
14 )76~ 60 0(U)ddeke + (L4 )T(E ~ 60 (V) dp(©)67
(01— 2l +O7(E - £)Pu(U)E
+ pw(U)B(L+8)7(€ — £)P72(€ — &) o
< (1L+8)7(€ - &)Pw(U)F 9, (3-20)

where
25©) = 3 {86 - @D - €076 - €0 - FOele - €

! ’ 2
+ L e~ €06 - 1) - 2 [“;((g)) Ug] - £*>}. (3.21)

Now we are going to look for a suitable weight function w(U') such that for a suitable
>0,
Ap(€) > BC1, (Ci1 > 0 is independent of 3). (3.22)

Inspired by the arguments in Ref. 5, we choose this weight function w(U) as

1, u € [u_,0]
w(u) = { s
Co(s— f/(u))™%, ue0,uy]

where Cz = (s — f'(0))2. We note that w(u) is a C*-function on [u_,u]. To verify
(3.22), we define &,. by U(&..) = 0. This &,. is uniquely determined and satisfies
& < €us. We divide into two cases: £ < &, and £ > &,..

Case 1. £ < &, In this case, we have u_ < U < 0 so that w(U) =1and f’(U) <0.
The Ag(€) in (3.21) becomes
45(6) = 3{8(s — FONE~£) 7€~ &) —w P UAUNE-E)} . (3.29)

Let g(§) = s — f/(U(§)). We see that g(£) is strictly increasing on (—o0,£,.] and
verifies g(&) = 0, g'(&) = —p~ ' f"(u)h(u,) > 0 and g(—o00) = s — f'(u-) < 0.
Therefore, it easily holds that

Sd(E)E &), for € near .,

C, otherwise,

(€ —&NE-E) s~ F(U) 2 {
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where C is a positive constant. On the other hand, we have
~pHE—ENf(UMU) = (€ - €.)9'(6) 2 0
for £ € (—00,&44], and in particular,
" HE = &) (U)ROU) > ¢'(€)/2
for £ near £,.. These observation prove (3.23) for £ < &,..
Case 2. £ > &,.. In this case, we have 0 < U < uy so that w(U) = Ca(s— f/(U)) 2.
Therefore, the Ag(€) in (3.21) is reduced to
1
A5(6) = 3{B(s — FONE - £)7 (€~ &)

+ (1 —r(U)/p" FURUE - &)} (3.24)

where r(u) = 2h(u)(s — f'(u))~2f"(u). Since f"'(u) > 0, h(uy) =0 and f(0) = 0,
we have r(uy) = 7(0) = 0 and r{u) > 0 for u € (0,u, ). Furthermore, by the same
arguments in Ref. 5, we can check
0<r(u) <7<l for ue(0,uy),
where 7 = n[})a.x ]r(u). In fact, r(u) attains its maximum over [0,u4] at a point
uec|0uy
u = % in (0,u4), and hence 7 = r(@) > 0 and r'(2) = 0. By a straightforward
computation, we can evaluate 7 by

F=1-h@f"@/(s— f(@)f"@.

Since @ € (0, u ), using (1.3), (2.8) and Proposition 2.1 in the above equality, we
find that ¥ < 1.

Now we choose € > 0 such that ¥ < & < 1, and put C =1 — 7/ > 0, we have
from (3.24)

Ap(€) > {Bls — FU))(E ~ &)1 (E ~ &) + Cu FURU)(E - £}

Using this expression, we can prove (3.22) for £ < £,, by the same arguments as in
Case 1. Thus, we have proved (3.22) for all £ € R.
Integrating (3.20) over [0,¢] x R and using the estimate (3.22), we get

L+ 0160 + 8 /0 1+ 7)71g(r) oy + /0 (1 4+ 7)7|e(r) Bar
t
< C{kbol?a w [ @) ar
+ 8 /0 / (14 7)7(E)% e dedr

' Y{E)P T .
+ [ [+ 01161, ge)ided } (3.25)
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To show the desired estimate (3.17), we must estimate the third term on the right-
hand side of (3.25). Using Schwarz’ inequality, we have

5C [ (€1 lgselde < Sl + 40 165 ot

We choose a number r so large that oC{¢)~! < 1/2 for any |¢| > r, and divide the
integral on the right-hand side into two parts I; and I2 according to the regions
|€] > r and |£] < r. Then we have the estimates [; < %|¢§|% and I, < BC||¢¢|?
with some constant C. Substitution of these estimates into (3.25) yields (3.17).
This completes the proof of Key Lemma 3.6. O

For the derivatives of the solution, we can obtain the following estimates in
relatively easier way. We omit the details.

Lemma 3.7. Letl =1 or 2. For any v € [0,a], there exists a positive constant C
independent of T and 7y such that the estimate

t
(1+)18kb(0) 12 + / (1+7)7 8L (r) [2dr
0
t
< c{nagasou? + /O (1 + 7)1 ge () [2_ydr

+ /0 / (1+T)“f|ag+1¢||a§—1p|d§d¢} (3.26);

holds fort € {0, T].
Now, by Key Lemma 3.6, we can prove

Lemma 3.8. Let v € [0,a] NZ. Then there exist positive constants 64 and C =
C(44) independent of T and 7y such that if N(T) < 64, then

1+t + /0 (1+7)lige(r)|Idr < CN (3.27)

holds for t € [0,T].

Proof. At first, we should estimate the last integral on the right-hand side of (3.17).
By Taylor’s formula and Sobolev’s embedding theorem, it is majorized by

CN(t) /0 (1+ )7 |e (7 odr

with a positive constant C. Therefore, for small N(T'), say N(T) < &4, the inequal-
ity (3.17) becomes suitably

L+ 716013 + B / (1+7)"|0(r)3_ydr + / (1+7)7|6e(r) 3dr

< C{I¢olfa+7/(; (1+T)7‘1|¢(T)|§df+ﬁ/o (1 +7’)”|I¢5(T)H2dT} (3.28)
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with a positive constant C = C(64). When 0 < & < 1 (so v = 0), choose 8 =0 in
(3.28), we obtain (3.27), i.e.

@) + / e (r)|%dr < CN2. (3.29)

When 1 < a <2 (soy =0 or 1), choosing v =1 and 8 =0 in (3.28), we first have

(L + D)l + /0 (1+7')||¢§(7')||2d7'SC{||¢0H2+ /0 ||¢(r)||2dr}. (3.30)

Secondly, choosing v =0 and 8 =1 in (3.28), we have

[ ieiar < cfioutt+ [ 1ocnipar). (331)

By (3.29), (3.30) and (3.31), we can prove (3.27) for 1 < a < 2. Repeating the
same procedure, we can get the desired estimate (3.27) for any a > 0. O

Combining (3.27) together with (3.26);, we can prove

Lemma 3.9. Letl =1 or 2. For any 0 < v < [a], there erist positive constants
85(< 64) and C = C(85) independent of T" and v such that if N(T) < 85, then the
estimate

t
(1 +8)7[18¢s(t)I> + /0 (1+7)18¢ ¢(7)|%dr < CN3 (3-32);
holds for t € {0, T].
Proof of Proposition 3.5. Let 63 be chosen as 0 < 83 < 65. Then combining
(3.27) together with (3.32);, we can directly prove the estimate (3.14). O
3.2. Proof of Theorem 3.2

In this case, we seek the solution of (1.1}, (1.2) in the form
U(t, {I}) = U(&) + ¢§(t7§)a
¢ =pu PUE)®(tE), E=z—st+m.

Since we assumed that u_- < 0 < wu,, we have h(U) > 0 so that ¢ =
pY2R(U(€))Y/2®(t,£). Then, using (2.3), we can rewrite the problem (1.1), (1.2)
in the form

(3.33)

8, + Z(U)® — uee = p'/*h(U) 2 F(U, ), (3:34)
®(0,¢) = 20(¢), (3.35)

where Z(U) and ®q are defined by (2.7) and (3.3)2, respectively, and ¢¢ on the
right-hand side of (3.34) is given by

¢ = u T PR(U)2[2p) 7 (£ (U) — 5)® + ]
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Theorem 3.10. Suppose that the conditions in Theorem 3.2 hold, and ®, € H?.
Then there exists a positive constant 8 such that if ||Dolla < 86, then the problem
(3.34), (3.35) has a unique global solution ®(t,¢) satisfying

® € C°(0,00; H*) N C*(0,00; L?), &, € L%(0,00; H?), (3.36)

and the decay estimate
¢
(1 2()3 + /0 e’ [|@¢(7)[13dr < CliDoll3 (3.37)

holds for t > 0, where 0 is as in Theorem 3.2.

Once Theorem 3.10 is proved, we can easily have the unique global solution
of (1.1), (1.2) and also obtain the decay estimate (3.5). In fact, using Sobolev’s
embedding theorem, (2.3) and (3.33), we have

sup [u(t, z) — U(z — st + zo)| = sup | (t, £)|
z€R ¢eR

1
= sup (G- (7(0) - sy + B¢ )2 (0)
ter !\ 2p
< C sup(|®] + |P¢)
£€ER
< Cll(t)l|z < Ce /2.
Therefore, it is sufficient to prove Theorem 3.10 for our purpose. To do that, we

may combine a local existence result together with a priori estimates in the same
way as before. Thus we may only show the following:

Proposition 3.11. (a priori estimate) Let T be a positive constant and d(t,€)
be a solution of the problem (3.34), (3.35) satisfying

® € C°0,T; H*)n C*(0,T; L?), (3.38)

®c € L*(0,T; H?). (3.39)

Then there exist positive constants 6; and C = C(87) independent of T such that if
sup ||®(t)||2 < 87, then the estimate
0<t<T

1
2013 +/0 7| @¢(r)13dr < Cli%oll3 (3.40)

holds for t € [0,T], where 8 is as in Theorem 3.2.
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Proof. Multiplying (3.34) by e%*®, we have

1
(53%2) + (Z(U) ~ g) e ®® — (ue® ®d;), + pe® 7
t
= "®F(U, g ) 2R(U)~Y/2. (3.41)
By Lemma 2.3 and the assumption of 8, we have
g1 0
> (4 g2 _Z
ZU) 5 2 4#()‘ (ug) —s) 2 >0. (3.42)
Since

|e® @F (U, g)u*R(U) /%) < C”R(U) | BI{(f'(U) - 5)°(@1 + [®¢[*}
< Ce™|@|(|0f” + |@¢f?) (3.43)

after substituting (3.42) and (3.43) into (3.41), we can obtain
¢
SISO + [ e < Cleol? (3.44)

provided that N(t) = sup |®(7)||2 is suitably small. Next, applying J; to (3.34)
o<r<t

and multiplying it by e®*®,, we obtain after integration by parts
o 2 ‘o 2
ol + [ e iecrlar

t t
SC{”‘I’O,&HZ-F /0 €1 @(7)|2 + /0 / e"*|<1>eg||F<U,¢¢)/h(U)1/2|dsdr}.

(3.45)
We estimate the last term on the right-hand side of (3.45) as
t
| [ i, oomy2acer
0
¢
<c [ [eriaeel(af + (@cacar
0
. t
< CN() / " @ (r)||2dr . (3.46)
0

Therefore substituting (3.46) into (3.45) and combining it with (3.44), we have

t
B ()2 + / 7|0 (r)2dr < Cll%ol2, (3.47)
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for suitably small N(¢). Similarly, applying 852 to (3.34) and multiplying it by
€% ®¢e, we finally have

t
D)3 + / &7 |8(r)|2dr < C|1o2, (3.48)

for suitably small N(t), say N(t) < 8;. Thus the proof of Proposition 3.11 is
complete. O

4. Asymptotic Stability (Degenerate Case)

In this section, we show that the asymptotic stability of shock profile holds even
under the degenerate shock condition (2.2), for a class of initial data.

Theorem 4.1. Suppose that (1.3), (2.1), (2.2)2, (2.4) and (2.8) hold. Let U(z — st)
be a shock profile connecting uy. Suppose that ug(z) — U(x) is integrable over R
and that ®o(z) is well defined by (3.3)s and is in H2. Then there ezists a positive
constant 8 such that if ||®g||2 < 8s, then the problem (1.1), (1.2) has a unique global
solution u(t,z) satisfying

u—U € C°0,00; H') N L%(0, 00; H?), (4.1)

where U = U(z — st +xo) is the shifted shock profile. Moreover, the solution verifies
the asymptotic behavior

sup |u(t,z) — Uz — st+x0)| =0 ast— +oo. (4.2)
z€ER

Remark. In this degenerate case, by using Proposition 2.2, we can see the weight
function h(U(x))~%/? in (3.3)2 has a polynomial decay order O(|z|™!) as  — 400
and an exponential decay order O(e~C-1#!) [C_ = (f'(u_)—s)/2u > 0] as ¢ — —o0,
respectively. Therefore, the condition ||®¢||2 < 6; implies that the initial function
¢o(x) must have at least the same decay order as the weight function has.

To show Theorem 4.1, we employ the same change of unknown function in (3.33),
and rewrite the problem (1.1), (1.2) in the form (3.34), (3.35). Then what we need
is to show the following results on the problem (3.34), (3.35).

Theorem 4.2. Suppose that the conditions in Theorem 4.1 hold. Then there exists
a positive constant 8y such that if [|®g]|2 < &9, then the problem (3.34), (3.35) has
a unique global solution ®(t,£) satisfying

® € C°0,00; H*) N C*(0,00; L?), ®¢ € L%(0,00; H?), (4.3)
and the estimate
i
I@()II3 +/0 IVZ(U)@(7)|? + |®¢(7)lI3dr < C||Doll3 (4.4)

holds for t > 0 where Z(U) is as in (2.7).
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Once Theorem 4.2 is proved, we can easily have the unique global solution of
(1.1), (1.2) and also obtain the asymptotic behavior (4.2). In fact, using Sobolev’s
embedding theorem (2.3) and (3.33), we have

sup |u(t, z) — U(z — st + xo)| = sup |¢¢ (2, §)|
z€R (eER
< Csup(|®(,€)| + [P¢(t, €)1)
{ER

< CI @)l 1@ E))? < Cl| o[>/ )| ®e (£)]1/2 . (4.5)

Since we can prove ||®¢(t)|| — 0 ast — oo by using the estimate (4.4) and Eq. (3.34),
we can show the asymptotic behavior (4.2) by (4.5). Thus, to prove Theorem 4.2
and eventually Theorem 4.1, we only need to show the following a priori estimate
because all the other arguments can be done in the same way as in the previous
sections.

Proposition 4.3. (a priori estimate) Let T be a positive constant, and ®(t,£) be
a solution of the problem (3.34), (3.35) satisfying

®c CY0,T; H*)NCY0,T;L?), @€ L*(0,T;H?). (4.6)

Then there exist positive constants 619 and C independent of T such that if
sup || ®(t)]l2 < 610, then the estimate
0<t<T

t
@)1 +/0 IVZU)2(T)|1? + [|2e(T)3dT < C|| ol (4.7)
holds for t € [0,T].
Proof. Multiplying (3.34) by ® and integrating it over [0,¢] x R, we have

o) + /0 / Z(U)®(r, €)dtdr + / |@¢(7)|%dr

< C(l|@oll* + fot / |F(U, ¢)/h(U)"/?||@|dédr) . (4.8)
Making use of Taylor’s formula and Lemma 2.3, we have
|F(U, ¢¢) [R(U)?| 2]
< C{(f/(U) - 9*h(U) 2|9 + h(U)/*|@¢[*} 2|
< C(ZU)[eP + (@)@ - (4.9)
Substituting (4.9) into (4.8) gives

182 + (1 - CN () / / 2(U)(r, ¢)dedr

+(1- C'N(t‘))/0 [@¢(r)[[*dr < C||@oll* - (4.10)
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Hence, if we assume N(t) suitably small, say N(t) < 619, we obtain

@) +/0 IVZW)2(D)I|? + || @¢(7)lI*dr < Ol (4.11)

Finally, applying ag (I =1,2) to (3.34) and multiplying it by 3é<I>, we can prove

i
oo+ [l ie)iPar < el (=12, @12,
0

on the same line as before. We omit the details. Combining (4.11) together with
(4.12);, we obtain (4.7). Thus the proof of Proposition 4.3 is complete. [1

5. Remark
As in Ref. 5, we can replace the conditions (1.3) and (2.8) by

f’(u) S0 for w20 under consideration, (5.1)

f"(u) <0 for u#0 under consideration, (5.2)

respectively. Then all the results in the previous sections are also valid. In fact, if »
is a solution of (1.1) under the conditions (5.1) and (5.2), the change of independent
variable, y = —z, transforms (1.1) into

Ut + f(u)y = Huyy, (5.3)
where f(u) = —f(u), and this f(u) verifies (1.3) and (2.8).

Acknowledgment

The author would like to express his sincere thanks to A. Matsumura who introduced
and encouraged him to tackle this problem, for many kind suggestions and careful
directions. He also thanks S. Kawashima for many helpful discussions.

References

1. J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation
laws, Arch. Rational Mech. Anal. 95(1986) 325~344.

2. A. M. I’in and A. Oleinik, Asymptotic behavior of solution of Cauchy problem for
certain quasilinear equations for large time, Mat. Sb. 51 (1960) 191-216 (Russian).

3. C. Jones, R. Gardner and T. Kapitula, Stability of traveling waves for nonconvez scalar
viscous conservation laws, Comm. Pure Appl. Math. 46 (1993) 505-526.

4. S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of
system for one-dimensional gas motion, Comm. Math. Phys. 101 (1985) 97-127.

5. S. Kawashima and A. Matsumura, Stability of shock profiles in viscoelasticity with non-
convex constitutive relations, to appear in Comm. Pure Appl. Math.

6. T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer.
Math. Soc. 56, No. 328 (1985).



Math. Models Methods Appl. Sci. 1995.05:279-296. Downloaded from www.worldscientific.com
by UNIVERSITY OF MICHIGAN on 09/12/15. For personal use only.

296 M. Mei

7. A. Matsumura and K. Nishihara, On the stability of traveling wave solutions of a one-
dimensional model system for compressible viscous gas, Japan J. Appl. Math. 2 (1985)
17-25.

8. K. Nishihara, A note on the stability of traveling wave solutions of Burger’s equation,
Japan J. Appl. Math. 2 (1985) 27-35.

9. A. Szepessy and Z. P. Xin, Nonlinear stability of viscous shock waves, Arch. Rational
Mech. Anal. 122 (1993) 53-104.



