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Abstract

This paper deals with the Cauchy problem for the compressible Euler equations with time-dependent 
damping, where the time-vanishing damping in the form of μ

(1+t)λ
makes some fantastic variety of the 

dynamic system. For 0 < λ < 1 and μ > 0, or λ = 1 but μ > 2, the solutions are proved to exist globally 
in time, when the derivatives of the initial data are small, but the initial data themselves can be arbitrarily 
large. This is the so-called challenging case of global solutions with large initial data; while, when the 
initial Riemann invariants are monotonic and their derivatives with absolute value are large at least at one 
point, then the solutions are still bounded, but their derivatives will blow up at finite time, somewhat like 
the singularity formed by shock waves. For λ > 1 and μ > 0, or λ = 1 but 0 < μ ≤ 1, the derivatives of 
solutions will blow up even for all initial data, including the interesting case of blow-up solutions with 
small initial data. Here the initial Riemann invariants are monotonic. In fact, such a blow-up phenomenon 
is determined by the mechanism of the dynamic system itself. In order to prove the global existence of 
solutions with large initial data, we introduce a new energy functional related to the Riemann invariants, 
which crucially enables us to build up the maximum principle for the corresponding Riemann invariants, 
and the uniform boundedness for the local solutions. Finally, numerical simulations in different cases are 
carried out, which further confirm our theoretical results.
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1. Introduction and main results

We consider the following Cauchy problem for the 1D compressible Euler equations (the 
so-called p-system) with time-degenerate damping

⎧⎪⎨
⎪⎩

vt − ux = 0,

ut + p(v)x = −α(x, t)u, x ∈ R, t ∈ R+,

(v,u)|t=0 = (v0(x), u0(x)) → (v±, u±), as x → ±∞.

(1.1)

Physically, (1.1) models a compressible flow through porous media, where, v = v(x, t) > 0 is 
the specific volume of the flow at time t and the location x, u = u(x, t) is the fluid velocity, 
and p(v) = v−γ /γ with γ > 1 is the pressure of the flow. This means the flow is the polytropic 
gas. The term −α(x, t)u in the second equation of (1.1) is the so-called damping effect on the 
fluid, and α(x, t) ≥ 0 satisfies α ∈ C1

b(R × R+), where C1
b(R × R+) is the set of bounded and 

continuous functions whose first partial derivatives are also bounded. The well-known example 
is α(x, t) = μ/(1 + t)λ, which represents the time-gradually-vanishing friction effect with λ > 0. 
(v0, u0)(x) are the initial data, and (v±, u±) with v± > 0 are the state constants.

Let us depict a background picture of the relevant research. In order to describe the progress in 
different cases more explicitly, let us take, at this moment, α(x, t) = μ

(1+t)λ
for example, although 

our study in this paper treats a more general form of the damping coefficient.
When μ = 0, the system (1.1) is the standard Euler equations which has been extensively 

studied, and the solutions in general blow up due to the formation of shocks [2,3,6,8,20,25,39].
When μ > 0 and λ = 0, the system (1.1) becomes the damped Euler system. For the case with 

“boundary layer”, namely v+ �= v−, Marcati and Milani [27], based on Darcy’s Law, first studied 
the relaxation limit of the hyperbolic solutions to the parabolic solutions in the weak sense. Later 
then, Hsiao and Liu [15] investigated the convergence in the smooth sense, and observed that the 
damping effect makes the compressible Euler system behave like the corresponding nonlinear 
porous-media diffusion equation

{
v̄t = ūx,

p(v̄)x = −μū, (Darcy’s law)
equivalently,

{
v̄t + (p′(v̄)v̄x)x = 0,

v̄(0, x) → v± as x → ±∞,

where (v̄, ū) = (v̄, ū)( x√
1+t

), the so-called diffusion waves, are self-similar solutions. They 
showed the convergence of the original solution for p-system to the diffusion waves in the form 
of ‖(v − v̄, u − ū)(t)‖L∞ = O(t−1/2, t−1/2), when the wave strength |v+ − v−| + |u+ − u−|
and the initial perturbation around the diffusion waves both are small enough. Such a conver-
gence was then improved to O(t−3/4, t−5/4) by Nishihara [32] when the initial perturbations 
are in L2-sense, and improved to (t−1, t−3/2) by Nishihara-Wang-Yang [33] for the L1 inte-
grable initial perturbations, and further improved to O(t−3/2 ln t, t−2 ln t) by Mei [31] by finding 
the best asymptotic profile, where Mei’s technique is to carry out twice anti-derivatives for the 
equation of mass conservation and the second equation of momentum conservation, and finally 
the convergence rates were improved to O(t−3/2, t−2) by Geng and Wang [10]. When v+ = v−
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and u− = u+ = 0, the global existence in 3D case was also significantly obtained by Sideris-
Thomases-Wang in [38]. For the case with boundary effect, we refer to [28,29].

Note that, the global existence of the solutions mentioned in the above works requires the 
initial data to be small. However, even for the damped Euler-Poisson system, when the derivatives 
of initial data are big, Wang and Chen remarkably showed in the pioneering work [43] that 
the solutions are still bounded but their derivatives must blow up at finite time. Recently, Liu 
and Fang [26] and Li and Wang [21] extended such a blow-up result to the 3D case. For other 
interesting contributions, we refer to [9,16–18,30,47] and the references therein.

When μ > 0 and λ > 0, the effect of damping α(x, t) = μ

(1+t)λ
is time-asymptotically vanish-

ing, which makes the fantastic variety of the p-system (1.1). For the linear wave equations with 
time-asymptotically vanishing damping,

vtt + μ

(1 + t)λ
vt − �v = 0,

Wirth [44–46] first derived the optimal decay rates of the solutions related to the sizes of λ and μ. 
For the p-system case, when the state constants satisfy v+ = v−, Pan [35,36] gave the thresholds 
of μ and λ separating the existence and nonexistence of global solution in small data regime. 
That is, if 0 ≤ λ < 1 and μ > 0 or λ = 1 and μ > 2, then solutions of (1.1) globally exist for 
small initial perturbation around the constant state (v+, 0); if λ > 1 and μ > 0 or λ = 1 but 
0 < μ ≤ 2, then the solutions of (1.1) will blow up at finite time for some large initial data. Here, 
λ = 1 and μ = 2 is the critical case. Recently, by using Riemann invariants method, Sugiyama 
[41] further obtained the sharp upper and lower estimates of lifespan for solutions with the small 
initial data when λ > 1 and μ > 0 or λ = 1 and 0 < μ ≤ 2. And then in [42], Sugiyama improved 
the global existence of the solutions for the case of 0 < λ < 1 and μ > 0 or λ = 1 and μ > 2
by removing the restriction on the initial data at far fields: limx→±∞ |v0(x) − v+| + |u0(x)| =
0, but the initial perturbation still needs to be small, i.e. |v0(x) − v+| + |u0(x)| � 1. For 3D 
damped Euler equations, Hou-Yin [14] and Hou-Witt-Yin [13] proved the global existence of the 
solutions for 0 < λ < 1 and the blow-up of solutions for λ > 1 with life-span, but they did not 
specify whether the blow-up phenomena are for the solutions themselves or their gradients.

When 0 < λ < 1 and μ > 0 but v+ �= v−, the asymptotic profiles are expected to be diffusion 
waves that satisfy the time-dependent porous media equation:

⎧⎨
⎩

v̄t = ūx,

p(v̄)x = − μ

(1 + t)λ
ū,

equivalently,

⎧⎨
⎩

μ

(1 + t)λ
v̄t + (p′(v̄)v̄x)x = 0,

v̄(0, x) → v± as x → ±∞,

with (v̄, ū) = (v̄, ū)( x√
(1+t)1+λ

). Two groups of Li-Li-Mei-Zhang [23] and Cui-Yin-Zhang-Zhu 

[7] both initially paid attention to this topic, and almost at the same time but independently 
obtained the convergence of the original solutions for (1.1) to the diffusion waves when the initial 
perturbation around the diffusion waves (v̄, ū) and the wave strength |v+ −v−| +|u+ −u−| both 
are sufficiently small. The convergence rates presented in [7] are

‖(v − v̄, u − ū)(t)‖L∞(R) =

⎧⎪⎨
⎪⎩

O(t− 3
4 (1+λ), t− λ+5

4 ), 0 < λ < 1
7 ,

O(t− 6
7 +ε, t− 9

7 +ε), λ = 1
7 ,

O(tλ−1, t
3(λ−1)

2 ), 1 < λ < 1,

for any 0 < ε < 1,
7
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which are better than that showed in [23]. These rates were then improved by Li-Li-Mei-Zhang 
[24] for Euler-Poisson equations and by Li [22] for the p-system to the following optimal rates:

‖(v − v̄, u − ū)(t)‖L∞(R) =

⎧⎪⎨
⎪⎩

O(t− 3
4 (1+λ), t− λ+5

4 ), 0 < λ < 1
7 ,

O(t− 6
7 ln t, t− 9

7 ln t), λ = 1
7 ,

O(tλ−1, t
3(λ−1)

2 ), 1
7 < λ < 1.

Clearly, for the case 0 < λ < 1, the system (1.1) eventually behaves like a degenerate parabolic 
system with diffusion phenomena.

When λ = 1 and μ > 2 (the critical case) with v− �= v+, then the story is different from 
before. In fact, from the rates showed in the above that, the diffusion waves for the porous media 
equation are no longer the asymptotic profile for the original system (1.1), because ‖(v − v̄, u −
ū)(t)‖L∞(R) ≈ (O(1), O(1)). Recently, Geng-Lin-Mei [11] observed that, in this critical case, 
the effect of vtt cannot be neglected, and technically confirmed that the asymptotic profile is the 
solution of the linear wave equation with time-vanishing damping

v̄t t + μ

1 + t
v̄t + (p′(v̂)v̄x)x = 0,

with an artful construction for the featured function v̂(x, t). By constructing the best asymptotic 
profile, they show a much better convergence.

We note that, in the previous studies, when 0 < λ < 1 and μ > 0, or λ = 1 and μ > 2, the 
global existence of the solutions is verified only for small initial perturbation, but it is not clear 
if the global solutions exist in the case of large initial perturbation; while, when λ > 1 and μ > 0
or λ = 1 and 0 < μ ≤ 2, the solutions will blow up once the initial derivatives are sufficiently 
large, but it is also not clear if the solutions still blow up when the initial perturbations are small. 
These open questions will be our main concerns in this paper. In fact, roughly speaking, we will 
prove that:

1. When 0 < λ < 1 and μ > 0, or λ = 1 and μ > 2, even if the initial perturbation and the wave 
strength are large, once the derivatives of the initial data are not large, then the solutions 
of (1.1) still globally exist. This problem is the so-called global-in-time solution with large 
initial data.

2. In the same cases for λ and μ as mentioned before, the derivatives of solutions of (1.1) will 
blow up when the derivatives of the initial values are sufficiently large at some points.

3. When λ > 1 and μ > 0, or λ = 1 and 0 < μ ≤ 1, we shall prove that, the solutions of (1.1)
will blow up for all initial data with monotonic initial Riemann invariants, in particular, the 
small initial data with monotonic initial Riemann invariants. This also essentially improves 
the existing results of blow-up for fluid dynamic systems, where the sufficient conditions are 
usually with some large initial data.

Regarding blow-up phenomena, in general, there are three types of blow-up for the system 
(1.1). The first one is for the solutions themselves at a finite time: limt→t∗ |v(x, t)| + |u(x, t)| =
∞; the second one is for the derivatives of the solutions: limt→t∗ |vx(x, t)| + |ux(x, t)| =
∞; and the third one is for the pressure function p(v) = v−γ

: limt→t∗ p(v) = ∞, namely, 

γ
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limt→t∗ v(x, t) = 0. However, we will prove that, for the system (1.1), both the solutions them-
selves (v, u) and the pressure function p(v) will be bounded and never blow up, but the deriva-
tives of the solutions (vx, ux) will blow up at finite time for some cases of λ and μ, as well as 
the size of derivatives of initial data.

In order to verify these new phenomena, we combine the energy method with the Riemann 
invariants method, as developed in [37,43,1,14,35,48,34,40,3]. But the technical point in this 
paper is to construct a new functional for Riemann invariants to obtain upper and lower bound for 
the solutions of (1.1), and to build up the maximum principle for the damped Euler system (1.1)
in any bounded domain. This is a crucial key to guarantee the global existence of the solutions 
for (1.1) with large initial data, in the case of 0 ≤ λ < 1 and μ > 0, or λ = 1 and μ > 2. This new 
functional method is powerful to get a priori estimates for elliptic and parabolic equations (see 
[4,5]). We also use the similar method as in [41] to obtain the upper bound for the derivatives of 
solutions by estimating derivatives of Riemann invariants. Remarkably, the hyperbolic system of 
PDEs usually does not hold the maximum principle. But, under certain setting frame, the new 
system may possess the maximum principle for the solutions in the new frame. See the significant 
studies by J. Hong [12] and Huang-Pan-Wang [19].

We first consider the following Cauchy problem:

⎧⎪⎪⎨
⎪⎪⎩

vt − ux = 0,

ut = −p(v)x − μ

(1 + t)λ
u, x ∈ R, t ∈ R+,

(v,u)|t=0 = (v0(x), u0(x)) → (v±, u±), as x → ±∞.

(1.2)

Let c = √|p′(v)| = v−(γ+1)/2, the so-called sound speed in fluid terminology, and note ∫∞
v

c(s)ds = 2
γ−1v− γ−1

2 , we introduce the Riemann invariants to (1.2):

ξ(x, t) := 2

γ − 1
v−(γ−1)/2 − u, η(x, t) := 2

γ − 1
v−(γ−1)/2 + u. (1.3)

Then (1.2) is reduced to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∂t − c∂x)ξ = − μ

2(1 + t)λ
(ξ − η),

(∂t + c∂x)η = − μ

2(1 + t)λ
(η − ξ),

ξ |t=0 = 2
γ−1 [v0(x)]−(γ−1)/2 − u0(x) =: ξ0(x),

η|t=0 = 2
γ−1 [v0(x)]−(γ−1)/2 + u0(x) =: η0(x).

(1.4)

We denote, for σ > 0, 0 < λ < 1 and μ > 0, or λ = 1 and μ > 2,

Aσ (t) : = exp

⎛
⎝ t∫

0

σμ

(1 + τ)λ
dτ

⎞
⎠ , (1.5)

cσ : = supA−1
σ (t)(1 + t)λ, (1.6)
t
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dσ : = sup
t

A−1
σ (t)(1 + t)λ

t∫
0

μAσ (τ)

2(1 + τ)λ

∣∣∣∣ σμ

(1 + τ)λ
− λ

1 + τ

∣∣∣∣dτ, (1.7)

c : = sup
t

A−1
1/2(t)(1 + t)λ

t∫
0

A1/2(τ )

(1 + τ)2λ
dτ, (1.8)

δσ : =
(

1

2
− σ

)
2μ

γ + 1
, σ < 1/2, (1.9)

max
a≤x≤b

(f (x), g(x)) : = max( max
a≤x≤b

f (x), max
a≤x≤b

g(x)), (1.10)

min
a≤x≤b

(f (x), g(x)) : = min( min
a≤x≤b

f (x), min
a≤x≤b

g(x)), (1.11)

where σ depends on λ and μ. We choose σ ∈ [0.1, 0.4] such that dσ is as small as possible and 
δσ is as large as possible. Numerical computations show that, for 2 ≤ μ ≤ 4, we can set

σ =

⎧⎪⎨
⎪⎩

0.1, if 0 < λ ≤ 0.5,

(λ − 0.3)/2, if 0.5 < λ ≤ 0.9,

0.3, if 0.9 < λ < 1.

For example, if μ = 2, λ = 0.5, then σ = 0.1, cσ = 1.37, dσ = 0.97; if μ = 3, λ = 0.9, then 
σ = 0.3, cσ = 1, dσ = 1.17. Our main results are as follows.

Theorem 1.1 (Maximum principle). Let (v, u)(x, t) ∈ C1(R × [0, T ]) be the solutions to the 
system (1.1) for T > 0 with a general form of α(x, t) > 0. Then, for any a < b,

max
a≤x≤b

{(|ξ |, |η|)(x, t)} ≤ max{ max
a≤x≤b

(|ξ0|, |η0|)(x), max
0≤t≤T

(|ξ |, |η|)(b, t), max
0≤t≤T

(|ξ |, |η|)(a, t)}.
(1.12)

Theorem 1.2 (Uniform boundedness). Let (v, u)(x, t) ∈ C1(R × [0, T ]) be the solutions to the 
system (1.2) for T > 0 and the initial Riemann invariants satisfy

ξ0(x), η0(x) ≥ ε0 > 0, x ∈ R, (1.13)

for some constant ε0, then (v, u)(x, t) are uniformly bounded in R × [0, T ]:
[

2

(γ − 1) supx∈R(ξ0, η0)(x)

] 2
γ−1 ≤ v(x, t) ≤

[
2

(γ − 1) infx∈R(ξ0, η0)(x)

] 2
γ−1

, (1.14)

|u(x, t)| ≤ sup
x∈R

{ξ0(x), η0(x)}. (1.15)

Theorem 1.3 (Monotonicity). Let (v, u)(x, t) ∈ C1(R × [0, T ]) be the solutions to the system 
(1.2) for T > 0 and the initial Riemann invariants ξ0(x) and η0(x) both be decreasing (or in-
creasing) for all x ∈ R. Then the solution v(x, t) of (1.2) is increasing (or decreasing).
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Theorem 1.4 (Global existence with monotonic initial Riemann invariants). Let the initial data of 
Riemann invariants (ξ, η)(x, 0) both be decreasing (or increasing) for all x ∈ R. When 0 < λ < 1
with μ > 0 and

[
cσ sup

x∈R

(|ξ0x(x)|, |η0x(x)|) + (2dσ + μ)|v+ − v−|/4

]
/min(v−, v+) < δσ , (1.16)

or λ = 1 with μ > 2, σ = 1/μ and

[
sup
x∈R

(|ξ0x(x)|, |η0x(x)|) + μ|v+ − v−|/4

]
/min(v−, v+) < δσ , (1.17)

then (1.2) has a unique pair of solutions globally in time satisfying the uniform boundedness 
(1.14) and (1.15), and v(x, t) is increasing (or decreasing) in x. In particular, the following 
decay estimate holds:

sup
x∈R

(|vx(x, t)|, |ux(x, t)|) ≤ Cδσ (1 + t)−λ min(v−, v+). (1.18)

Theorem 1.5 (Global existence for non-monotonic initial Riemann invariants in the case of 
0 < λ < 1, μ > 0, or λ = 1 but μ > 2). Assume that v− > v+, u− = u+ = 0 and

2

γ − 1
v

−(γ−1)/2
− ≤ inf

x∈R
(ξ0, η0)(x) < sup

x∈R

(ξ0, η0)(x) ≤ 2

γ − 1
v

−(γ−1)/2
+ . (1.19)

If either 0 < λ < 1, μ > 0, and

c1/2 sup
x∈R

[(|ξ0x(x)|, |η0x(x)|)v−1
0 (x)] + (d1/2 + μ/2)(v− − v+)/v+ <

1

2c(γ + 1)
, (1.20)

or λ = 1, μ > 2, and

sup
x∈R

[(|ξ0x(x)|, |η0x(x)|)v−1
0 (x)] + μ(v− − v+)/v+ <

(μ − 2)

2(γ + 1)
, (1.21)

then (1.2) has a unique pair of global solutions (v, u)(x, t), whose derivatives satisfy the decay 
estimate (1.18).

Theorem 1.6 (Global existence for general initial data in the case of 0 < λ < 1, μ > 0, or λ = 1
but μ > 2). Let v := infx∈R v0(x) > 1, v := supx∈R v0(x). Assume that there exists a number 
ε > 0 such that the initial data satisfy:

(γ − 1)|u0(x)|v0(x)(γ−1)/2 ≤ ε, (1.22)

and, for 0 < λ < 1, μ > 0,

c1/2 sup{|ξ0x |, |η0x |} +
(μ + d1/2

)
b1(v − v) <

[
b2 −

(μ + d1/2

) 2ε
]

v,

x∈R 2 2c(γ + 1) 2 γ − 1
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or, for λ = 1, μ > 2,

sup
x∈R

{|ξ0x |, |η0x |} + μb1(v − v) <

[
(μ − 2)b2

2(γ + 1)
− 2με

γ − 1

]
v,

where b1 := [2/(2 − ε)]2/(γ−1) and b2 := [2/(2 + ε)]2/(γ−1). Then (1.2) has a unique pair of 
solutions globally in time, whose derivatives satisfy the decay estimate (1.18).

Theorem 1.7 (Blow up in the case of λ > 0 and μ > 0). For all cases λ > 0, μ > 0, let the initial 
data of Riemann invariants (ξ, η)(x, 0) both be monotonic for all x ∈ R. If either ηx(x0, 0) � −1
or ξx(x0, 0) � 1, for some point x0, then, there exists a finite time t∗ > 0 such that, (v, u)(x, t)
are still bounded in R × [0, t∗), but

lim
t↑t−∗

‖(vx, ux)(t)‖L∞(R) = +∞. (1.23)

Theorem 1.8 (Blow up in the case of λ > 1, μ > 0, or λ = 1 but 0 < μ ≤ 1). For the cases either 
λ > 1 with μ > 0, or λ = 1 but 0 < μ ≤ 1, let the initial Riemann invariants both be monotonic. 
Then, for all initial data, there exists a finite number t∗ > 0 such that the solutions (v, u)(x, t) of 
(1.2) are still bounded in R × [0, t∗), but

lim
t↑t∗

‖(vx, ux)(t)‖L∞(R) = +∞.

Corollary 1.9. When μ > 0 and λ = 0, then (1.2) is reduced to the well-known p-system with 
damping

⎧⎪⎨
⎪⎩

vt − ux = 0,

ut + p(v)x = −μu, x ∈ R, t ∈ R+,

(v,u)|t=0 = (v0(x), u0(x)) → (v±, u±), as x → ±∞.

(1.24)

Suppose that the initial Riemann invariants are monotonic.

1. If supx∈R(|ξ0x(x)|, |η0x(x)|) + μ|v+ − v−|/4 < μ min(v−, v+)/(γ + 1), then system (1.24)
admits a unique pair of global solutions (v, u) ∈ C1(R × R+).

2. If either ηx(x0, 0) � −1 when v0x(x) > 0 or ξx(x0, 0) � 1 when v0x < 0, for some point x0, 
then the solution of (1.24) will blow up at a finite time t∗:

lim
t↑t−∗

‖(vx, ux)(t)‖L∞(R) = +∞.

For a more general α(x, t) we can obtain similar results as Theorems 1.5–1.7. Please see 
Section 5 for details.
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Remark 1.10.

1. The maximum principle (Theorem 1.1) and the uniform boundedness (Theorem 1.2) for the 
local solutions play the key roles to get the global existence with some large initial data. To 
establish the maximum principle, it is crucial to set up the new energy functional related to 
the Riemann invariants. See (2.1) later.

2. For 0 < λ < 1 and μ > 0, or λ = 1 and μ > 2, when the derivatives of the initial data 
are small, but the initial data themselves can be arbitrarily large, as showed in Theo-
rem 1.4-Theorem 1.6, then the global solutions exist. Here we prove the challenging case 
for the global existence with large initial data. While, when the absolute value of the deriva-
tives for the initial data are large at some points, then the derivatives of the solutions as 
showed in Theorem 1.7 will blow up in finite time.

3. In fact, as showed in Theorem 1.7, for all cases of λ > 0 and μ > 0, once the initial Riemann 
invariants are monotonic, and the initial derivatives are big at some points, the solution’s 
gradients will blow up. This is somewhat like the formation of shocks when the initial data 
are steeper (Riemann-data-like).

4. For λ = 1 with 0 < μ < 1, or λ > 1 and μ > 0, the derivatives of the solutions for (1.2)
always blow up for all initial data. In this case, the damping effect α(x, t) = μ

1+t
is so weak 

that the system (1.2) is more like the standard Euler equations without damping, and the 
blow-up phenomena cannot be excluded. Such a blow-up phenomenon is determined by the 
mechanism of the system itself. For the case of λ = 1 with 1 < μ ≤ 2, we would expect 
the derivatives of solutions also blow up for all initial data, but we could not prove it yet 
in this paper due to a technic reason. Note that, the life-span of solutions was also obtained 
in [14,13] for λ > 1 and μ > 0 even for the small initial data, but they did not specify 
whether the blow-up phenomenon happens for the solutions themselves or their derivatives. 
Here, we confirm that the solutions are still bounded, but their derivatives blow up in finite 
time.

5. When λ = 0 and μ > 0, remarkably, in Corollary 1.9 for the regular p-system with damping, 
we obtain the global existence of the solutions with large initial data, once their derivatives 
are small, and the blow-up of the derivatives of the solutions once the derivatives of the initial 
data are sufficiently large. This blow-up phenomenon matches the previous study in [43].

The rest of the paper is organized as follows. Section 2 is devoted to establishing the a priori
estimates for local solutions of (1.1) and (1.2). We use the new functional method to show that 
v, 1/v, u are bounded as long as α(x, t) ≥ 0 and then prove v is monotone if the initial Riemann 
invariants are monotone. In Section 3, we prove the existence of global solutions for (1.2) under 
the assumptions that 0 < λ < 1 or λ = 1 but μ > 2. We settle the problem of so-called global 
existence of large solutions. In Section 4, we show the occurrence of derivative blow-up in finite 
time. For all case λ > 0, once ηx(x0, 0) � −1 or ξx(x0, 0) � 1 at a point x0, the solutions (v, u)

of (1.2) are bounded, but the derivatives (vx, ux)(x, t) will blow up in finite time. In particular, 
if λ > 1 or λ = 1 but μ < 1, the derivatives (vx, ux)(x, t) for (1.2) blow up, no matter how small 
the initial data are. In Section 5, we discuss global and blow-up solutions for general α(x, t) in 
system (1.1). In Section 6, we present numerical simulations in many cases which confirm our 
theoretical results.
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2. A priori estimates: maximum principle, uniform boundedness and monotonicity

This section is devoted to establishing the a priori estimates for the local solutions. Let 
(v, u)(x, t) ∈ C1(R ×[0, T ]) be the solutions to the system (1.1) and (1.2) for a given T > 0. We 
first prove the maximum principle (Theorem 1.1) by constructing a new energy functional.

Proof of Theorem 1.1. Let (ξ, η)(x, t) be the pair of Riemann invariants. We define a new en-
ergy functional:

b∫
a

[ξn(x, t) + ηn(x, t)]v(γ+1)/4dx, (2.1)

where n is an even integer. Let β = (γ + 1)/4, we first have

d

dt

b∫
a

ξnvβdx = n

b∫
a

ξn−1vβ(−v−(γ+1)/2vt − ut )dx + β

b∫
a

ξnvβ−1vtdx

= n

b∫
a

ξn−1vβ [−v−(γ+1)/2ux − v−γ−1vx + α(x, t)u]dx + β

b∫
a

ξnvβ−1uxdx

= n

b∫
a

ξn−1vβ−(γ+1)/2(−ux − v−(γ+1)/2vx)dx

+ n

b∫
a

ξn−1vβα(x, t)udx + β

b∫
a

ξnvβ−1uxdx

=: I1 + I2 + I3. (2.2)

Note that

ξx = −v−(γ+1)/2vx − ux.

Integrating by parts for I1, we get

I1 = n

b∫
a

ξn−1vβ−(γ+1)/2ξxdx

=
b∫
(ξn)xv

−(γ+1)/4dx
a



S. Chen et al. / J. Differential Equations 268 (2020) 5035–5077 5045
= ξnv−β
∣∣∣ba + β

b∫
a

ξnv−β−1vxdx. (2.3)

Substituting (2.3) into (2.2) yields

d

dt

b∫
a

ξnvβdx = ξnv−β
∣∣∣ba + β

b∫
a

ξn(v−β−1vx + vβ−1ux)dx + I2

= ξnv−β
∣∣∣ba − β

b∫
a

ξnvβ−1(−v−2βvx − ux)dx + I2

= ξnv−β
∣∣∣ba − β

b∫
a

ξnvβ−1ξxdx + I2

= ξnv−β
∣∣∣ba − β

n + 1
ξn+1vβ−1

∣∣∣ba + β(β − 1)

n + 1

b∫
a

ξn+1vβ−2vxdx + I2.

(2.4)

Similarly, we find

d

dt

b∫
a

ηnvβdx = n

b∫
a

ηn−1vβ(−v−(γ+1)/2vt + ut )dx + β

b∫
a

ηnvβ−1vtdx

= −n

b∫
a

ηn−1vβ−(γ+1)/2(ux − v−(γ+1)/2vx)dx

− n

b∫
a

ηn−1vβα(x, t)udx + β

b∫
a

ηnvβ−1uxdx

=: J1 + J2 + J3.

Then

J1 = −n

b∫
a

ηn−1v−βηxdx = −ηnv−β
∣∣∣ba − β

b∫
a

ηnv−β−1vxdx,

and



5046 S. Chen et al. / J. Differential Equations 268 (2020) 5035–5077
d

dt

b∫
a

ηnvβdx = −ηnv−β
∣∣∣ba + β

b∫
a

ηnvβ−1(ux − v−2βvx)dx + J2

= −ηnv−β
∣∣∣ba + β

n + 1
ηn+1vβ−1

∣∣∣ba − β(β − 1)

n + 1

b∫
a

ηn+1vβ−2vxdx + J2.

(2.5)

Summing up (2.4) and (2.5), we obtain

d

dt

b∫
a

(ξn + ηn)vβdx =
[
(ξn − ηn)v−β − β

n + 1
(ξn+1 − ηn+1)vβ−1

] ∣∣∣∣
b

a

− β(β − 1)

n + 1

b∫
a

(ηn+1 − ξn+1)vβ−2vxdx

− n

b∫
a

(ηn−1 − ξn−1)vβα(x, t)udx.

(2.6)

Note that

−n

b∫
a

(ηn−1 − ξn−1)vβα(x, t)udx = −n

b∫
a

1∫
0

d

dr
[rη + (1 − r)ξ ]n−1drvβαudx

= −n(n − 1)

b∫
a

1∫
0

[rη + (1 − r)ξ ]n−2(η − ξ)drvβαudx

= −2n(n − 1)

b∫
a

1∫
0

[rη + (1 − r)ξ ]n−2drvβαu2dx

≤ 0. (2.7)

Since (v, u) ∈ C1([a, b] × [0, T ]), then |ξ(x, t)|, |η(x, t)|, |vx |, 0 < v ≤ C for some constant 
C = C(a, b, T ). Let us choose even numbers n sufficiently large such that

∣∣∣∣β(1 − β)

n + 1

∣∣∣∣
(

max
a≤x≤b

|η(x, t)| + max
a≤x≤b

|ξ(x, t)|
)

max
a≤x≤b

|vxv
−2| ≤ 1

for t ≤ T . Then
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∣∣∣∣∣∣−
β(β − 1)

n + 1

b∫
a

(ηn+1 − ξn+1)vβ−2vxdx

∣∣∣∣∣∣
≤ |β(β − 1)|

n + 1
(max |η| + max |ξ |)max |vxv

−2|
b∫

a

(ηn + ξn)vβdx

≤
b∫

a

(ηn + ξn)vβdx, (2.8)

and (2.6) can be estimated as

d

dt

b∫
a

(ξn + ηn)vβdx ≤
[
(ξn − ηn)v−β − β

n + 1
(ξn+1 − ηn+1)vβ−1

] ∣∣∣∣
b

a

+
b∫

a

(ξn + ηn)vβdx.

(2.9)

Multiplying both sides of (2.9) by e−t , we have

d

dt

⎡
⎣e−t

b∫
a

(ξn + ηn)vβdx

⎤
⎦≤ e−t

[
(ξn − ηn)v−β − β

n + 1
(ξn+1 − ηn+1)vβ−1

] ∣∣∣∣
b

a

,

or

b∫
a

(ξn + ηn)vβdx ≤ et

b∫
a

[ξn(x,0) + ηn(x,0)]vβ
0 dx

+
t∫

0

et−τ

[
(ξn − ηn)v−β − β

n + 1
(ξn+1 − ηn+1)vβ−1

] ∣∣∣∣
b

a

dτ.

(2.10)

Now, we use the fact

lim
n→∞

⎛
⎝ b∫

a

|F(x)|ndx

⎞
⎠

1
n

= max
x∈[a,b] |F(x)|,

where F(x) is a continuous function on [a, b]. Taking nth roots and letting n → ∞ in (2.10), we 
obtain (1.12). �

We next establish the uniform boundedness of (v, u).
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Lemma 2.1. Let (v, u) ∈ C1(R × [0, T ]) be the solutions to (1.2). Then

lim
x→±∞v(x, t) = v± and lim

x→±∞u(x, t) = u±A−1
1 (t), (2.11)

and

|u|, 2

γ − 1
v−(γ−1)/2 ≤ max

(
sup
x∈R

|ξ0(x)|, sup
x∈R

|η0(x)|
)

, (2.12)

where A1(t) is defined by (1.5) with σ = 1.

Proof. We first prove lim
x→+∞v(x, t) = v+. Let x±(t) be the plus and minus characteristic curves 

which are solutions to the following differential equations:

dx±(t)

dt
= ±v−(γ+1)/2(x±(t), t). (2.13)

Taking derivatives of ξ(x, t)A1(t) along the minus characteristic curve, we have

d

dt
[ξ(x_(t), t)A1(t)]

= d

dt

[(
2

γ − 1
v−(γ−1)/2(x_(t), t) − u(x_(t), t)

)
A1(t)

]

=
(
−v−(γ+1)/2(vt − vxv

−(γ+1)/2) − ut + uxv
−(γ+1)/2

)
A1(t)

+
(

2

γ − 1
v−(γ−1)/2 − u

)
μA1(t)

(1 + t)λ

=
[
−v−(γ+1)/2ux + v−γ−1vx − v−γ−1vx + μu

(1 + t)λ
+ uxv

−(γ+1)/2
]

A1(t)

+
(

2

γ − 1
v−(γ−1)/2 − u

)
μA1(t)

(1 + t)λ

= 2

γ − 1
v−(γ−1)/2 μA1(t)

(1 + t)λ
.

Similarly,

d

dt

[
η(x+(t), t)A1(t)

]= 2

γ − 1
v−(γ−1)/2(x+(t), t)A1(t)

μ

(1 + t)λ
.

Define

h±(t) = 2

γ − 1
v−(γ−1)/2(x±(t), t) and h̄± = 2

γ − 1
v

−(γ−1)/2
± . (2.14)

Then
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ξ(x, t) = A−1
1 (t)ξ(x_(0),0) + A−1

1 (t)

t∫
0

h_(τ )A1(τ )
μ

(1 + τ)λ
dτ, (2.15)

η(x, t) = A−1
1 (t)η(x+(0),0) + A−1

1 (t)

t∫
0

h+(τ )A1(τ )
μ

(1 + τ)λ
dτ. (2.16)

Note that, at each point (x, t), we have two characteristic curves intersecting at (x, t), that is 
h−(t) = h+(t) for fixed t . Adding (2.15) to (2.16) and solving for h+(t), we get

h+(t) = 1

2
A−1

1 (t)[ξ(x_(0),0) + η(x+(0),0)]

+ 1

2
A−1

1 (t)

t∫
0

A1(τ )
μ

(1 + τ)λ

[
h−(τ ) + h+(τ )

]
dτ. (2.17)

It is easy to see that

h̄+ = A−1
1 (t)h̄+ + A−1

1 (t)[A1(t) − A1(0)]h̄+

= A−1
1 (t)h̄+ + A−1

1 (t)

t∫
0

d

dτ
A1(τ )dτ h̄+

= A−1
1 (t)h̄+ + A−1

1 (t)

t∫
0

A1(τ )
μ

(1 + τ)λ
h̄+dτ. (2.18)

Subtracting (2.18) from (2.17) yields

h+(t) − h̄+ = 1

2
A−1

1 (t)[h−(0) − h̄+ + h+(0) − h̄+ + u0(x+(0)) − u0(x−(0))]

+ 1

2
A−1

1 (t)

t∫
0

A1(τ )
μ

(1 + τ)λ

[
(h−(τ ) − h̄+) + (h+(τ ) − h̄+)

]
dτ. (2.19)

For any ε > 0 and fixed t , choose M = M(t) sufficiently large such that

|h−(0) − h̄+ + h+(0) − h̄+ + u0(x+(0)) − u0(x−(0))| < 2ε, (2.20)

as long as x−(t) > x+(t) > M . Denote

s(τ ) = max
x(τ)∈[x+(τ ),x−(τ )]

[h−(τ ) − h̄+] = max
x(τ)∈[x+(τ ),x−(τ )]

[h+(τ ) − h̄+], (2.21)

for 0 < τ ≤ t , where x±(τ ) are two characteristic curves intersecting at (x, t) and x(τ) is any 
characteristic curve between x+(τ ) and x−(τ ). From (2.19), we have
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s(t) ≤ εA−1
1 (t) + A−1

1 (t)

t∫
0

A1(τ )
μ

(1 + τ)λ
s(τ )dτ =: f1(t).

Since

f ′
1(t) = −A−1

1 (t)
μ

(1 + t)λ

⎡
⎣ε +

t∫
0

A1(τ )
μ

(1 + τ)λ
s(τ )dτ

⎤
⎦+ A−1

1 (t)A1(t)
μ

(1 + t)λ
s(t) ≤ 0,

we find

s(t) ≤ f1(t) ≤ f1(0) = ε, (2.22)

which implies that

∣∣∣∣ 2

γ − 1
v−(γ−1)/2(x±(t), t) − 2

γ − 1
v

−(γ−1)/2
+

∣∣∣∣< ε,

or lim
x→+∞v(x, t) = v+.

To prove that u(x, t) has limits as x → +∞, we subtract (2.15) from (2.16) to get

2u(x, t)A1(t) = η(x+(0),0) − ξ(x_(0),0)

+
t∫

0

A1(τ )
μ

(1 + τ)λ

[
h+(τ ) − h−(τ )

]
dτ,

or

u(x, t) = 1

2
A−1

1 (t)[η(x+(0),0) − ξ(x_(0),0)]

+ 1

2
A−1

1 (t)

t∫
0

A1(τ )
μ

(1 + τ)λ

[
h+(τ ) − h−(τ )

]
dτ,

which implies that lim
x→+∞u(x, t) = u+A−1

1 (t) for fixed t . Similarly, we can prove lim
x→−∞v(x, t)

= v− and lim
x→−∞u(x, t) = u−A−1

1 (t).

Note that it is easy to see from (2.21) and (2.22) that the above limits are uniform in t in the 
following sense: if, for any ε > 0 and any fixed t > 0, there is an M > 0, such that |v(x, t) −
v+| < ε whenever x > M , then |v(x, τ) − v+| < ε for x > M and τ ≤ t .

Finally, for any ε > 0, there are a < 0 and b > 0, such that∣∣∣ξ(x, t) − h̄+ + u+A−1
1 (t)

∣∣∣< ε and
∣∣∣η(x, t) − h̄+ − u+A−1

1 (t)

∣∣∣< ε,

whenever x ≥ b, 0 ≤ t ≤ T , and
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∣∣∣ξ(x, t) − h̄− + u−A−1
1 (t)

∣∣∣< ε and
∣∣∣η(x, t) − h̄− − u−A−1

1 (t)

∣∣∣< ε,

whenever x ≤ a, 0 ≤ t ≤ T . From Theorem 1.1, we obtain

max

(
max

a≤x≤b
|ξ(x, t)|, max

a≤x≤b
|η(x, t)|

)

≤ max

(
sup
x∈R

|ξ(x,0)|, sup
x∈R

|η(x,0)|, max
0≤t≤T

|ξ(b, t)|, max
0≤t≤T

|η(b, t)|,

max
0≤t≤T

|ξ(a, t)|, max
0≤t≤T

|η(a, t)|
)

≤ max

(
sup
x∈R

|ξ(x,0)|, sup
x∈R

|η(x,0)|, |h̄− − u−A−1
1 (t)| + ε, |h̄− + u−A−1

1 (t)| + ε,

|h̄+ − u+A−1
1 (t)| + ε, |h̄+ + u+A−1

1 (t)| + ε

)

≤ max

(
sup
x∈R

|ξ(x,0)| + ε, sup
x∈R

|η(x,0)| + ε

)
. (2.23)

Since ε is arbitrarily small, (2.23) is true for ε = 0. Then

4

γ − 1
v−(γ−1)/2 = ξ + η ≤ |ξ | + |η| and 2|u| = |η − ξ | ≤ |ξ | + |η|,

which implies that (2.12) is true. �
Lemma 2.2. Let (v, u) ∈ C1(R × [0, T ]) be the solutions to (1.2), and

ξ0(x), η0(x) ≥ ε0 > 0 for all x ∈ R. (2.24)

Then

0 < v ≤
[

2

(γ − 1)min [infx∈R ξ0(x), infx∈R η0(x)]

]2/(γ−1)

, (2.25)

for all t such that ux and vx are continuous on [0, T ].

Proof. By (2.11), for any ε ∈ (0, ε0/4), there are two numbers a and b such that

ξ(x, t), η(x, t) ≥ ε0 − ε,

for x < a or x > b and 0 ≤ t ≤ T . By (2.24) and the continuity of ξ(x, t), η(x, t), there is a 
t1 > 0, such that

ξ(x, t), η(x, t) ≥ ε0/2 for all (x, t) ∈ [a, b] × [0, t1].
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We first claim that ξ(x, t), η(x, t) ≥ ε0/2 on [a, b] for all t ≤ T . Suppose this is not true. Then 
there is a point (x0, t2) with x0 ∈ [a, b] and t2 ≥ t1, such that either ξ(x0, t2) < ε0/2 or η(x0, t2) <
ε0/2. It is easy to see that (2.4) and (2.5) are still true if n is replaced by −n, that is

d

dt

b∫
a

vβ

ξn
dx =

(
v−β

ξn
+ β

n − 1

vβ−1

ξn−1

)∣∣∣∣
b

a

− β(β − 1)

n − 1

b∫
a

vβ−2

ξn−1 vxdx − n

b∫
a

vβu

ξn+1

μ

(1 + t)λ
dx

and

d

dt

b∫
a

vβ

ηn
dx =

(
−v−β

ηn
− β

n − 1

vβ−1

ηn−1

)∣∣∣∣
b

a

+ β(β − 1)

n − 1

b∫
a

vβ−2

ηn−1 vxdx + n

b∫
a

vβu

ηn+1

μ

(1 + t)λ
dx

for t ≤ t2. Thus

d

dt

b∫
a

(
1

ξn
+ 1

ηn

)
vβdx =

[(
1

ξn
− 1

ηn

)
v−β + β

n − 1

(
1

ξn−1 − 1

ηn−1

)
vβ−1

] ∣∣∣∣
b

a

− β(β − 1)

n − 1

b∫
a

(
1

ξn−1 − 1

ηn−1

)
vβ−2vxdx

− n

b∫
a

(
1

ξn+1 − 1

ηn+1

)
vβu

μ

(1 + t)λ
dx.

Again

− n

b∫
a

(
1

ξn+1 − 1

ηn+1

)
vβu

μ

(1 + t)λ
dx

= −n

b∫
a

1∫
0

d

dr

1

[rξ + (1 − r)η]n+1 drvβu
μ

(1 + t)λ
dx

= −2n(n + 1)

b∫
a

1∫
0

1

[rξ + (1 − r)η]n+2 drvβu2 μ

(1 + t)λ
dx

≤ 0.

Then, similar to (2.8)–(2.10), we have

max

(
max

1
, max

1
)

≤ max

[
max

1
, max

1
,

a≤x≤b ξ a≤x≤b η a≤x≤b ξ(x,0) a≤x≤b η(x,0)
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max
0≤t≤t2

1

ξ(b, t)
, max

0≤t≤t2

1

η(b, t)
, max

0≤t≤t2

1

ξ(a, t)
, max

0≤t≤t2

1

η(a, t)

]

≤ 1

ε0 − ε
, (2.26)

which implies that ξ(x, t), η(x, t) ≥ ε0 − ε > ε0/2 for all x ∈ [a, b] and t ≤ t2. This is a contra-
diction. Since ε is arbitrarily small, (2.26) is true for ε = 0. Finally, similar to (2.23), we have

1

ξ(x, t)
,

1

η(x, t)
≤ max

[
max

a≤x≤b

1

ξ(x,0)
, max
a≤x≤b

1

η(x,0)

]
,

or

ξ(x, t), η(x, t) ≥ min

(
inf
x∈R

ξ(x,0), inf
x∈R

η(x,0)

)
,

which implies that

4

γ − 1
v−(γ−1)/2 = ξ + η ≥ 2 min

(
inf
x∈R

ξ0(x), inf
x∈R

η0(x)

)
.

Hence (2.25) is true. �
Proof of Theorem 1.2. Based on Lemma 2.1 and Lemma 2.2, we immediately obtain the uni-
form boundedness (1.14) and (1.15) for the solutions. The proof is complete. �

Now, we set up some useful identities along two characteristic curves, similar to those in [41]. 
From (1.3), let

w = −ξx = v−(γ+1)/2vx + ux and z = −ηx = v−(γ+1)/2vx − ux. (2.27)

For any β and σ > 0, denote

g1(t) = Aσ (t)w(x−(t), t)vβ(x−(t), t), g2(t) = Aσ (t)z(x+(t), t)vβ(x+(t), t), (2.28)

where Aσ (t) is defined by (1.5).

Lemma 2.3. If ux and vx are continuous on [0, T ] for some T > 0, then

d

dt
g1(t) = μ

(1 + t)λ
Aσ (t)[σv−(γ+1)/2vx + (σ − 1)ux]vβ

− Aσ (t)wvβ−1
[(

β + γ + 1

2

)
v−(γ+1)/2vx − βux

]
, (2.29)

and
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d

dt
g2(t) = μ

(1 + t)λ
Aσ (t)[σv−(γ+1)/2vx + (1 − σ)ux]vβ

+ Aσ (t)zvβ−1
[(

γ + 1

2
+ β

)
v−(γ+1)/2vx + βux

]
, (2.30)

for t ≤ T .

Proof. Taking derivatives of g1(t) along the minus characteristic curve, we have

d

dt
g1(t) = σμ

(1 + t)λ
Aσ (t)wvβ + Aσ (t)

[
v−(γ+1)/2(−v−(γ+1)/2vxx + vxt )

− γ + 1

2
v−(γ+3)/2vx

(
−v−(γ+1)/2vx + vt

)
− uxxv

−(γ+1)/2 + uxt

]
vβ

+ βAσ (t)wvβ−1(−v−(γ+1)/2vx + vt )

= σμ

(1 + t)λ
Aσ (t)wvβ + Aσ (t)

[
− v−γ−1vxx + v−(γ+1)/2uxx

− γ + 1

2
v−(γ+3)/2vx

(
−v−(γ+1)/2vx + ux

)
− uxxv

−(γ+1)/2 + v−γ−1vxx

− (γ + 1)v−γ−2v2
x − μ

(1 + t)λ
ux

]
vβ + βAσ (t)wvβ−1(−v−(γ+1)/2vx + ux)

= μ

(1 + t)λ
Aσ (t)[σv−(γ+1)/2vx + (σ − 1)ux]vβ

− γ + 1

2
Aσ (t)vβ−1−(γ+1)/2vxw + βAσ (t)wvβ−1(−vxv

−(γ+1)/2 + ux)

= μ

(1 + t)λ
Aσ (t)[σv−(γ+1)/2vx + (σ − 1)ux]vβ

− Aσ (t)wvβ−1
[(

γ + 1

2
+ β

)
v−(γ+1)/2vx − βux

]
. (2.31)

Expression (2.30) can be proved in the similar way. This completes the proof. �
Proof of Theorem 1.3. We prove it by contradiction. Suppose that ξ0x(x), η0x(x) < 0 for all 
x ∈ R, namely the initial Riemann invariants ξ0(x) and η0(x) are decreasing for x ∈ R, and 
suppose that there is a point (x3, t3) such that vx(x3, t3) < 0. We can find two characteristic 
curves x̂±(t) which intersect at (x3, t3). Let E be the set enclosed by the two characteristic curves 
and the line t = 0. We can find a point (x4, t4) ∈ E such that vx(x4, t4) = 0 and vx(x, t) > 0 for 
t < t4 in E. Let x±(t) denote the two characteristic curves which intersect at (x4, t4). Then vx > 0
along the two curves for t < t4. Using (2.29) with σ = 1 and β = 0, we get

g′
1(t) = μ

(1 + t)λ
A1(t)v

−(γ+1)/2vx − γ + 1

2
A1(t)v

−(γ+3)/2vxw

≥ − γ + 1
A1(t)v

−(γ+3)/2vxw

2
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≥ − Cg1(t) (2.32)

for some constant C > 0, which implies that g1(t) ≥ g1(0)e−Ct for 0 < t ≤ t4. Similarly, using 
(2.30) with σ = 1 and β = 0, we have

g′
2(t) = μ

(1 + t)λ
A1(t)v

−(γ+1)/2vx + γ + 1

2
A1(t)v

−(γ+3)/2vxz

≥ γ + 1

2
v−(γ+3)/2vxg2(t)

≥ 0, (2.33)

which implies that g2(t) ≥ g2(0) for 0 < t ≤ t4. Then,

A−1
1 (t)g1(t) + A−1

1 (t)g2(t) = 2v−(γ+1)/2vx ≥ [A−1
1 (t)g1(0)e−Ct + A−1

1 (t)g2(0)] > 0,

for t ≤ t4, which contradicts our assumption that vx(x4, t4) = 0. Hence, vx > 0 for (x, t) ∈ R ×
[0, T ]. �
3. Global solutions

After preparation in the last section, now we turn to prove global existence of solutions for 
(1.2) if either 0 < λ < 1 and μ > 0, or λ = 1 and μ > 2. As shown in the standard way of the 
textbook [25], we can first prove the local existence of the solutions to (1.2) as follows. The detail 
of proof is omitted.

Proposition 3.1 (Local existence). Suppose that the initial data satisfy (v0, u0) ∈ C1
b(R) and 

v0 > 0, then there exists a number t0 > 0 such that the solutions of (1.2) uniquely exist and 
satisfy

(v,u) ∈ C1
b(R × [0, t0]).

Next, we derive the a priori estimates for the local solutions of (1.2).

Proposition 3.2 (A priori estimates with monotonic initial data). Let (v, u) ∈ C1(R × [0, T ])
be the solutions of (1.2) for T > 0 and the initial Riemann invariants ξ0(x) and η0(x) both be 
decreasing (or increasing). When 0 < λ < 1 and μ > 0 and the initial data satisfy (1.16), or when 
λ = 1, μ > 2 and the initial data satisfy (1.17), then the solution v(x, t) of (1.2) is increasing (or 
decreasing) with respect to x, and (v, u)(x, t) satisfy the uniform boundedness (1.14) and (1.15), 
and the following decay rates

v−(γ+1)/2|vx | < δσ (1 + t)−λ min(v−, v+) and |ux | < 2δσ (1 + t)−λ min(v−, v+), (3.1)

which implies

sup
x∈R

(|vx(x, t)| + |ux(x, t)|) ≤ Cδσ (1 + t)−λ min(v−, v+).
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Proof. First of all, in Theorem 1.3 we have proved that v(x, t) is monotonic with respect to x. 
Next we are going to prove (3.1). We prove it by contradiction. Without loss of generality we 
assume v− < v+ and vx > 0. Suppose that there is a point (x5, t5) with 0 < t5 < T such that

vx(x5, t5)v
−(γ+1)/2(x5, t5) = δσ (1 + t5)

−λv−,

but the first inequality of (3.1) is true for t < t5, where δσ is defined in (1.9). We first assume 
λ < 1. Using (2.30) with β = 0, we have, on the characteristic curve x+(t),

d

dt
[Aσ (t)z(x+(t), t)] = μ

(1 + t)λ
Aσ (t)[σv−(γ+1)/2vx + (1 − σ)ux]

+ γ + 1

2
Aσ (t)zv−1vxv

−(γ+1)/2

= −
(

1

2
− σ

)
μ

(1 + t)λ
Aσ (t)z + μ

2(1 + t)λ
Aσ (t)[v−(γ+1)/2vx + ux]

+ γ + 1

2
Aσ (t)zv−1vxv

−(γ+1)/2

= − 1

(1 + t)λ
Aσ (t)z

[(
1

2
− σ

)
μ − γ + 1

2
(1 + t)λv−1vxv

−(γ+1)/2
]

+ μ

2(1 + t)λ
Aσ (t)[v−(γ+1)/2vx + ux], (3.2)

for t ≤ t5. By (2.33), g2(t) ≥ 0, which implies z(x+(t), t) ≥ 0 on the characteristic curve x+(t). 
According to our assumptions,

(
1

2
− σ

)
μ − γ + 1

2
(1 + t)λv−1vxv

−(γ+1)/2 ≥
(

1

2
− σ

)
μ − γ + 1

2
δσ = 0.

Then

d

dt
[Aσ (t)z(x+(t), t)] ≤ μ

2(1 + t)λ
Aσ (t)[v−(γ+1)/2vx + ux]. (3.3)

Since, along the characteristic curve x+(t),

v−(γ+1)/2vx + ux = d

dt
v(x+(t), t) = d

dt

[
v(x+(t), t) − v0(x+(0))

]
, (3.4)

we have,

z(x, t) ≤ A−1
σ (t)z(x+(0),0) + A−1

σ (t)

t∫
0

μAσ (τ)

2(1 + τ)λ

d

dτ

[
v(x+(τ ), τ ) − v0(x+(0))

]
dτ

= A−1
σ (t)z(x+(0),0) + μ

[
v(x+(t), t) − v0(x+(0))

]
λ
2(1 + t)
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− A−1
σ (t)

t∫
0

μAσ (τ)

2(1 + τ)λ

(
σμ

(1 + τ)λ
− λ

1 + τ

)[
v(x+(τ ), τ ) − v0(x+(0))

]
dτ, (3.5)

for t ≤ t5. Similarly, on the characteristic curve x−(t), we have, w > 0, and

d

dt
[Aσ (t)w(x−(t), t)] = μ

(1 + t)λ
Aσ (t)[σv−(γ+1)/2vx + (σ − 1)ux]

− γ + 1

2
Aσ (t)wv−1vxv

−(γ+1)/2

= −
(

1

2
− σ

)
μ

(1 + t)λ
Aσ (t)w + μ

2(1 + t)λ
Aσ (t)[v−(γ+1)/2vx − ux]

− γ + 1

2
Aσ (t)wv−1vxv

−(γ+1)/2

≤ μ

2(1 + t)λ
Aσ (t)[v−(γ+1)/2vx − ux]

= μ

2(1 + t)λ
Aσ (t)

d

dt
[v0(x−(0)) − v(x−(t), t)]. (3.6)

Solving for w yields

w(x, t) ≤ A−1
σ (t)w(x−(0),0) + μ

[
v0(x−(0)) − v(x−(t), t)

]
2(1 + t)λ

− A−1
σ (t)

t∫
0

μAσ (τ)

2(1 + τ)λ

(
σμ

(1 + τ)λ
− λ

1 + τ

)[
v0(x−(0)) − v(x−(τ ), τ )

]
dτ,

(3.7)

for t ≤ t5. Adding (3.5) to (3.7) and dividing the result by 2, we get (noting that v(x−(t), t) =
v(x+(t), t) at the intersection of two characteristic curves),

v−(γ+1)/2vx ≤ 1

2
A−1

σ (t)[z(x+(0),0) + w(x−(0),0)] + μ
[
v0(x−(0)) − v0(x+(0))

]
4(1 + t)λ

− A−1
σ (t)

t∫
0

μAσ (τ)

4(1 + τ)λ

(
σμ

(1 + τ)λ
− λ

1 + τ

)

× [
v(x+(τ ), τ ) − v0(x+(0)) + v0(x−(0)) − v(x−(τ ), τ )

]
dτ. (3.8)

Since v is monotone increasing, we find

v0(x−(0)) − v0(x+(0)) > 0 and v(x−(τ ), τ ) − v(x+(τ ), τ ) > 0.

The difference of two positive numbers must satisfy
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|(v0(x−(0)) − v0(x+(0))) − (v(x−(τ ), τ ) − v(x+(τ ), τ ))|
≤ max(v0(x−(0)) − v0(x+(0)), v(x−(τ ), τ ) − v(x+(τ ), τ ))

≤ v+ − v−.

Then, (3.8) can be estimated as

v−(γ+1)/2vx ≤ 1

2
A−1

σ (t)[z(x+(0),0) + w(x−(0),0)] + μ(v+ − v−)

4(1 + t)λ

+ A−1
σ (t)

t∫
0

μAσ (τ)

4(1 + τ)λ

∣∣∣∣ σμ

(1 + τ)λ
− λ

1 + τ

∣∣∣∣ (v+ − v−)dτ

≤ 1

(1 + t)λ
[cσ sup

x∈R

(|ξ0x(x)|, |η0x(x)|) + (μ/4 + dσ /2)(v+ − v−)]

<
δσ v−

(1 + t)λ
, (3.9)

for t ≤ t5, which is a contradiction. Furthermore, from (3.5) and (3.7),

|ux | ≤ 1

2
(|w| + |z|)

≤ 1

2
A−1

σ (t)[z(x+(0),0) + w(x−(0),0)]

+ μ
[|v0(x−(0)) − v(x−(t), t)| + |v(x+(t), t) − v0(x+(0))|]

4(1 + t)λ

+ A−1
σ (t)

t∫
0

μAσ (τ)

4(1 + τ)λ

∣∣∣∣ σμ

(1 + τ)λ
− λ

1 + τ

∣∣∣∣
× [|v0(x+(0)) − v(x+(τ ), τ )| + |v(x−(τ ), τ ) − v0(x−(0))|]dτ

≤ 1

(1 + t)λ
[cσ sup

x∈R

(|ξ0x(x)|, |η0x(x)|) + 2(μ/4 + dσ /2)(v+ − v−)]

<
2δσ v−
(1 + t)λ

.

Hence (3.1) is true for all t > 0.
If λ = 1 and μ > 2, choose σ = 1/μ. Then Aσ (t) = (1 + t) and

v−(γ+1)/2vx ≤ 1

2(1 + t)
|z(x+(0),0) + w(x−(0),0)| + μ(v+ − v−)

4(1 + t)
<

δσ v−
(1 + t)

.

So (3.1) is still true. �



S. Chen et al. / J. Differential Equations 268 (2020) 5035–5077 5059
Proof of Theorem 1.4. Based on the local existence of the solutions in Proposition 3.1 and the 
a priori estimates in Proposition 3.2, by the continuity extension argument, we can prove the 
global existence of the solutions for (1.2). The details are omitted. �
Proof of Theorem 1.5. We also prove it by contradiction. We first assume λ < 1. Suppose that 
there is a point (x6, t6) with 0 < t6 < T such that either

|ξx(x6, t6)|v−1(x6, t6) = δ1(1 + t6)
−λ or |ηx(x6, t6)|v−1(x6, t6) = δ1(1 + t6)

−λ,

or both, but

sup
x∈R

[|ξx |v−1] < δ1(1 + t)−λ or sup
x∈R

[|ηx |v−1] < δ1(1 + t)−λ, (3.10)

is true for t < t6, where δ1 = 1/[c(γ + 1)]. By (1.19), Theorem 1.1 and Theorem 1.2, we get 
v+ ≤ v(x, t) < v−. Using (2.29) with β = −1, σ = 1/2 and A1/2(t) := A(t), we have, on the 
characteristic curve x−(t),

d

dt
[A(t)w(x−(t), t)v−1(x−(t), t)] = μ

2(1 + t)λ
A(t)[v−(γ+1)/2vx − ux]v−1

− A(t)wv−2
(

γ − 1

2
vxv

−(γ+1)/2 + ux

)
. (3.11)

Since, along the characteristic curve x−(t),

(v−(γ+1)/2vx − ux)v
−1 = − d

dt
ln(v(x−(t), t)) = d

dt

[
ln(v0(x−(0))) − ln(v(x−(t), t))

]
, (3.12)

we have,

w(x, t)v−1 = A−1(t)w(x−(0),0)v−1
0 (x−(0)) + μ

[
ln(v0(x+(0))) − ln(v)

]
2(1 + t)λ

− A−1(t)

t∫
0

μA(τ)

2(1 + τ)λ

(
μ

2(1 + τ)λ
− λ

1 + τ

)[
ln(v0(x+(0))) − ln(v)

]
dτ

− A−1(t)

t∫
0

A(τ)wv−2
(

γ − 1

2
vxv

−(γ+1)/2 + ux

)
dτ, (3.13)

for t ≤ t6. Note that, from Mean-value Theorem,

| ln(v0(x−(0))) − ln(v)| = |v0(x−(0)) − v|
v∗ ≤ |v− − v+|

v+

where v∗ is located between v0(x−(0)) and v. Also note that

|vx |v−(γ+1)/2−1 = |w + z|v−1/2 ≤ δ1(1 + t)−λ, |ux |v−1 = |w − z|v−1/2 ≤ δ1(1 + t)−λ.
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By definitions of c1/2, d1/2, c in (1.6)–(1.8), we get

|w(x, t)|v−1 ≤ c1/2

(1 + t)λ

|w(x−(0),0)|
v0(x−(0))

+ μ

2(1 + t)λ

v− − v+
v+

+ d1/2

(1 + t)λ

v− − v+
v+

+ (γ + 1)c

2(1 + t)λ
δ2

1

≤
[
c1/2

|w(x−(0),0)|
v0(x−(0))

+
(μ

2
+ d1/2

) v− − v+
v+

+ δ1

2

]
(1 + t)−λ

< δ1(1 + t)−λ, (3.14)

for t ≤ t6. Similarly, we can obtain |z(x, t)|v−1 < δ1(1 + t)−λ, which is a contradiction with 
(3.10). Hence |w|v−1, |z|v−1 < δ1(1 + t)−λ for all t > 0.

If λ = 1 and μ > 2, then A(t) = (1 + t)μ/2, c1/2 = 1, d1/2 = μ/2, c = 1/(μ − 2). Similar to 
(3.14), we can obtain the result. �
Remark 3.3. In the proof of Theorem 1.5, we let β = −1 in order to obtain the term 
supx∈R[|ξ0x(x)|v−1

0 (x)]. If we let β = 0, we would get a larger term supx∈R |ξ0x(x)| infx∈R v−1
0 (x)

but we need to introduce the constant c and use a larger number (μ/2 + d1/2)(v− − v+)/v+
compared with the conditions in Theorem 1.4. We can choose β = −1 in the proof of 
Theorem 1.4 with a better term supx∈R[|ξ0x(x)|v−1

0 (x)] but require to double the number 
(μ + 2d1/2)(v− − v+)/(4v+) and to calculate the number c.

Proof of Theorem 1.6. Suppose that there is a t7 > 0 such that

|w(x, t)| ≤ δ2(1 + t)−λ and |z(x, t)| ≤ δ2(1 + t)−λ, (3.15)

for 0 < t ≤ t7, where δ2 = vb2/[c(γ + 1)]. By (1.22), we have

inf
x∈R

{ξ0, η0} ≥ inf
x∈R

(
2

γ − 1
v

−(γ−1)/2
0 − ε

γ − 1
v

−(γ−1)/2
0

)

= 2 − ε

γ − 1
inf
x∈R

v
−(γ−1)/2
0 = 2 − ε

γ − 1
v−(γ−1)/2,

sup
x∈R

{ξ0, η0} ≤ sup
x∈R

(
2

γ − 1
v

−(γ−1)/2
0 + ε

γ − 1
v

−(γ−1)/2
0

)

= 2 + ε

γ − 1
sup
x∈R

v
−(γ−1)/2
0 = 2 + ε

γ − 1
v−(γ−1)/2.

The first inequality implies that (1.13) holds. Then by (1.14), we get

(
2

2 + ε

)2/(γ−1)

inf
x∈R

v0(x) ≤ v(x, t) ≤
(

2

2 − ε

)2/(γ−1)

sup
x∈R

v0(x),

and
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|v0(x−(0)) − v(x−(t), t)| ≤ sup
x∈R

v(x, t) − inf
x∈R

v0(x)

≤
(

2

2 − ε

)2/(γ−1)

(v − v) +
[(

2

2 − ε

)2/(γ−1)

− 1

]
inf
x∈R

v0(x)

≤ b1(v − v) + 2ε

γ − 1
v. (3.16)

Using (2.29) with β = 0, σ = 1/2 and A1/2(t) := A(t), we have, on the characteristic curve 
x−(t),

d

dt
[A(t)w(x−(t), t)] = μ

2(1 + t)λ
A(t)[v−(γ+1)/2vx − ux] − γ + 1

2
A(t)wv−1vxv

−(γ+1)/2

= − μ

2(1 + t)λ
A(t)

d

dt
[v(x−(t), t) − v0(x−(0))]

− γ + 1

2
A(t)wv−1vxv

−(γ+1)/2.

Solving for w yields

|w(x, t)| ≤ A−1(t)|w(x−(0),0)| + μ|v − v0(x−(0))|
2(1 + t)λ

+ A−1(t)

t∫
0

μA(τ)

2(1 + τ)λ

∣∣∣∣ μ

2(1 + τ)λ
− λ

1 + τ

∣∣∣∣ |v − v0(x−(0))|dτ

+ γ + 1

2
A−1(t)

t∫
0

A(τ)|w|v−1|vx |v−(γ+1)/2dτ

≤ c1/2

(1 + t)λ
|w(x−(0),0)| +

(μ

2
+ d1/2

)(
b1(v − v) + 2ε

γ − 1
v

)
1

(1 + t)λ

+ (γ + 1)c

2(1 + t)λ
v−1b−1

2 δ2
2

≤
[
c1/2 sup

x∈R

|w(x,0)| +
(μ

2
+ d1/2

)(
b1(v − v) + 2ε

γ − 1
v

)
+ δ2

2

]
1

(1 + t)λ

<
δ2

(1 + t)λ
.

Similarly, we can obtain |z(x, t)| < δ2(1 + t)−λ. Hence, (3.15) won’t become equal at any point 
and the solution is global. �
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4. Blow-up solutions

In this section, we show that the derivative blow-up occurs in finite time with solutions them-
selves bounded if the derivatives of initial data are sufficiently large at a point. We obtain the same 
result even for some initial data with small derivatives if either λ > 1 or λ = 1 and 0 < μ ≤ 1.

We first prove that, for all cases of λ > 0 and μ > 0, including the case of 0 < λ < 1 and 
μ > 0 mentioned in the last section for global existence of the solutions, once the derivatives of 
the initial data are sufficiently large at a point x0, then the derivatives of the solutions for (1.2)
still blow up as follows.

Proof of Theorem 1.7. If ξ0(x) and η0(x) both be monotone, then by Theorem 1.3, we have 
min{v+, v−} ≤ v(x, t) ≤ max{v+, v−}. Suppose z(x0, 0) is sufficiently large, using (2.30) with 
σ = 1/2, β = −(γ + 1)/4 and Aσ (t) = A1/2(t) := A(t), we have, on the characteristic curve 
x+(t),

d

dt
g2(t) = μ

2(1 + t)λ
A(t)[v−(γ+1)/2vx + ux]vβ + γ + 1

4
A(t)zvβ−1

(
v−(γ+1)/2vx − ux

)

= μ

2(1 + t)λ
A(t)[v−(γ+1)/2vx + ux]vβ + γ + 1

4
A−1(t)v(γ−3)/4g2

2(t). (4.1)

Since, along the characteristic curve x+(t),

(v−(γ+1)/2vx +ux)v
−(γ+1)/4 = d

dt
θ [v(x+(t), t)], where θ(v) =

{
4

3−γ
v(3−γ )/4, if γ �= 3,

lnv, if γ = 3,

we find

g2(t) = g2(0) + μ

2(1 + t)λ
A(t)θ(v) − μ

2
θ [v0(x+(0))]

− 1

2

t∫
0

μA(τ)

(1 + τ)λ

[
μ

2(1 + τ)λ
− λ

1 + τ

]
θ(v)dτ + γ + 1

4

t∫
0

A−1(τ )v(γ−3)/4g2
2(τ )dτ,

where x+(0) = x0. If 0 < λ ≤ 1, we can find positive constants c1, c2, c3, c4 such that

A(t) ≤ c1e
c2t and A−1(t) ≥ c3e

−c4t .

Denote

c5 = µc1e
c2 max θ(v)/2 + μmax θ(v0)/2 + d1/2 max θ(v) and

c6 = γ + 1

4
c3 minv(γ−3)/4e−c4 .

Then, for t ≤ 1, we have
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g2(t) ≥ g2(0) − c5 + c6

t∫
0

g2
2(τ )dτ. (4.2)

We will show that (4.2) blows up before t = 1 if g2(0) is sufficiently large. In fact, consider the 
integral equation

q(t) = 1/c6 + c6

t∫
0

q2(τ )dτ,

which is equivalent to

q ′(t) = c6q
2(t), q(0) = 1/c6.

The solution satisfies

c6 − 1

q(t)
= c6t,

which will blow up for t ≤ 1. Now, if we choose g2(0) = 1/c6 + c5 + 1, then

g2(t) − q(t) ≥ 1 + c6

t∫
0

[g2(τ ) − q(τ)][g2(τ ) + q(τ)]dτ,

which implies that g2(t) > q(t). Hence, g2(t) will also blow up for t ≤ 1. If λ > 1, then both 
A(t) and A−1(t) are bounded and (4.2) holds for all t > 0. Choosing g2(0) > c5, we find g2(t)

must blow up in finite time. Similarly, if −w(x0, 0) is sufficiently large, we can prove that −g1(t)

will blow up for t ≤ 1. �
Next we prove Theorem 1.8, namely, for λ > 1, μ > 0 or λ = 1, 0 < μ ≤ 1, vx(x, t) will blow 

up at finite time for all initial data including the ones with small derivatives, if ξ0x(x) and η0x(x)

are monotonic.

Proof of Theorem 1.8. Let ξ0x(x) < 0 and η0x(x) < 0, then by Theorem 1.3, v(x, t) is increas-
ing for all x, namely, vx ≥ 0. Using (2.30) with σ = 1 and β = −(γ + 1)/4, we have on the 
characteristic curve x+(t),

d

dt
g2(t) = μ

(1 + t)λ
A1(t)vxv

β−(γ+1)/2 + γ + 1

4
A1(t)v

β−1z2

≥ γ + 1

4
A−1

1 (t)v(γ−3)/4g2
2(t). (4.3)

If λ > 1, then

γ + 1
A−1

1 (t)v(γ−3)/4 ≥ γ + 1
exp(−μ/(λ − 1))min

(
v

(γ−3)/4
− , v

(γ−3)/4
+

)
=: c7,
4 4
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and

d

dt
g2(t) ≥ c7g

2
2(t).

Hence, g2(t) must blow up in finite time. If λ = 1 and 0 < μ ≤ 1, then

γ + 1

4
A−1

1 (t)v(γ−3)/4 = γ + 1

4
(1 + t)−μv(γ−3)/4

≥ γ + 1

4
(1 + t)−μ min

(
v

(γ−3)/4
− , v

(γ−3)/4
+

)
=: c8(1 + t)−μ,

and

d

dt
g2(t) ≥ c8(1 + t)−μg2

2(t). (4.4)

Solving (4.4) yields

1

g2(0)
− 1

g2(t)
≥
⎧⎨
⎩

c8

1 − μ

[
(1 + t)1−μ − 1

]
, if 0 ≤ μ < 1,

c8 ln(1 + t), if μ = 1,

which implies that g2(t) still blows up in finite time. Similarly, if ξ0x(x) > 0 and η0x(x) > 0 for 
all x, from Theorem 1.3, then vx ≤ 0. Using (2.29) with σ = 1 and β = −(γ + 1)/4, we have on 
the characteristic curve x−(t),

d

dt
[−g1(t)] = − μ

(1 + t)λ
A1(t)v

β−(γ+1)/2vx + γ + 1

4
A1(t)v

β−1w2

≥ γ + 1

4
A−1

1 (t)v(γ−3)/4g2
1(t),

which means g1(t) also blow up in finite time. �
5. Time and space dependent damping

For general α(x, t), we can obtain similar results except Theorems 1.5 and 1.8 because we 
cannot prove monotonicity for v if the initial data are monotonic. We first show that (v, u) →
(v±, u±) as x → ±∞.

Lemma 5.1. Let (v, u) ∈ C1(R × [0, T ]) be the solutions to (1.1) and lim
x→±∞α(x, t) = α±(t). 

Then

lim
x→±∞v(x, t) = v± and lim

x→±∞u(x, t) = u±B̄−1± (t), (5.1)

and (2.12) holds, where B̄±(t) = exp
(∫ t

α±(τ )dτ
)

.
0
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Proof. Denote

B±(t) = exp

⎛
⎝ t∫

0

α(x±(τ ), τ )dτ

⎞
⎠ . (5.2)

Taking derivatives of ξ(x, t)B−(t) along the minus characteristic curve, we have

d

dt
[ξ(x_(t), t)B−(t)]

= d

dt

[(
2

γ − 1
v−(γ−1)/2(x_(t), t) − u(x_(t), t)

)
B−(t)

]

=
(
−v−(γ+1)/2(vt − vxv

−(γ+1)/2) − ut + uxv
−(γ+1)/2

)
B−(t)

+
(

2

γ − 1
v−(γ−1)/2 − u

)
B−(t)α(x−(t), t)

=
[
−v−(γ+1)/2ux + v−γ−1vx − v−γ−1vx + α(x−(t), t)u + uxv

−(γ+1)/2
]
B−(t)

+
(

2

γ − 1
v−(γ−1)/2 − u

)
B−(t)α(x−(t), t)

= 2

γ − 1
v−(γ−1)/2B−(t)α(x−(t), t).

Similarly,

d

dt

[
η(x+(t), t)B+(t)

]= 2

γ − 1
u−(γ−1)/2(x+(t), t)B+(t)α(x+(t), t).

Then

ξ(x, t) = B−1− (t)ξ(x_(0),0) + B−1− (t)

t∫
0

h_(τ )B−(τ )α(x_(τ ), τ )dτ, (5.3)

η(x, t) = B−1+ (t)η(x+(0),0) + B−1+ (t)

t∫
0

h+(τ )B+(τ )α(x+(τ ), τ )dτ. (5.4)

Define h±(t) and h̄± as in (2.14). Adding (5.3) to (5.4) and solving for h+(t), we derive

h+(t) = 1

2

[
B−1− (t)ξ(x_(0),0) + B−1+ (t)η(x+(0),0)

+ B−1− (t)

t∫
0

B−(τ )α(x_(τ ), τ )h−(τ )dτ + B−1+ (t)

t∫
0

B+(τ )α(x+(τ ), τ )h+(τ )dτ

⎤
⎦ .

(5.5)
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We rewrite (2.18) as

h̄+ = 1

2

[
B−1− (t)h̄+ + B−1+ (t)h̄+

]
+ 1

2
B−1− (t)

t∫
0

B−(τ )α(x−(τ ), τ )h̄+dτ

+ 1

2
B−1+ (t)

t∫
0

B+(τ )α(x+(τ ), τ )h̄+dτ. (5.6)

Subtracting (5.6) from (5.5) yields

h+(t) − h̄+ = 1

2

{
B−1− (t)[h−(0) − h̄+] + B−1+ (t)[h+(0) − h̄+]

+ B−1+ (t)u0(x+(0)) − B−1− (t)u0(x−(0))
}

+ 1

2
B−1− (t)

t∫
0

B−(τ )α(x−(τ ), τ )(h−(τ ) − h̄+)dτ

+ 1

2
B−1+ (t)

t∫
0

B+(τ )α(x+(τ ), τ )(h+(τ ) − h̄+)dτ. (5.7)

Note that

B−1+ (t)

t∫
0

B+(τ )α(x+(τ ), τ )(h+(τ ) − h̄+)dτ

= B−1− (t)

t∫
0

B−(τ )α(x−(τ ), τ )

[
B−1+ (t)B+(τ )α(x+(τ ), τ )

B−1− (t)B−(τ )α(x−(τ ), τ )
− 1

]
(h+(τ ) − h̄+)dτ

+ B−1− (t)

t∫
0

B−(τ )α(x−(τ ), τ )(h+(τ ) − h̄+)dτ, (5.8)

and

|B−1+ (t)u0(x+(0)) − B−1− (t)u0(x−(0))| ≤ B−1− (t)
[
B−1+ (t)B−(t) − 1

]
u0(x+(0))

+ B−1− (t)[u0(x+(0)) − u0(x−(0))]. (5.9)

For any ε > 0 and fixed t , we can choose M = M(t) sufficiently large such that

|h−(0) − h̄+| ≤ ε, |h+(0) − h̄+| ≤ ε, |u0(x+(0)) − u0(x−(0))| ≤ ε,
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|B−1+ (t)B−(t) − 1| =
∣∣∣∣∣∣exp

⎡
⎣ t∫

0

(α(x−(τ, τ ) − α(x+(τ ), τ ))dτ

⎤
⎦− 1

∣∣∣∣∣∣≤ ε,

and

∣∣∣∣∣B
−1+ (t)B+(τ )α(x+(τ ), τ )

B−1− (t)B−(τ )α(x−(τ ), τ )
− 1

∣∣∣∣∣≤ (1 + t)−2,

as long as x−(t) > x+(t) > M(t). Define s(τ ) as in (2.21). Combining (5.7) - (5.9), we have

s(t) ≤ ε(3 + v+ + |u+|)B−1− (t) + B−1− (t)

t∫
0

B−(τ )α(x−(τ ), τ )s(τ )dτ

+ B−1− (t)

t∫
0

B−(τ )α(x−(τ ), τ )s(τ )(1 + τ)−2dτ

=: f2(t),

where we have used the fact that |u0(x)| ≤ |u+| + 1 for x > M(t). Since

f ′
2(t) = − B−1− (t)α(x−(t), t)

⎡
⎣(3 + v+ + |u+|)ε +

t∫
0

B−(τ )α(x−(τ ), τ )s(τ )dτ

+
t∫

0

B−(τ )α(x−(τ ), τ )s(τ )(1 + τ)−2dτ

⎤
⎦

+ α(x−(t), t)s(t) + α(x−(t), t)s(t)(1 + t)−2

≤ c9f2(t)(1 + t)−2,

we find

s(t) ≤ f2(t) ≤ f2(0)ec9 = ε(3 + v+ + |u+|)ec9 ,

where c9 = sup(x,t) α(x−(t), t), which implies that lim
x→+∞v(x, t) = v+. The rest of the proof is 

similar to that in Lemma 2.1. �
Now, we present two global existence results and a blow-up result. We assume that

μ ≤ α(x, t)(1 + t)λ ≤ d1, (|at (x, t)| + |ax(x, t)|)(1 + t)2λ ≤ d2, (5.10)

where μ, λ, d1, d2 are positive constants and λ > 0. Define
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A±(t) := exp

⎛
⎝1

2

t∫
0

α(x±(τ ), τ )dτ

⎞
⎠ ,

c10 := sup
t

A−1± (t)(1 + t)λ,

c11 := sup
t

A−1± (t)(1 + t)λ

t∫
0

A±(τ )

(1 + τ)2λ
dτ. (5.11)

Theorem 5.2. Assume that λ < 1, v− > v+, u− = u+ = 0 and

2

γ − 1
v

−(γ−1)/2
− ≤ inf

x∈R
(ξ0, η0)(x) < sup

x∈R

(ξ0, η0)(x) ≤ 2

γ − 1
v

−(γ−1)/2
+ . (5.12)

If

c10 sup
x∈R

(|ξ0x(x)|, |η0x(x)|) + [d1/2 + c11(d
2
1 + d2)](v− − v+) + 2c11d2v

−(γ+1)/2
+

γ − 1

<
v+

2c11(γ + 1)
, (5.13)

then (1.1) has a unique pair of global solutions (v, u)(x, t) satisfying the decay estimate (1.18).

Proof. It is easy to see that Theorem 1.3 still holds if μ(1 + t)−λ is replaced by α(x, t). But 
(3.11) becomes

d

dt
[A−(t)w(x−(t), t)] = 1

2
α(x−(t), t)A−(t)[v−(γ+1)/2vx − ux] − A−(t)αx(x−(t), t)u

− γ + 1

2
A−(t)wv−1v−(γ+1)/2vx.

Solving for w yields

w(x, t) = A−1− (t)w(x−(0),0) + 1

2
A−1− (t)

t∫
0

α(x−(τ ), τ )A−(τ )
d

dt

[
v0(x−(0)) − v(x−(τ ), τ )

]
dτ

− A−1− (t)

t∫
0

A−(τ )αx(x−(τ ), τ )udτ − γ + 1

2
A−1− (t)

t∫
0

A−(τ )wv−1v−(γ+1)/2vxdτ

= A−1− (t)w(x−(0),0) + α(x−(t), t)[v0(x−(0)) − v]
2

− 1

2
A−1− (t)

t∫
A−(τ )

[
1

2
α2(x−(τ ), τ ) − αx(x−(τ ), τ )v−(γ+1)/2 + αt (x−(τ ), τ )

]

0
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× [v0(x−(0)) − v]dτ − A−1− (t)

t∫
0

αx(x−(τ ), τ )A−(τ )udτ

− γ + 1

2
A−1− (t)

t∫
0

A−(τ )wv−1v−(γ+1)/2vxdτ.

Suppose that there is a t8 > 0 such that

|w(x, t)| ≤ δ3(1 + t)−λ and |z(x, t)| ≤ δ3(1 + t)−λ, (5.14)

for 0 < t ≤ t8, where δ3 = v+/[c11(γ + 1)]. By Theorem 1.1 and (5.12), we have

|u| ≤ 2

γ − 1
v

−(γ−1)/2
+ .

Then, using (5.13) and notations defined in (5.11), we find

|w(x, t)| ≤ c10

(1 + t)λ
|w(x−(0),0)| + d1

2(1 + t)λ
(v− − v+)

+ c11(d
2
1 + d2)

(1 + t)λ
(v− − v+) + c11d2

(1 + t)λ

2

γ − 1
v

−(γ−1)/2
+ + c11(γ + 1)

2(1 + t)λ
v−1+ δ2

3

<
v+

2c11(γ + 1)(1 + t)λ
+ δ3

2(1 + t)λ

= δ3(1 + t)−λ, (5.15)

for t ≤ t8. Similarly, we can obtain |z(x, t)| < δ3(1 + t)−λ. Hence, (3.15) won’t become equal at 
any point and the solution is global. �
Theorem 5.3. Define v, v, b1 and b2 as in Theorem 1.6, and let the initial data satisfy the follow-
ing conditions:

(i) For some small ε > 0, (γ − 1)|u0(x)|v0(x)(γ−1)/2 ≤ ε.

(ii) c10 supx∈R{|ξ0x |, |η0x |} + d3b1(v − v) <
[

b2

2c11(γ + 1)
− d3

2ε

γ − 1

]
· v, where d3 = d1/2 +

c11(d
2
1 + d2).

If 0 < λ < 1, then (1.1) has a unique pair of solutions globally-in-time, whose derivatives satisfy 
the decay rate (1 + t)−λ.

Proof. Suppose that there is a t9 > 0 such that

|w(x, t)| ≤ δ4(1 + t)−λ and |z(x, t)| ≤ δ4(1 + t)−λ, (5.16)
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for 0 < t ≤ t9, where δ4 = b2v/[c11(γ + 1)]. It is easy to see that (3.16) is still true. From the 
first inequality of (5.15), we have

|w(x, t)| ≤ c10

(1 + t)λ
|w(x−(0),0)| + d1

2(1 + t)λ

[
b1(v − v) + 2ε

γ − 1
v

]

+ c11(d
2
1 + d2)

(1 + t)λ

[
b1(v − v) + 2ε

γ − 1
v

]

+ c11d2

(1 + t)λ

2

γ − 1
v−(γ−1)/2 + c11(γ + 1)

2(1 + t)λ
b−1

2 v−1δ2
4

≤
[
c10 sup

x∈R

|w(x,0)| + [d1/2 + c11(d
2
1 + d2)]

(
b1(v − v) + 2ε

γ − 1
v

)
+ δ4

2

]
(1 + t)−λ

< δ4(1 + t)−λ.

Similarly, we can obtain |z(x, t)| < δ4(1 + t)−λ. Hence, (5.16) won’t become equal at any point 
and the solution is global. �
Theorem 5.4. Suppose that λ > 0 and (1.13) is satisfied. If either ηx(x0, 0) � −1 or ξx(x0, 0) �
1 at some point x0, then, there exists a finite time t∗ > 0 such that limt↑t−∗ ‖(vx, ux)(t)‖L∞(R) =
+∞.

Proof. The proof is similar to that of Theorem 1.7. �
Remark 5.5. It is easy to see that the following functions satisfy Condition (5.10):

α(x, t) = 1

(1 + t)λ

(
1 + β(x)

(1 + t)λ

)
or α(x, t) =

[
exp

(
β(x)

1 + t

)
− 1

]λ

,

where β(x) ≥ 0.2, β(x) and β ′(x) are bounded.

6. Numerical simulations

In this section, we present numerical simulations to confirm our theoretical results and demon-
strate the arising of blow-up solution at a point. To obtain a stable numerical solution, we 
differentiate (1.2)1 with respect to t , and submit it to (1.2)2, then we reduce the system (1.2)
to a second-order wave equation with time-vanishing-damping:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vtt = (v−γ−1vx)x − μ

(1 + t)λ
vt ,

v(x,0) = v0(x),

vt (x,0) = u′
0(x).

(6.1)

Here, we take the initial data as v0(x) = 3 + a1 arctan(a2x) and u0(x) = a3 + a4 exp(−0.5x2), 
with the parameters a1, a2, a3, a4 to be specified later in different cases. The computational do-
main is [−50, 50] with Neumann boundary conditions and 100001 uniform mesh points. We use 
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Fig. 1. Global solution for λ = 0.5, γ = 2,μ = 2 with a monotonic initial data v0(x) and a small u0x(x).

the explicit central difference scheme in x and implicit central difference scheme in t to numer-
ically study the following five examples. Note that the solution of (6.1) is independent of a3

because vt (x, 0) only depends on u′
0(x),

Example 1. Let λ = 0.5, μ = 2, γ = 2, a1 = 1/π, a2 = 1, a3 = 2 and a4 = 0.02. Then the initial 
Riemann data are bounded, monotonically increasing, and their derivatives are not big. From 
Theorem 1.4 we expect that the solutions of (1.2) globally exist, and v(x, t) is increasing in 
x. This is confirmed numerically in Fig. 1. Interestingly, in this example, we observe that, the 
derivative of the initial data v0x(x) is still steep near x = 0, but vx(x, t) goes more and more flat 
as time t increases, no blow-up for vx occurs. We also observe that u has decay rate a3 exp(4 −
4
√

1 + t) for large |x| as shown in (2.11).



5072 S. Chen et al. / J. Differential Equations 268 (2020) 5035–5077
Fig. 2. Global solution for λ = 0.5, γ = 2,μ = 2 with a non-monotonic initial data v0(x) and small u0(x), u0x(x).

Example 2. On the other hand, we choose non-monotonic initial data for v0(x):

v0(x) = 20 + 0.2e0.1x2 +

⎧⎪⎪⎨
⎪⎪⎩

1 if x < −0.5,

0.5(1 + cos(πx + 0.5π)) if − 0.5 ≤ x ≤ 0.5,

0 if x > 0.5,

and keep the same form for u0(x) = a3 + a4 exp(−0.5x2), with λ = 0.5, μ = 2, γ = 2, a3 =
0, a4 = 0.0001. Then all conditions in Theorem 1.6 are satisfied. So the behaviors of the solution 
are similar to those in Example 1 (see Fig. 2).
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Fig. 3. Blow-up solution for λ = 0.5, γ = 2,μ = 2 with a monotonic initial data v0(x) but large v0x(x) and u0x(x).

Example 3. Let λ = 0.5, μ = 2, γ = 2, a1 = −1, a2 = 30, a3 = 2, a4 = 0.004. In this case, the 
initial data v0(x) is decreasing, but the derivative of the initial data v0x(x) is big, then, from The-
orem 1.7, the solutions of (1.2) (v, u)(x, t) are still bounded, but their derivatives (vx, ux)(x, t)
will blow up at a finite time. As showed in Fig. 3, we see that v(x, t) and u0x(x) both are bounded, 
where v(x, t) is monotonic deceasing in x, and u(x, t) is non-monotonic, but both vx(x, t) and 
ux(x, t) blow up near x = −0.1 as time t goes up approximately to t ≈ 0.67.

Example 4. Let λ = 1.5 > 1, μ = 2, γ = 3, a1 = 1, a2 = 1, a3 = 0, a4 = 0.03. In this case, from 
Theorem 1.8, the derivatives of the solutions will blow up for all initial data including those small 
data, once ξ0(x) and η0(x) are monotonic. As showed in Fig. 4, the solution vx(x, t) blows up 
at t ≈ 19.7. Note that the initial Riemann invariants ξ0(x) and η0(x) both are increasing, in fact, 
0 < v

−(γ+1)/2
v0x ± u0x < 0.12.
0
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Fig. 4. Blow-up solution for λ = 1.5, γ = 3,μ = 2 with initial data v0(x) monotone and u0x(x) small.

Example 5. We test the critical case with λ = 1, and take the other parameters as μ = 0.8, γ =
2, a1 = 1, a2 = 0.1, a3 = 0, a4 = 0.003. The initial Riemann invariants ξ0(x) and η0(x) both are 
increasing, verified by 0 < v

−(γ+1)/2
0 v0x ± u0x < 0.014. From Theorem 1.8, the derivatives of 

the solutions are still expected to blow up. In fact, as showed in Fig. 5, vx(x, t) blows up at 
t ≈ 310.
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