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Degond and Markowich discussed the existence and uniqueness of a steady-state
solution in the subsonic case for the one-dimensional hydrodynamic model of
semiconductors. In the present paper, we reconsider the existence and uniqueness of a
globally smooth subsonic steady-state solution, and prove its stability for small
perturbation. The proof method we adopt in this paper is based on elementary
energy estimates.

1. Introduction

Since its introduction by Blgtekjaer [2], the hydrodynamic model for semiconductors
has recently attracted a lot of attention because of its ability to model hot electron
effects that are not accounted for in the classical drift-diffusion model. For more
discussion on these models in physics and engineering, and their derivation from
kinetic transport equation, we refer to [17,23,26-29,31] for details.

Recently, many papers were written on the hydrodynamic model of semiconduc-
tors. For the steady-state system, Degond and Markowich [5,6] investigated the
existence and uniqueness of subsonic solutions in one dimension and, for irrational
flow, in three dimensions (see also [32]), respectively; Markowich [24] discussed the
existence of subsonic solutions in two dimensions. The corresponding investigations
on transonic solutions in one dimension were done by Ascher et al. [1] and by
Markowich and Pietra [25] via phase plane analysis and the representation of dis-
continuous solutions, and by Gamba [8] and Gamba and Morawetz [9] via artificial
viscosity. For the Cauchy problem of unipolar time-dependent hydrodynamic sys-
tems, Luo et al. [19] investigated the global existence and the asymptotic behaviour
of smooth solutions of the hydrodynamic model for semiconductors and discussed
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their convergence to the stationary solution of the drift-diffusion equation in R, but
they had to assume the stationary current density J to be zero due to a technical
difficulty in the analysis. The stability and, respectively, instability of the steady-
state solutions of the Cauchy problem for the semiconductor model was analysed by
Hattori and Zhu [12] and by Hattori [11]. Stability with convergence rates of global
solutions of the hydrodynamic model to the corresponding steady-state solution on
a quarter plane was analysed by Marcati and Mei [20]. The assumption of zero cur-
rent density was removed therein, too. Furthermore, for the initial boundary-value
problem in a bounded domain, under the assumption of zero current density on
the boundary, Hsiao and Yang [14] discussed the time-asymptotic convergence of
the smooth solutions of the hydrodynamic model and those of the drift-diffusion
model to the unique steady-state solution. Subsequent to [14,19,20], in this paper
we study the asymptotic stability of steady-state solutions for the non-zero current
density case in a bounded domain, which improves the previous works [14,19,20].

Regarding other topics on such hydrodynamic models for semiconductor devices,
we note the following. In [30], Poupaud et al. showed the global existence of the
solutions with arbitrarily large data by using a trick concerning charge conser-
vation. By finite-difference schemes and compensated compactness, Marcati and
Natalini [21,22] proved the existence of weak solutions and discussed the relaxation
limit to the drift-diffusion model for 1 < v < 3. Zhang [35,36] discussed the exis-
tence of weak solutions and the relaxation limits for v > % Gasser and Natalini [10]
discussed the relaxation limit for the non-isentropic hydrodynamic model. On the
strip domain, the local existence of smooth solutions was proved by Zhang [34];
its large-time behaviour was analysed by Chen et al. [4]. The existence of weak
solutions was obtained by Zhang [33] via Godunov schemes and by Fang and Ito [7]
via vanishing viscosity. Hsiao and Zhang [15,16] discussed the relaxation limit and
verified the boundary condition for weak solutions in the sense of trace. By shock-
capturing schemes, Chen and Wang [3] investigated the existence of weak solutions
in a high-dimensional compact domain with geometry symmetry. Also, there are
lots of works on numerical analysis and simulation, for instance, by Jerome and
Shu [18] and references therein.

After an appropriate scaling, the one-dimensional time-dependent system in the
case of one carrier type, i.e. electrons, reads

pe+ (pu)z =0, (1.1)
(pu)s + (o + p(p))s = pos — ==, (1.2)

where p > 0, u and ¢ denote the electron density, velocity and the electrostatic
potential, respectively. j = pu is called the current density. p = p(p) is the pressure-
density relation, which satisfies

p°p/(p) is strictly monotonically increasing from (0, o0) into (0, 00). (1.4)
In the present paper, we assume that

p € C3(0, +00). (1.5)
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And 7 = 7(p,pu) > 0 is the momentum relaxation time. The device domain is
the z-interval (0,1). C = C(x) > 0 is the doping profile, which stands for the
given background density of changed ions. We assume that there is a function
A = A(x) € C?(0,1) such that

A(z) >0, A(0) =p1, A(l)=p2, A(x)—C(x) € C(0,1). (1.6)

In the present paper, we first consider the initial boundary-value problems (IBVP
for simplicity) for (1.1)—(1.3) with the following initial data,

(p,j)(x,O) = (ﬁv.})(x)v T < (Ov 1)5 (17)

and the density and potential Dirichlet boundary conditions

p(0,t) = p1, p(1,t) = p2,
¢(Oat) = Oa ¢(1at) = ¢1a

These kind of boundary conditions are of importance in physics of semiconductor
devices [23].

Our interest is to investigate the existence and stability of the smooth steady-
state solutions of the hydrodynamic model of semiconductors, namely, the solutions
of the boundary-value problem (BVP) for the following system

j = const., (1.10)
;2 o
—+p(p)) =ppa—=, (1.11)
p z T
Gzw = p—C(z), (1.12)

with boundary conditions (1.8) and (1.9).

The main results in the present paper show that, for any Jy # 0 satisfying condi-
tion (2.5) with |p2 — p1]| < 1, there is a @y > 0 such that, for any 0 < ¢ < P, the
BVP (1.10)—(1.12) and (1.8)—(1.9) has a unique regular solution (pq, jo, ¢o)(z), with
|70l < |Jol, and, for any small initial perturbation of (pg,7jg), the global solutions
(p,j,®) of the IBVP (1.1)—(1.3) and (1.7)—(1.9) exists and tends exponentially to
the solution (pg, jo, ¢o) as t — +oo.

This paper is arranged as follows. In § 2, the existence, uniqueness and properties
on the solutions to the BVP (1.10)—(1.12) and (1.8)—(1.9) are shown. The global
existence and the asymptotic behaviour of the solution of the IBVP (1.1)—(1.3)
and (1.7)—(1.9) are introduced and proved in § 3.

NOTATION. We make some notation for simplicity. C' always denotes a positive
constant. L?(0,1) is the space of square-integrable real-valued functions defined
on [0, 1] with the norm || - ||, and H¥(0,1) denotes the usual Sobolev space with
the norm || - ||;, especially, || - |lo = || - ||. Let T and B be a positive constant and
a Banach space, respectively. C*(0,7;B) (k > 0) denotes the space of B-valued
k-times continuously differentiable functions on [0, T], and L?(0,T; B) denotes the
space of B-valued L2-functions on (0,T). The corresponding spaces of B-valued
functions on [0, c0) are defined analogously.
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2. Steady-state system

In this section, we consider the properties of the steady-state solution of the BVP
(1.10)—(1.12), (1.8)—(1.9) for the hydrodynamic model of semiconductors. For sim-
plicity, we assume 7 = 1 from now on.

According to those shown in [5] for subsonic solutions, the boundary data of the
BVP (1.10)-(1.12) and (1.8)—(1.9) should satisfy the current-voltage relationship

. . . L dx
¢1=F(p2,J)—F(p1,J)+J/O @) (2.1)
where I .
Flp,j) = ;7 Fhp) o) =0 (0) (2.2)

Since, by (2.1), the case j = 0 yields ¢1 = 0, we consider, in the present paper, the
physically more interesting case j # 0.

Dividing (1.11) by p, differentiating it again and using (1.10) and (1.12), we
finally obtain

(%(Pai)ﬂm)m—i-j(%)r—p:—C(x), 0<z<l. (2.3)

Thus, to make sure the existence of regular solutions, the subsonic condition is
required to be satisfied, i.e.

oF . 52 1 ,
—(p,J)=—=5+=P(p) >0 = p'(p) > (2.4)
ap p>p

Due to (1.4), we conclude that there is a unique p,, = pm(j) such that

oF .

a—p(m) >0 for p> pm.

Also, by (2.4), we know that the minimal point p,, of p — F(p,7) is a strictly
increasing function of j with p,,(j = 0) = 0. This implies that the equation (2.3)
is uniformly elliptic for p > p* > p,,, which, by (2.4), means a fully subsonic flow

lu| < c(p). Here, c(p) = \/P'(p) denotes the speed of sound.
The main result in this section is the following theorem.

THEOREM 2.1. Assume that (1.4), (1.5) and (1.6) hold. Let Jy # 0 be such that

inf C(z) > pm(Jo), 2.5
prop, dnf | () > pm(Jo) (2.5)

and assume that |ps — p1| < 1. Then there is a constant &y > 0 such that, for
all 0 < ¢1 < Do, the BVP (1.10)-(1.12) and (1.8)-(1.9) has a unique solution
(po, Jo, o) (x), which satisfies |jo| < [Jo| and

. . A
C_ S min{pi,p2, inf C(x)} < polx) < max{pr,p2, sup C(x)} =Cs,  (2.6)
IE(O,l) IG(O,l)

Codo, (2.7)
Codo,

llpo — All3 + ll poe |
l| oz |

N =N

<
<
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where Cy is a positive constant related to C+ and |jo|, and

do = mae {14 (2) |4 (2) || A(2) ~C@)I}+ (101l + o2 =1 (1+ ] InC~InCy).

REMARK 2.2. The choice of function A = A(x) will be perfect if it approximates
C(z) sufficiently with small enough oscillations. A simple choice is

A(z) = p1 +x(p2 — p1), x€[0,1].

A careful analysis will show that the constant Cj increases if the given doping
profile is near the transonic region. For the given doping profile, the bounds of the
right-hand side terms in (2.7)-(2.8) is dependent of the choice of A(x) and the
oscillation of C(z).

Proof. We are going to prove theorem 2.1 in the following two steps.

STEP 1 (The a priori estimates). Let (po, jo,®0)(z) be a regular solution of the
BVP (1.10)—(1.12) and (1.8)—(1.9), which is bounded and satisfies the subsonic
condition (2.4). We prove that (2.7) and (2.8) hold for (po, jo, ¢0) ().

Set

X = po — A(2). (2.9)
By (1.11) and (1.12), we obtain the equation for ¥,
/ 5272 :
(p("o)p—]‘)/”o(A/(x) + Xr)) + (i)—°> =y + A(z) - C(a). (2.10)
0 T 0/ ¢

Multiplying (2.10) with x, integrating it over (0,1), using x(0) = x(1) = 0 and
integration by parts, one has

1 1 _ 272
/ X2 dx—|—/ p'(po) ]O/pOXQQC dz
0 0 Po

A ovevde - [ g [P0 ZG80E g
— [ o@ar- [ By | A @)yeds, (211)

Po
L
/ _Poxdx / —OA’(x)dx’
0o PO

<<|¢1|+|p2—p1|>(|1nc+ InC_|+ 2 max |4 >|) (2.12)

— z€(0,1)

Since

1

_Xr dz
0

it follows from (2.1), (2.11) and (2.12) that

1 1
/ Xde—F/ X2 dx
0 0

< Co max (I(A = €)(@)| + |4'@)| + (61] + |p2 — pa) InCy ~InC-),  (2.13)

where Cy > 0 is a constant related to |jg| and C4.
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We multiply (2.10) with .. and integrate by parts over (0,1). With x(0) =
x(1) = 0 and (2.13), we have, similarly to (2.13),

1 1
/ Xidx—k/ Xfmdx
0 0
< Co max (|(A=C)(z)| + |A'(z)| + [A"(z)| + (|p1] + [p2 — p1) InCy = InC_]).

z€(0,1)
(2.14)

The combination of (2.13) and (2.14), in view of (2.9), yields (2.7).
Multiplying (1.12) with [¢g(z) — xz¢1] and integrating by parts over (0, 1), one
has

[ dtearcom(iol+1Aw e+ [ ¢a). @
which implies (2.8) in view of (2.1), (1.12), (2.9) and (2.7).

STEP 2 (Existence of regular solutions). Define

|Jo]

b = Fp2, Jo) = Flp1,Jo) + 5= (2.16)
+

which implies, in terms of (2.5) and |p2 — p1| < 1, that

Py > 0. (2.17)
In addition, one can verify that
do or OF 1
—_ . AN — >0 2.18
TRy (p2,7) a7 (f>1,J)+C+ (2.18)

for |j] < [Jo| and |p2 — p1| < 1.
Without loss of generality, we assume that

p2 Z p1- (2.19)

For any 0 < ¢1 < Do, define the operator T : p — P by solving the following
linear equation with the Dirichlet boundary:
or
<a—(p,J)PI> —JPI—PZC, 0<x<l, (220)
b ©

P(0) = p1, P(1) = ps, (2.21)

where J = Jp| satisfies

1
dx
61 = Flpaad) = Flpr )+ [ <5, (2.22)
o p(z)
and 5 5
P1P2
J <=2 for py > py. (2.23)
C(p3 —p1)
Suppose

C_ < p(z) <Ch. (2.24)
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By (2.22), (2.18), (2.16) and (2.5), one finds that

OF
|‘]| < |J0|7 a_p(pv ‘]) > ap > 07 (225)
which implies that the equation (2.20) is elliptic. For the linear elliptic BVP (2.20)—
(2.21), applying the maximum principle and using energy estimates similar to
(2.13)—(2.15), one obtains

C.<P=T(p)<Cy, P=T(p)eC*0,1), [[P-Al=I[T(p) -Al<C
(2.26)
and
OF
[J[P]] < [Jol, a—p(P,J[P]) > ag > 0, (2.27)
with ag a constant.

Thus it is easily shown that the operator T is continuous and bounded in H2(0, 1).
Applying Schauder’s fixed-point theorem and the compact embedding of H?(0,1)
into C1(0,1), one obtains the existence of a fixed point, say po(z), of the operator
T such that the fixed point py = T'(po) satisfies (2.20) and (2.21), with p = P = py.

Let jp and ¢o(x) be determined by

1
. . ) dz

¢1 = F(p2,jo) — F(p1,Jo) +]0/0 o) (2.28)
. pip3 ; (2.29)

< or > .

Ny T
and

Doze = PO — C, O<z<l, (230)
$0(0) =0, o(1) = ¢1. (2.31)

Thus (po, jo, Po) is a solution to the BVP (1.10)—(1.12) and (1.8)—(1.9) satisfy-
ing |jo] < |Jo|, and (2.6)—(2.8). Applying the maximum principle and a similar
argument to [5,19], one can easily prove the uniqueness of the solution. O

3. Hydrodynamic model

In this section, we consider the stability of the steady-state solution obtained in § 2.
Set

Yo = p — po, m =J — jo- (3.1)

The main result in this section is the following one.

THEOREM 3.1. Let (po, jo, Po)(z) be the regular solution of the BVP (1.10)-(1.12)
and (1.8)-(1.9) given by theorem 2.1. Assume (1g,n9) € H?. Then, there erists
g0 > 0 such that if ||(vo, m0)||2+ 00 < €0, then the global smooth solution (p, 7, d)(x,t)
to the IBVP (1.1)-(1.3) and (1.7)-(1.9) exists and satisfies

with a positive constant (3.
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Proof. By standard methods, we can prove the local existence of a solution of
the IBVP (1.1)—(1.3) and (1.7)—(1.9), and show its regularity due to the effect of
relaxation as in [13]. To show the global existence of a smooth solution, we shall
establish uniform a priori estimates, i.e. lemmas 3.2-3.4.

Let (po, jo, 0)(z) be the steady-state solution to the BVP (1.10)—(1.12) and
(1.8)—(1.9). For any T' > 0, assume that (p, j,¢)(x,t) is the solution of the IBVP
(1.1)—(1.3) and (1.7)—(1.9).

Set
Y = p— po, n=7j— jo, e=¢— ¢o. (3.3)
Then the corresponding IBVP for (¢,7,¢e) on (0,1) x [0, 400) is
Yy + 12 =0, (3.4)
. 2 .

N + Gotn)l  Jjo +p(po+ 1) —p(po)| = VPox + (po +)ex —n,  (3.5)

po+ Po "
Cax =V, (36)
Y(0,t) =¢(1,t) =0, t=0, (3.7)
e(0,t) =e(1,t) =0, t =0, (3.8)
w(x70):w0(x)a 77(3570):770(35), T € (031) (39)

For T' > 0, denote the basic space for the IBVP (3.4)—(3.9) as
X(T)={(,n,e) € H?, 0 <t < T}, (3.10)

with norm given by
M(0,T) = max |[(¢,n,e)(t)ll2,

0<t<T

and assume that the following assumption holds:

N(T) = max |[(,n)(®)lls < 1. (3.11)

It is easy to verify that, under the assumption (3.11), it holds that

0<p-<po+¢<pst, J- <Jo+n <y,
with p_, p4, j— and j;+ constants, and the subsonic condition (2.4) holds for (p, 7, ¢).

LEMMA 3.2. It holds for (v,n,e) € X(T), provided that N (T)+ do is small enough,
that

1 1 1
/ e2dr < O(l)/ Y2 de, e < O(l)/ Y2 de, (3.12)
0 0 0

1 1 1 1
/eitdxs()(l)/ Y3 du, eitsom/ Y du, e%<0<1>/ 2 da,

0 0 0 0
(3.13)

/01772dx< ()(exp{ cot}/ Uodx—F/ T/’t"‘w dx) (3.14)
n* < ()(exp{ cot}/ nodx+/ (W7 + 9% dx) (3.15)
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1 1 1
[ o ar <o (ep-eatt [t [[wievzevtar), @)
0 0 0

with cg > 0 a constant.

We first show (3.12). Multiplying (3.6) with e and integrating over (0,1) yields,
by (3.7) and integration by parts,

1 1
/ eidx—k/ epdr =0, (3.17)
0 0
which implies, in terms of Holder’s inequality, that

1 1 1/2 , ,1 1/2
2dr < ( 2d > ( 2d > . 3.18
/Oe x /Oe x /01/) x (3.18)

Then it follows that L L
/ e2dx < 2/ Y2 dx, (3.19)
0 0

from (3.8), (3.18) and the following Poincaré inequality (noting e(0,t) = e(1,t) = 0):

1 1/2 1 1/2
</ e? dx) <2 </ e? dx) . (3.20)
0 0

Integrating the above inequality gives (3.20).
On the other hand, by the integral mean-value theorem, there exists a curve x1(t)
satisfying 0 < z1(¢) < 1 such that

ei(xl(t),t)z/o e2(x,t)da.

Thanks to (3.6) and (3.19), we have
/ eplrr dx
Il(t)

1 1
S/ eidx+2/ lezers| dz
0 0

1 1
<2/ eidx—k/ e, dx
0 0

1
<0(1)/0 2 da.

e2(x,t) = e2(x1(t),t) + 2

Now we deal with (3.13). Differentiating (3.6) with respect to ¢ leads to
ezt = Vy- (321)

Multiplying (3.21) with e, integrating over (0, 1) and noticing e;(0,t) = e.(1,t) = 0,
we have, after integration by parts,

1 1
/ eit dz + / e dx = 0. (3.22)
0 0
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Similarly to (3.19), one has

1 1
/ €2, dx < O(l)/ 2 da. (3.23)
0 0

The other estimates in (3.13) follow from (3.23), (3.21) and the following inequali-

ties:
1 1 1 1
eitSQ/ eitdx%—/ 2., dz, efé/ efdx—k/ e2, dx.
0 0 0 0

Finally, we estimate (3.14)—(3.16). Since it holds by (3.4) that

1 1 1 1
772</ 772dx—|—2/ |77r77|dx<2/ 772dx—|—/ ? da (3.24)
0 0 0 0
and, in view of (3.5), (3.12), (2.7), and (2.8), that

it <0 (S - 2 ot 0 pi) |

+ O(l)(UQ + (wr(bOI)Q + (poz + %)26926)
SO + 97 + 97 + %), (3.25)

it is sufficient to prove (3.14). Multiplying (3.5) with n and integrating it over (0,1),
one has, by (3.8) and integration by parts, that

1d !
d 2d
2dt</” x>+/077 !

: 2 _ 271 1
= - [nw} +/ N(Yooz + (po + ¥)es) dz
0 0

Po
1 .
(o +m?* Jd > d
+/O e (—po Tl +p(po + ) — p(po) | dz
é11—|-12—|-13- (3.26)

The I, I> and I3 can be estimated as follows,

1 ; 2 _ 22 : : 2 _ 2
+1)? - + +n)? -
Ils/ %(Jo 1) 0 4 gy L2 n—npm(]o 772 3| 4y
0 £o Po £o
1 1
0 [l [ o da
1 1
<(O(1)50+1—12)/ 772d33+0(1)/ 2 dx, (3.27)
0 0
1 1 1
—/ 2dr +O(1 / (2 +e2)dx
12 J, 0
1
%/ i dz + O(1 / ¥ dz, (3.28)
0
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" <2 Jo + 011 (jo + 03n)? T/’)

po + 921/)77 (po + 049)?

1 1
I < d "(po + 05¢)| d

3 /0 $+/0 [vebp’ (po + 05¢)| da

1 ! 2 ! 2 2

< ), n dx—|—O(1)/0 (Vy +v*) de, (3.29)

with 0 < 6; <1 (i =1,2,3,4,5). Here we used (3.4).
Substituting (3.27)-(3.28) into (3.26) leads to

%( / Ly dx) +(3 -0 | Pz <o) / W rde (3.50)

Integrating (3.30) over [0, ] gives

/ n*dz < exp{—cot}/ ngdr + O(1)(1 —exp{—cot})/ (Y2 +4%)dz, (3.31)
0 0 0

with a constant 0 < ¢g < 3 — O(1)8y, which implies (3.14). O

LEMMA 3.3. It holds, for (v,n,e) € X(T), that
1
[ @i+ 2+ v de <O ) Bexp{ -, (3.32)
0

1
/O (€% + €2 + e2,) dz < O(1)|| (o, mo) I3 exp{—put}, (3.33)

with 81 > 0 a constant, provided that N(T) + g is small enough.

Proof. Differentiating (3.5) with respect to = and using (3.4) and (3.6), we obtain
the ‘wave equation with friction’

. 2 .
Der + e+ (po+ Powe +1) 0+ (po+1)) s — [M— 20

0 g TR0t ) =p(po)| =0,

“(3.34)
Multiplying (3.34) with ¢ and integrating over (0,1), one has, by (3.8) and inte-
gration by parts,

d

1
- _ M 78 >
- /0 (po+ V)zezrp dz /0 < P o + p(po + ) — p(po) Iwr dx

S+ (3.35)

By the Holder inequality and (3.12), I, can be estimated as

([ o ([

< O(1)(6o + N(T)) /01 2 dz. (3.36)
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By (3.4) and (3.14), we can estimate I5 as

1 -2
Is = —/O w{(ﬂ(po) - %)w}rdx
1 -2
— Ly ‘]—0 2
/0 ”’r{<2p (po + B6) + (P0+97¢)2>w }mdx

! 2jom n? 2(jo + 610m) }
/0 v { 50 ot 0w (rotbev)2 S,

1 2
< (p%po)—j)—%)widx
1 1
2

+o<1><ao+N<T>>/0 <|wwm|+|nwml>d“/o ( PJOO

1 ! / j2
< —5/0 (p (po)—p—%>¢92cdx

jo

1 1
+O(1)(60+N(T))/0 (¢§+¢2+772)d33+2/0 mwt dz

. N(T)) betpel da

1t / 2 1 )
< [ (o - B )vnza + 0+ M) [ (02402 )

1 1
+ Qa/ P2+ exp{—cot}/ ng dz, (3.37)
0 0

where 0 < 0; <1 (1 =6,7,8,9,10) and

2

Jo()
0 <a< max - .
2€(0,1) po(®)?p’(po()) — jo(w)?

Substituting (3.36) and (3.37) into (3.35), we have

d 1
a(/g %w?wtwdx)

1 1 1
—(1—|—2a)/0 zpfdx/o (p0+¢0m+1/))1/)2dx+%/0 <p’(p0) i)(’)w dz

(3.38)

< O(1)(60 + N(T)) /0 (42 + 2 + ) de + exp{—cot} /0 2 da.
(3.39)

We multiply (3.34) with ¢, and integrate over (0,1). Noticing that ¢;(0,t) =
P¢(1,t) = 0, we have

1
2dt</ ¥+ (po + Poze + )Y dx) /(wf—éwth)dx

1 2 -2
_ I A /) S _ >
_ /0 (po + ¥)aeathy da /0 ( AL 0t gl + ) = plon) ) e

2 I+ 1. (3.40)
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We estimate I and I as follows. Due to (3.12), it holds that

1
1ol < 0160+ N (D)) [ (4 + ). (3.41)
By (3.4), (3.14) and (3.16), Ir can be estimated as
1 2
_ / _ Jo +n

Jo+ 1 ’ o . (j0+77) _§>>
+wwt+f70r<p(ﬂ0+w) p'(po) e + 2 dx

([ fw £)ee)

d (/ (392 + wrp()r)(p/(pﬂ +1) =9 (po) — Gt _3) dx)

.

-2

- (po +v)? 5
1 2Go+m)? _ 20jo+mn)
+/0 192 4 upos) ( (o)t T T o T 02" >dx

! x ]0+77 >
/0 <po+w (o 7 )2 o T ¥ ) do
d
<5 (3 [ (i - £)ezas)

_ %(/g (392 + T/)rpOr)<p/(pO +9) =9 (po) — % + %) dx)

~+

L O()(N(T) + bo) / (62 42+ + ) da

_A( Yy _ﬁ> 2 >

d ! / / ' 2 h
ey (/0 (393 + Yapos) (p (po + ) —p (po) — ((;2 1 l))g + ;—%) dx)

L OW)(N(T) + 6) / (62 + 42 + ) dz + O(1) exp{ —cot} / 2 da.
(3.42)

Substituting (3.41) and (3.42) into (3.40), we have

d ;2
S 4o+ 3 (000~ B )2+ (0 e+ v )

+ %(/1(%3 + Ypox) (p’(po +1) =p'(po) — ((;0 1 l))Q i _(2) dx>

—|—/ Y7 dx
0

<0(1)(N(T)+50)/0 (wi+w§+w2)dx+0(1)exp{—cot}/0 nedx. (3.43)
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By [(3.39) 4+ 2(1 + 2a) x (3.43)], we have

i</1(1+2a)w2+lz/)2+z/np +(1+2a)< ( )—ﬁ>w2dx>
dt 0 t 2 t P (po P(Q) T

d 1
+ a </0 2(1 + 2&)([)0 + doze + 1/1)1/12 dl‘)

dt

1 1 78
+/ (1+2a)w§+(po+¢om+w)w2+—<p’(po) - —%>¢§> dz
0 2 P

0

+ kt </0 (14 2a)(¥2 + 2¢zpox) (p/(Po + 1) —p'(po) — % + p_?)

) o)

< O(l)(N(T)+50)/O (1/)2+wt2+w2)dx+0(1)exp{—cot}/0 ng d.

Noticing, for positive constants ¢y, co, c3, that
cr($f + 45 + %)
2
< (14 2a)97 + 39° + iy + (1 + 2a) <p’(po) - j)—%)wi
0

+ 2(1 +2a)(po + Pozx + T/))T/)Q

(14 2) (42 + 2p00) (p’<po £ 0) — (o) -

< es(Vf + v +9°),

(jo + n)?
CEE

-2
o ((1 +2a)y? + (po + Boze + V)P + %(p’(po) — j)—‘;)wi)

(3.44)

(3.45)

and integrating (3.44) over [0,¢], we obtain (3.32) for a constant 5; > 0 from the

Sobolev embedding theorem, provided that N(T') 4 dg is small enough.
Thus (3.33) follows from (3.32), (3.20), (3.12) and (3.6).

LEMMA 3.4. For (¢,n,e) € X(T), we have
1
/ (W7 + 95+ Ui +92,) do < O] (o, m0) |3 exp{—Bat},
0

1
/ (et2 + eit + eixt)dx < O(UHW’OWO)H%eXp{_ﬂQt}a
0

with B2 > 0, provided that N(T) + do + ||(10, m0)|2 s small enough.

Proof. Differentiating (3.34) with respect to ¢ leads to

Yiee + Yie + (po + Goze + 290) s + (po + V)zCat + €xut

[ Gotm)?* 4 - -0
(SO +p(po + 1) — p(po) =0

O

(3.46)

(3.47)

(3.48)
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Multiplying (3.48) with v, integrating it over (0,1) and using ¥:(0,t) = ¥:(1,t) =0
and (3.6), we have, after integration by parts,

d

1 1 1
5 </0 L7 + iy d33> - /0 Y2 da +/0 (po + Goze + 20)Y7 dz

1 1 - 2 -2
= - /0 (po + V) zepethy do — /0 (% - i)—‘; +p(po + ) — p(ﬁo))ﬂd)xt dx
L s+ 1o (3.49)

By the Holder inequality and (3.13), it holds that

1 1/2 1 1/2
|18|<<60+N<T>>(/ dx) ( / w%dx)
0 0

< O(1)(0p + N(T)) /01 2 de. (3.50)

By (3.4), (3.15), (3.16) and (3.32), we estimate Iy as
! : 2 .
= ' CGotm) o _Jot
19 a /O |:<p (p0+w) (p0+w)2>wrt 2(p0+w)277t(00+1/))x
: 2
((;2 __:: l))g T/’t(PO + w)m + p”(PO + 'lf))’l/)t(po —+ ’(f))x

Jo+m Mty Jo+m
77rt+2 -
po+ Y po+  (po+1)

1 .0 1 -
< _/ <p/(P0) - ]_(;)T/’zt dz + 2/ ]_0’|T/)tt¢xt|dx
0 Po o PO

+oq) /0 (Il + N(D)) (erthoe + v2) da

+ 2

+2 5Nzt | Yo A

L 0(1)(d +N<T>>/O ol (el + [ + [ta]) de

_l ! / _ﬁ) 2 ! ]g 2
s 2/0 (p (4o) I w”tdx+2/o (o) 7 "
1
+ Ol 4o, o)l + N(T) + 50) / (W2 +v2,) de
+ OW)]| (o m0) |2 (exp{—cot} + exp{—fn}). (3.51)

Substituting (3.50) and (3.51) into (3.49) leads to

d 1 1
a(/g %T/)? + Prihus dx) -1+ Qa)/o 2 dx

1 i2 !
_%/0 (p’(po)—i)—%>w§tdx+/0 (po + Pows + 2¢)7 da

0
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< OW)(I(o,mo)l2 + N(T) + o) / (W2 + 42 de
O, [2(exp{ —cot} +exp{—Gut}).  (3.52)

We multiply (3.48) by v and integrate the resulting equation over (0,1). In terms
of 1+(0,t) = ¢¥+(1,t) = 0 and integration by parts, we have

d 1 1 1
pr (/O 3U5 + 3(po + Poze + 200)17 dx) +/O 2 dx — /0 3 da
1
= _/ ((po + V) weat + €xat) P dx
0

1 : 2 2
(B B ) )] s
0 po+ U £o xt

e Iy + 13- (3.53)

By (3.12), (3.13) and the Cauchy inequality, it is easy to verify that
1 e
ol < 360+ N(D) [ (24 vy ao+ 3 [ lead W +u2) s
0 0
1
<O0)(bo+ N(T)) [ (03 + v+ d. (3.54)
0
By (3.4), we have

1 . 2
I = —/ <p/(P0 +) — M)d’xtwmt dz
0

(po +1)?
L2350 + 1) 20 2(jo + 1) 2)
+/0 ( Py wtt+ﬂ0+w (p0+w)2¢t Ve dx
Y200 + 1) 200+ n)? >
+/0 <(po+w)2m oot P (o + )i ) (po + ¢)atur Ao
éK1—|-K2—|-K3. (3.55)

By (3.25), (3.15) and (3.32), we have

' 2(jo +n)*
_ 2 " —
+ /0 Vit <p (po + V)bt + (oo £ 0)° (o

SN

+OM)N(T) + 1| (o, 10)l2) / 2, da. (3.56)

2(jo +n)
(po + T/))Qm> ar
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Noticing 14 (0,t) = ¥y (1,t) = 0, we have, by (3.25), (3.15), (3.12) and (3.32),
oo (200 + 77)) ’ ' ( 20000 2(jo + 1) > ’
2 _ 2
/0 wtt( po + Idx+ /0 Ve po + (Po+¢)2wt Idx

1
<0<1>/0 2 (1r] + (s + p0a]) da

| K| =

1
+O(1)/0 [Yeethe | (|P0e] + |me]) de
1
Loq) / uc (02 Il + o)) d

< O()(N(T) + do + | (o, m0)]l2) / (W2 + 42, de

+ O (%0, m0) 13 exp{ =Bt} (3.57)

At last, we estimate K3 as
_ i ' 2(jo +n) _ 2(j0+77)2 o :| >

Ks = 1 </0 Yat(po + V) [(PO T Tp)277t (0 + 0)° vy — " (po + V)Y | dx
—/11/)2 [2(j0+77) e — 2(jo +n)?
o “l(po + )2 (po + ¥)°

G 2o +n) (o + 1) 20 }
/0 wrt(po—FT/))x[(pO_'_w)Qntt 477t7/)t(p0+w)3 + (70 + V)2 dz

2(i 2
s3] v

2(j0+77)2 " :|
Do T 0 + " (po + ) tdx

d /[t 2050 + 2(jo + n)? B
< E</o T/’xt(ﬂo+1/))x[(p(go+ 1;;)27% - (2]004- $;3 Py —p (P0+¢)¢t} dx)

+O)(I(o,m0) 12 + N(T) + o) / (W2 + 42 de

P — " (po + T/))wt} dw

1
+ /0 Yot (po + V)2 Vrt [

1
+ /0 Yat(po + V) gt [

+ O (0, m0) |13 exp{—But} + OL)(N(T) + ) / 2 da (3.58)

Differentiating (3.5) with respect to ¢, and using (3.13), (3.16) and (3.32), we can
estimate the last term in the right-hand side of (3.58) as
1 1 . 2 ) 2
/ 2 di < 0(1)/ <(]0+77) o
0 0

= +p(po + 1) — p(Po)) dx

po + 1 Po ot

1
+o) [ + vt + ) da
0

<o) / (62, +42) dz + O(1)| (Yo, m0) [3(exp{ —cot} + exp{—Bit}).
(3.59)
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Substituting (3.59) into (3.58) leads to

(Jo +mn) 2(jo +1)? ,
Kg\a</ Vet (po + 1) [( _|_w)77 (p0+w)3¢t—p(po+w)wt}dx>

+ O ([0, mo) 2 + N(T) + b) / (W2 + ¢2,) da

O(1)]| (o, mo) 3 (exp{—cot} + exp{—pat}). (3.60)
Combining (3.56), (3.57), and (3.60) with (3.55), we have

B[ Yo
—%(/1%<p’(po+w)—p’(po)—% >wmd >

SN -

+ O (om0 12 + N(T) + 60) / (W2 + 42, de

Ol (0, m0)lI3(exp{ —cot} + exp{—pit}). (3.61)
Then it follows from (3.53), (3.54), (3.32) and (3.61) that

d 2
S 40t 0+ oume 20002+ 5 (00— B )20

_ %(/01%<p/(p0+1/)) — 7' (po) — % >w“ dx)
</ r— [((Jo:w?;)wt_ 2(£>in$; W —p”(Po+¢)¢t} dx)
+/01w?t dz

< O) (I (o, m0)ll2 + N(T) + o) / (W2 + ¢2,) da

OM)II(%0, no) I3 (exp{—cot} + exp{—pat}).
(3.62)

By [(3.52) 4+ 2(1 + 2a) X (3.62) + (3.16) + (3.32)], we have, due to (3.32),
1
- </ Y7 + by + (1 + 2a)p, dx)
0

1 -2
+ 3 ([ @ 20m + dnas 420002 + 1420 (#100) - 2 ) 2,00
0

_i</01(1+2a)<p/(p0+1/))—p/(PO)_% >T/)xtd >
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4 (/01 2(1+ 2a)ve(po + 1)z

dt
2(90 + 2(jo +n)?
[(KSZO‘F 7/)7;)27% (E;ZJO‘F TZ)B Ve N(po T/’)T/)t} >

)
1 1 -9 1
+(1+2a)/0 w?tdx+%/0 (p’(po)—i)—%>¢§tdx+/o (¥ +ni) d

< 0() (I (o, m0)ll2 + N(T) + o) / (W2 + ¢2,) da

+ 0|10, m0) 13 (exp{ —cot} + exp{—pit}). (3.63)
By (3.34), we have

1 1
/ Ui de < 0(1)/ (Vi + 97 + 07 + ¢35, + i +1°) da (3.64)
0 0

Then, integration of (3.63) over (0, ¢), in terms of (3.16), (3.32), similar inequalities
to (3.45), and the Sobolev embedding theorem, lead to (3.46).
The estimate (3.47) follows from (3.46) and (3.13). |
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