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Abstract

In this paper we study the hybrid quantum hydrodynamic model for nano-sized bipolar semiconductor 
devices in thermal equilibrium. By introducing a hybrid version of the Bhom potential, we derive a bipolar 
hybrid quantum hydrodynamic model, which is able to account for quantum effects in a localized region of 
the device for both electrons and holes. Coupled with Poisson equation for the electric potential, the steady-
state system is regionally degenerate in its ellipticity, due to the quantum effect only in part of the device. 
This regional degeneracy of ellipticity makes the study more challenging. The main purpose of the paper 
is to investigate the existence and uniqueness of the weak solutions to this new type of equations. We first 
establish the uniform boundedness of the smooth solutions to the modified bipolar quantum hydrodynamic 
model by the variational method, then we use the compactness technique to prove the existence of weak 
solutions to the original hybrid system by taking hybrid limit. In particular, we account for two different 
kinds of hybrid behaviour. We perform the first hybrid limit when both electrons and holes behave quan-
tum in a given region of the device, and the second one when only one carrier exhibits hybrid behaviour, 
whereas the other one is presented classically in the whole domain. The semi-classical limit results are also 
obtained. Finally, the theoretical results are tested numerically on a simple toy model.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction and derivation of the model

Due to recent progresses in semiconductor technology, we are able to project and produce 
nano-sized devices, operated by means of quantum effects. Quantum hydrodynamic models 
(QHDs), which describe such devices, give a fairly accurate account of the macroscopic be-
haviour of ultra small semiconductor devices only in terms of macroscopic quantities such as 
particle densities, current densities and electric fields (see [1,2,18,21,22,24,23,26,27,30,28] and 
reference therein). The bipolar QHD, reduced in thermal equilibrium, is the following 3 × 3
system of stationary equations [30,31]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∇V + Tn∇Wn(n) − 2ε2n∇
(

�
√

n√
n

)
= 0,

−p∇V + Tp∇Wp(p) − 2ε2pξ∇
(

�
√

p√
p

)
= 0,

−λ2�V = n − p − C,∫
�

n(x)dx = N,
∫
�

p(x)dx = P,
∫
�

V (x)dx = 0,

(1)

where the unknown functions n(x) ≥ 0, p(x) ≥ 0 and V (x) represent the particle density of 
electrons in the conduction band, the particle density of holes in the valence band, and the elec-
trostatic potential, respectively. � is a bounded domain in Rd, d = 1, 2, 3. ε is the scaled Planck’s 
constant, and ξ is the ratio of the effective masses of electrons and holes. Without loss of gen-
erality, we assume ξ = 1 throughout the paper. Tn and Tp are the temperature constants for the 
electrons and the holes, respectively, and the constant λ is the minimal Debye length. Wn(n) and 
Wp(p) are the pressure functions for the electrons and the holes, respectively, and both are posi-
tive, continuously differentiable and increasing. C(x) is the doping profile, which is assumed to 
be equal to ND − NA, where ND = ND(x) ≥ 0 and NA = NA(x) ≥ 0 are the space densities of 
donor and acceptor atoms, respectively. N (correspondingly P ) is the total numbers of electrons 
(holes) in the conductivity band (the valence band), given by

N = ni +
∫
�

ND(x)dx, P = ni +
∫
�

NA(x)dx,

where ni > 0 is an intrinsic constant taking into account that the number of electrons (holes) 
in the conduction (valence) band is not only determined by doping but also by intrinsic thermal 
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excitation processes. The relation between N, P and C implies total charge neutrality. Hence, 
Poisson equation

−λ2 � V = n − p − C,

which provides a description of the electrostatic potential V , has exactly one solution V satisfy-
ing 

∫
�

V (x)dx = 0, by assuming (n − p − C) ∈ L2(�).
Dividing the first and the second equations of (1) by n and p, respectively, differentiating 

them with respect to x, and substituting the third equation of (1) to the resulting equations, we 
get the following uniform 4th order elliptic equations

⎧⎨
⎩

2ε2�
(

�
√

n√
n

)
− Tn∇

(∇Wn(n)
n

)
= 1

λ2 (n − p − C),

2ε2ξ�
(

�
√

p√
p

)
− Tp∇

(∇Wp(p)

p

)
= − 1

λ2 (n − p − C).
(2)

The existence and uniqueness of the stationary solutions to (1) were proved by Unterreiter [30]
by using the variational method and the semi-classical limit as ε → 0 as well as the zero space 
charge limit λ → 0 were also carried out by the compactness-by-convexity principle. The time-
dependent solutions to the bipolar QHDs and their asymptotic convergence to the corresponding 
thermal equilibria were further investigated by G. Zhang et al. [31,32].

Regarding quantum phenomenon, the effect for the device is essential, but the related com-
putations can be rather expensive. The above-mentioned system (1) is an ideal model where 
the quantum effect is presented everywhere in the device. However, the practical case is that the 
quantum effect is usually localized in a small regions of the device, whereas the other parts of the 
system can be treated classically. This is called a hybrid quantum effect case. Starting from this 
experimental observation, many theoretical hybrid approaches to model quantum semiconductor 
devices have been recently introduced. Basically, the idea is to employ a quantum description for 
the charges distribution in a small and well localized region of the device domain, and to use a 
simpler classical approach elsewhere, in order to reduce the computational efforts. The study con-
cerning the classical and the quantum equations has recently become popular, see, for example 
[2,8,11,16–19,21,22,24–27,30,28] and references therein, but, as a new topic, the study related 
to hybrid systems is very limited, and several problems concerning the existence of solutions 
as well as their asymptotic behaviour still remain open. Some hybrid models of unipolar quan-
tum hydrodynamics for semiconductors have been recently proposed [5,7,6,12,13,15,20,29]. The 
main difficulty is to establish a suitable set of interface conditions linking the two regions. In [10]
and [14], a different approach was introduced, in order to avoid these difficulties. Inspired by the 
pioneering study [1], the authors of [10] and [14] physically derived an intrinsic hybrid equation 
by assuming that the quantum terms in the density of energy is modulated by means of a space 
dependent function, called Q(x). That is, Q = 1 in the quantum domain and Q = 0 in the classi-
cal region. These two regions are smoothly connected by introducing an artificial semi-classical 
region. In this paper, we apply the same idea to derive a hybrid quantum hydrodynamic model 
for bipolar semiconductors device, by introducing a new term in the Bohm potential which de-
pends on the gradient of the function Q. Then we will discuss a hybrid quantum bipolar model 
(H-QBM) matching classical and quantum hydrodynamical equation, limiting our analysis to 
isothermal condition. To the best of our knowledge, our work in this paper represents the first 
attempt to study a bipolar hybrid QHD system. Since the governing steady-state elliptic system 
is regionally degenerate, this causes us some essential difficulties in the theoretical study.
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The main assumption is that the internal energies of the electrons and the holes do not de-
pend on ∇n and ∇p respectively, in the whole domain, but just in a well defined sub-domain. 
Therefore we introduce a smooth function Qw(x) : � → [0, 1], for w = n, p, which indicates 
where the internal energy depends on the gradient of the charge density, i.e. we may regard Qw

as almost 0 in the classical region and almost 1 in the quantum region. We can write the internal 
energies ew , for w = n, p, by

en(n,∇n) = Tn lnn − Qn ε2

2

∇n · ∇n

n2
,

ep(p,∇p) = Tp lnp − Qp ε2

2

∇p · ∇p

p2
.

The associated chemical potentials Fw, for w = n, p, can be written in terms of ew like

Fw = ∂(wew)

∂w
− ∇ ·

[
w

∂(ew)

∂∇w

]
.

Following [1], one finally obtains

Fw = lnw − ε2
(

Qw

(
�w

w
− 1

2

∇w · ∇w

w2

)
+ ∇Qw · ∇w

w

)

or equivalently

Fw = lnw + 2ε2
(

Qw

(
�

√
w√

w

)
+ ∇Qw · ∇√

w√
w

)
.

The previous formula includes a new intrinsically hybrid expression of the Bhom potential:

B[w](x) = 2ε2
(

Qw

(
�

√
w√

w

)
+ ∇Qw · ∇√

w√
w

)
.

Introducing the above expression in the stationary hydrodynamical equation with partial quantum 
effect, we obtain

⎧⎨
⎩

2ε2w∇(Qw �(
√

w)√
w

) + ∇Qw · ∇(
√

w)√
w

) − Tw∇w + ∇ · (J ⊗ J

w
) + w∇V = J

τ
,

J = constant,
(3)

where w = n, p, τ > 0 is the relaxation time, J is the current density, and Tw is the electron and 
hole reference temperature, respectively. Thus, the system (3), coupled with Poisson equation, is 
referred to hybrid quantum hydrodynamic model (H-QHD). Here, as indicated before, C(x) is 
the doping profile in L2(�) and λ > 0 is the scaled Debye length.

In the sequel, taking J = 0 in the stationary hydrodynamic equation, we obtain the following 
system
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∇V + Tn∇Wn(n) − 2ε2n∇
(
Qn �

√
n√

n
+ ∇Qn·∇√

n√
n

)
= 0,

−p∇V + Tp∇Wp(p) − 2ε2p∇
(
Qp �

√
p√

p
+ ∇Qp ·∇√

p√
p

)
= 0,

−λ2�V = n − p − C,∫
�

n(x)dx = N,
∫
�

p(x)dx = P,
∫
�

V (x)dx = 0,

(4)

where x ∈ � ⊂ Rd , for d = 1, 2, 3.
Dividing the first and second equation of (4) by n and p, respectively, differentiating them in 

x, and substituting the third equation of (4) to the resultant equations, we have

⎧⎨
⎩

2ε2�
(
Qn �

√
n√

n
+ ∇Qn·∇√

n√
n

)
− Tn∇ ·

(∇Wn(n)
n

)
= 1

λ2 (n − p − C),

2ε2�
(
Qp �

√
p√

p
+ ∇Qp ·∇√

p√
p

)
− Tp∇ ·

(∇Wp(p)

p

)
= − 1

λ2 (n − p − C).
(5)

Accounting for the properties of the quantum effect functions Qw, the typical example of Qw is 
the Heaviside function. This leads the above 4th order elliptic equations to be regionally degen-
erate, and causes the study for the hybrid QHD case to be totally different from the regular QHD 
case. In fact, if the solutions exist, they are weak and their regularity in the classical sense is lost.

The main purpose in this paper is to investigate the existence of the weak solutions to the 
hybrid quantum hydrodynamic model (4), and to perform the semi-classical limit as ε → 0. The 
adopted approach is the artificial vanishing viscosity method. Since we cannot directly work on 
the system (4) due to its regional degeneracy of the 4th order ellipticity, we first artificially add 
some viscosity to the quantum effect terms to modify the system (4) to be uniformly elliptic. Then 
we define an energy functional, and use the variational method to prove that the corresponding 
variational problem has a unique minimizer in a suitable space. Such a minimizer is just the so-
lution of the modified 4th order uniformly elliptic equations. After establishing some regularities 
and uniform boundedness of the solution to the artificial viscosity problem, we further show the 
existence of the weak solution for the original hybrid QHD (4) by using the vanishing viscosity 
technique, namely, by taking the hybrid limit.

This paper is organized as follows. In Section 2, we consider the modified hybrid QHD model 
with Qw ≥ q > 0 such that the system (4) is uniformly elliptic, and prove the existence of solu-
tions for a suitably regularized hybrid problem, namely approximating Qw by a strictly positive 
sequence smooth functions. In Section 3 we state the main results of this paper. Here we dis-
cuss the convergence of the solutions of the approximating problem to two different classes of 
hybrid models. In the first case we assume that both the electrons and the holes exhibit quantum 
behaviour in a small region of the device, whereas in the rest of device both the carriers behave 
classically. In the second case just the electrons exhibit the hybrid behaviour as in the previous 
case, whereas the holes behave classically on whole domain. In Section 4, we discuss the semi-
classical limit of the approximation problem and finally in Section 5 our model and the hybrid 
limits are validated numerically on a simple toy model.

2. Regularized bipolar H-QHD model

We consider the system (4) derived heuristically in the previous section. We recall that the 
final purpose of this paper is to introduce and discuss the hybrid limits for the thermal equilibrium 
solution of the bipolar quantum hydrodynamic model. Therefore we ideally divide the domain 
� into two disjoint subsets: a classical sub-domain �c and a quantum one �q . Since there are 
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not quantum effects in the classical domain, Qn = Qp = 0 for all x ∈ �c, the equations (4)1 and 
(4)2 degenerate. This makes the problem very difficult to be solved from the theoretical point of 
view. Therefore, following the approach proposed in [14], we construct a sequence of solutions 
for a suitable set of regularized problems, then we prove that this sequence converges (weakly) 
to a weak solution of the correspondent bipolar hybrid problem.

To obtain the approximate problem, we introduce a particular choice for the smooth functions 
Qn and Qp , by setting, for w = n, p,

Qw(x) = (H ∗ ηαw)(x) =
∫
�

H(x − y)ηαw(y)dy + αw =: Hw
αw

(x), (6)

where ηαw are the smoothing kernels (or mollifiers) and αw ∈ (0, δ], δ � 1. We have that 
Hw

αw
(x) → H(x) if αw → 0+, where H(x) is the usual Heaviside function, namely

H(x) =
{

1, ∀x ∈ �q,

0, ∀x ∈ �c.
(7)

Integrating (4)1 and (4)2 with respect to x, we obtain the following equivalent form

⎧⎪⎪⎨
⎪⎪⎩

2ε2∇ · (Hn
αn

∇√
n
) = √

n(V + gn(n) − βn),

2ε2∇ · (Hp
αp∇√

p
) = √

p(−V + gp(p) − βp),

−λ2�V = n − p − C,∫
�

n(x)dx = N,
∫
�

p(x)dx = P,
∫
�

V (x)dx = 0,

(8)

where

g′
w(t) := 1

t

dWw(t)

dt
for w = n,p,

and βn, βp ∈ R, are the Lagrange multipliers associated with the constrains 
∫
�

n(x)dx = N and ∫
�

p(x)dx = P .
The thermal equilibrium solution we are looking for must satisfy (4) (or equivalently (8)), 

but this provides just a necessary condition. A physically consistent thermal equilibrium solution 
must also minimize the following energy functional:

αn,αp (n,p) := 2ε2
∫
�

Hn
αn

|∇√
n|2dx + 2ε2

∫
�

Hp
αp

|∇√
p|2dx

+
∫
�

Gn(n)dx +
∫
�

Gp(p)dx (9)

+ λ2

2

∫
�

|∇V [n − p − C]|2dx,

where Gw(ν) = ∫ ν
g(s)wds, for w = n, p.
1
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It is not difficult to show that (8) are the Euler–Lagrange equations of the energy functional 
αn,αp (n, p) defined above, as done in [14]. All the results presented in this paper refer to the 
following assumptions, and can be regarded as a generalized hybrid version of those considered 
in [30].

MAIN ASSUMPTIONS:

(a) � ⊂R
d , where d = 1, 2, 3, is a bounded domain with ∂� ∈ C0,1.

(b) Let Hn
αn

and Hp
αp be the functions defined in (6). Assume that there exist two strictly pos-

itive sequences of constants, called Hm,αw and HM,αw , such that limαw→0+ Hm,αw = 0, 
limαw→0+ HM,αw = 1 and

Hm,αw ≤ Hw
αw

(x) ≤ HM,αw, ∀x ∈ �,

where w = n, p.
(c) There exists a constant K = K(�) > 0 such that

‖V [f ]‖L∞ ≤ K‖f ‖L2 .

(d) The doping profile C ∈ L∞, moreover N − P = ∫
�

C(x)dx, N >
∫
�

C+(x)dx and P >∫
�

C−(x)dx.
e) gw ∈ C(0, ∞) ∩ L1

loc([0, ∞)), for w = n, p, is a strictly increasing function such that:

lim
ν→+∞gw(ν) = +∞, lim

ν→0+ gn(ν) =: gw ∈ (−∞,+∞).

The assumption (e) is verified by the enthalpy functions more widely used in modelling semi-
conductor devices, namely g(κ) = ln(κ) and g(t) = κ

κ−1 tκ−1, corresponding to the pressure 
functions W(t) = tκ , for κ = 1 and κ > 1 respectively.

The main result of this section is the following theorem

Theorem 2.1. Under the assumptions (a)–(e), the functional αn,αp admits a unique minimizer 
(n, p) in

� =
{
ρn,ρp ∈ L1(�) : ρn,ρp ≥ 0,

√
ρn,

√
ρn ∈ H 1(�),

∫
�

ρndx = N,

∫
�

ρpdx = P
}
, (10)

solving (8)1 and (8)2 (or equivalently (4)1 and (4)2). Consequently, V ∈ H 1(�) is defined as the 
unique solution to Poisson equation of (8)3. Therefore the set (n, p, V ) is the unique solution of 
the problem (8).

From now on, without loss of generality, we assume gn = gp = g, and G(ν) = ∫ ν

1 g(σ )dσ , in 
order to simplify the notation.

First of all, following [30], we introduce a truncated enthalpy function gi defined in the fol-
lowing way:
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Definition 2.2. For i ∈ (0, ∞] and ν ∈ [0, ∞), we define the truncated enthalpy

gi(ν) = min{iν,max(−i, g(ν))}, and Gi(ν) =
ν∫

0

gi(σ )dσ. (11)

As shown in [28], one can prove

Gi ≥ Gm

Gi ≤ |Gm| + |G(ν)| (12)

νgi(ν) ≥ Gm,

where Gm := infν∈(0,∞) G(ν) is a constant independent of i.
Before proving Theorem 2.1, we present some introductory results, starting from the follow-

ing lemma:

Lemma 2.3. Under the assumptions (a)–(e) for all i ∈ (0, ∞], the following functional

+
αn,αp,i(r, s) = 2ε2

∫
�

Hn
αn

|∇r|2dx + 2ε2
∫
�

Hp
αp

|∇s|2dx +
∫
�

Gi((r
+)2)dx

+
∫
�

Gi((s
+)2) + λ2

2

∫
�

|∇V [(r+)2 − (s+)2 − C]|2dx (13)

has a unique non-negative minimizer (Ri, Si) in

�+ =
⎧⎨
⎩(r, s) ∈ H 1(�) × H 1(�) :

∫
�

(r+)2(x)dx = N,

∫
�

(s+)2(x)dx = P

⎫⎬
⎭ ,

where s+ and r+ are the positive part of r and s, respectively,

Remark 2.4. This lemma has been already proved in [30] for the standard quantum hydrody-
namic problem, that is when Hn

αn
, Hp

αp ≡ 1 in �. Here we basically apply the same arguments 
by observing that Hn

αn
, Hp

αp are strictly positive functions (see the assumption (b)).

Proof. The existence of a minimizer (Ri, Si) ∈ �+ for +
αn,αp,i follows from the standard theory.

To prove that (Ri, Si) are non-negative functions, we observe that also the positive part 
(R+

i , S+
i ) belongs to �+ and +

αn,αp,i(R
+
i , S+

i ) ≤ +
αn,αp,i(Ri, Si), which implies (R+

i , S+
i ) =

(Ri, Si).
Finally we show that (Ri, Si) is the unique minimizer of the functional +

αn,αp,i , proceed-
ing by contradiction. Let us assume that there exist two couples (Ri, Si) ≥ 0 and (R∗

i , S∗
i ) ≥ 0

minimizing + . Following [30] we introduce (Rδ, Sδ) ≥ 0, defined as follows:
αn,αp,i
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Rδ =
√

δ(Ri)2 + (1 − δ)(R∗
i )2, Sδ =

√
δ(Si)2 + (1 − δ)(S∗

i )2. (14)

Both Rδ and Sδ belong �+ and it is not difficult to see that

+
αn,αp,i(Rδ, Sδ) < δ+

αn,αp,i(Ri, Si) + (1 − δ)αn,αp,i(R
∗
i , S∗

i ), (15)

which contradicts the assumption that both (Ri, Si) and (R∗
i , S∗

i ) are minimizers of the energy 
functional +

αn,αp,i in �+. This concludes the proof. �
From now on, due to the positiveness of the minimizers of +

αn,αp,i , stated by the previous 
lemma, we can omit the index “+” in the energy functional.

Now we show that the minimizer of αn,αp,i , is also the solution of a suitable Euler–Lagrange 
problem, namely:

Lemma 2.5. Let i ∈ (1, ∞). The minimizer (Ri, Si) of αn,αp,i on the set �+ satisfies the Euler–
Lagrange equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2ε2∇ · (Hn
αn

∇Ri

) = Ri(Vi + gi(R
2
i ) − βn,i)

2ε2∇ · (Hp
αp∇Si

) = Si(−Vi + gi(S
2
i ) − βp,i)

−λ2�Vi = R2
i − S2

i − C∫
�

R2
i (x)dx = N,

∫
�

S2
i (x)dx = P,

∫
�

Vi(x)dx = 0.

(16)

Moreover (Ri, Si) verifies homogeneous Neumann boundary conditions.

Remark 2.6. In this lemma we refer to the homogeneous Neumann boundary conditions satisfied 
by the minimizers since they are necessary in order to perform reasonable numerical simulations.

Proof. We know that (Ri, Si) ∈ �+, take l ∈ R and ϕ ∈ H 1 (�), such that Ri + lϕ ∈ �+ and 
Si + lϕ ∈ �+. We derive just the first equation in (16), the second one can be derived in the same 
way.

+
αn,αp,i (Ri + lϕ, Si) − +

αn,αp,i (Ri, Si)

= −2ε2
∫
�

(Hn
αn

|∇Ri + l∇ϕ|2 − Hn
αn

|∇Ri |2)dx

+
∫
�

(
Gi

(
(Ri + lϕ)2

)
− Gi

(
R2

i

))
dx

+ λ2

2

∫
�

(∣∣∣∇Vi

[
(Ri + lϕ))2 − (Si)

2 − C
]∣∣∣2 −

∣∣∣∇Vi

[
(Ri)

2 − (Si)
2 − C

]∣∣∣2
)

dx

=: I1 + I2 + I3.

It is easy to see that
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I1 = 2ε2
∫
�

Hn
αn

(
|∇Ri |2 + l2|∇ϕ|2 + 2∇Ri · l∇ϕ

)
dx − 2ε2

∫
�

Hn
αn

(x)|∇Ri |2dx

= 2ε2
∫
�

Hn
αn

∇Ri · l∇ϕdx + o(l),

I2 =
∫
�

⎛
⎜⎜⎝

(Ri+lϕ)2∫

R2
i

gi(u)du

⎞
⎟⎟⎠dx =

∫
�

2Rilϕgi(R
2
i )dx + o(l).

Then, concerning the term I3, following [9], one has

I3 = 2
∫
�

Vi

[
R2

i − S2
i − C

]
Rilϕdx + o(l).

Finally we obtain

+
αn,αp,i (Ri + lϕ, Si) − +

αn,αp,i (Ri, Si) (17)

= 2

⎛
⎝ε2

∫
�

Hn
αn

∇Ri · l∇ϕdx +
∫
�

Ri

(
gi + Vi − βn,i

)
lϕdx

⎞
⎠ + o(l).

Observing that if (Ri, Si) is a minimizer of αn,αp,i in �+, then as l → 0±, the difference 
+

αn,αp,i (Ri + lϕ, Si) − +
αn,αp,i (Ri, Si) computed as in (17) is non-negative. The first equation 

in (16) can be formally derived dividing by l and considering l → 0±.
To prove that couple Ri, Si verifies homogeneous Neumann boundary condition on ∂�, we 

use as test function for (16) ϕ ∈ H 1(�). �
The case g = −∞ (see the assumption (e)), which corresponds to i = ∞, can not be included 

in Lemma 2.5 due to the lack of differentiability of Gi(t) for t = 0 (see [30]). In the following 
lemma, we derive a set of a priori estimates needed to perform the limit i → ∞.

Lemma 2.7. Let (Ri, Si) be the unique non-negative minimizer to (13) in �+, then Ri and Si

verify the following set of estimates:

‖Ri‖L6 ,‖Si‖L6 ≤ K, (18)

‖Vi‖L∞ ≤ K, (19)∫
�

R2
i Vidx ≤ K,

∫
�

S2
i Vidx ≤ K, (20)

∫
RiVidx ≤ K,

∫
SiVidx ≤ K, (21)
� �
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∫
�

R2
i gi(R

2
i )dx ≤ K,

∫
�

S2
i gi(S

2
i )dx ≤ K, (22)

|βn,i |, |βp,i | ≤ K, (23)

where K denotes a general i-independent constant.

Proof. We just prove the estimates listed above for Ri , with analogous arguments the same 
results can be proved for Si . We basically recall the results given in [28–30] and we adapt them 
to our problem.

First of all we prove that αn,αp,i is bounded from above, uniformly in i. Following the 
approach proposed in [28], we introduce Mn ≡ √

N/� and Mp ≡ √
P/�. Clearly Mn and Mp

belong to �+ and αn,αp,i(Ri, Si) ≤ αn,αp,i(Mn, Mp) indeed (Ri, Si) is the unique minimizer 
of the functional αn,αp,i . Moreover, due to the assumption (c) and (12)2 we get

αn,αp,i(Mn,Mp)

≤ |�|(Gi(M
2
n) + Gi(M

2
p)) + |�|K

∫
�

(M2
n − M2

p − C)2dx

≤ |�|(G(M2
n) + G(M2

p)) + 2|Gm| + |�|K
∫
�

(M2
n − M2

p − C)2dx,

which implies, in view of the assumptions (d), that

αn,αp,i(Ri, Si) ≤ K.

Finally, by using the relation (12)1 we get

2ε2Hm,αn

∫
�

|∇Ri |2dx + 2ε2Hm,αp

∫
�

|∇Si |2 dx + 2Gm|�| (24)

+ λ2

2

∫
�

|∇Vi[R2 − S2 − C]|2dx ≤ K.

The constrains (8)4 together to (24) and to the assumption (b), imply

‖Ri‖H 1,‖Si‖H 1 ≤ K

and then (18).
Inequality (19) follows from the assumption (c), taking into account that C ∈ L∞ (see the 

assumption (d)). Moreover, the inequalities (20) and (21) can be easily proved in view of (19), 
recalling that ‖Ri‖2

L2 = N .
Finally, using the approach detailed in [28] we prove (22) and (23). First of all we introduce 

mi as
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mi =
∫
�

R2
i dx∫

�
Ridx

.

We show by contradiction that this quantity is well defined, that is 
∫
�

Ridx > 0. We have Ri ≥ 0
for all x ∈ � ⊂ R

d , with d = 1, 2, 3. Assume 
∫
�

Ridx = 0, then Ri = 0 a.e, which contra-
dicts (8)4. Therefore there exists Ki > 0, such that 

∫
�

Ri ≥ Ki .
Let us multiply (8)1 by (Ri − mi) and integrate it by parts. After some calculations, in view 

of (20)–(21), we get

∫
�

R2
i gi(R

2
i )dx − mi

∫
�

Rigi(R
2
i )dx (25)

= −2ε2
∫
�

Hn
αn

|∇Ri |2dx +
∫
�

R2
i Vidx − mi

∫
�

RiVidx ≤ K.

Then the inequality (22) follows from (25) as showed in [28].
Finally we show (23). We multiply (8)1 by Ri and we integrate by part, after some simple 

calculations we get

∫
�

R2
i βn,idx = Nβn,i |�|

= 2ε2
∫
�

Hn
αn

|∇Ri |2dx +
∫
�

R2
i Vidx +

∫
�

R2
i gi(R

2
i )dx

≤ K. (26)

Therefore, we obtain Nβn,i |�| ≤ K and then (23). �
In the following lemma, we prove that both Ri and Si are bounded from above by a given 

constant KM .

Lemma 2.8. Assume (a)–(e), then there exists a constant KM , independent of i, such that 
Ri, Si ≤ KM .

Proof. Given KM > 1 we multiply the first equation in (16) by [Ri − KM ]+/Ri . After an inte-
gration by parts we get

2ε2KM

∫
�

Hn
αn

|∇[Ri − KM ]+|2
R2

i

dx

=
∫
�

[Ri − KM ]+(−Vi − gi(R
2
i ) + βn,i)dx. (27)

Using the results summarized in the Lemma 2.7 and the monotonicity of the enthalpy function 
g(σ ), we estimate the right hand side term in (27) as:
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∫
�

[Ri − KM ]+(−Vi − gi(R
2
i ) + βn,i)dx ≤ (K − gi(K

2
M))

∫
�

[Ri − KM ]+dx, (28)

where K is a suitable constant independent of i.
Combining (27) and (28), we obtain

(K − gi(K
2
M))

∫
�

[Ri − KM ]+dx

≥ 2ε2KM

∫
�

Hn
αn

|∇[Ri − KM ]+|2
R2

i

dx ≥ 0. (29)

Fixing KM large enough, the left hand side in (29) becomes negative, which implies Ri ≤ KM . 
An analogous result holds for Si . �

In the following lemma, we will prove that Ri and Si are strictly positive.

Lemma 2.9. Assume (a)–(e) hold, then Ri, Si are strictly positive.

Proof. The proof is given in the line of [28]. As usual, we show the result for Ri , the same holds 
for Si . We consider (16)1

−2ε2∇ · (Hn
αn

∇Ri) + Ri(Vi + gi(R
2
i ) − βn,i) = 0 (30)

that we rewrite as

−2ε2∇ · (a∇Ri) + biRi = 0, (31)

where a = Hn
αn

and bi = Vi + gi(R
2
i ) − βn,i . As a ∈ C∞, bi ∈ L∞ and Ri ≥ 0, we have enough 

regularity for the solution Ri to apply the Harnack’s inequality:

sup
Bρ(y)

Ri ≤ c inf
Bρ(y)

Ri,

for c = c(�, ρ) and for all y ∈ �, ρ > 0, with B4ρ(y) ⊂ �. By contradiction if Ri was 
zero for some y in �, then one would have Ri ≡ 0 in �, which contradicts the assumption 
‖R2

i ‖L2 = N . �
Now we are able to prove Theorem 2.1.

Proof. In order to pass the limit as i → +∞ in the weak formulation of (16), we have to distin-
guish two cases. If gn = −∞, since bi in (30) is in L∞, it is always possible to choose Km > 0, 
independent of i, such that

lim gi(K
2
m) < −‖Vi − βn,i‖L∞ (32)
i→+∞
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As in [28], we introduce, for i large enough, the set �i = {x ∈ � : Ri ≤ Km}. Proceeding by 
contradiction, if �i was not empty, ∇ · (Hn

αn
∇Ri) ≤ 0 in �i , then by the maximum principle Ri

would be constant on �i . Therefore Ri ≥ Km > 0 on �.
In the second case, corresponding to gn > −∞, there are no problems in the limit due to 

the continuity of Rigi(R
2
i ) and to the boundedness of Ri (0 < Ri ≤ Km). Accounting for the 

estimates listed above and for preparatory lemmas, there exist a sequence (Ri, Si)i∈N such that, 
for i → ∞, Ri → R and Si → S weakly in H 1(�) and weak* in L∞(�). Proceeding as in [28]
and [30], one can prove that (R, S) are the unique minimizers of the functional E+∞ in �+ and 
solve the correspondent Euler–Lagrange problem. �
3. Main results: hybrid limits

In this section we discuss the so called hybrid limits. As explained in the introduction, in the 
contest of the semiconductor models, the word hybrid indicates the coupling between a classic 
model and a quantum model, describing the behaviour of the charged carriers in different regions 
of the device domain. Here the assumptions (b) and (e) must be modified. In particular, in order 
to simplify the notation

For readability, the assumptions we are using in this section are listed below. We assume the 
case in which both Hn

αn
(x) and Hp

αp(x) converge to an appropriate step function. In this way the 
device is ideally divided into two sub-domains: a classic sub-domain where Hn

αn
, Hp

αp → 0 and 
a quantum one where Hn

αn
, Hp

αp → 1.
In order to simplify the notation we set αn = αp = α, therefore Hn

αn
(x) = H

p
αp(x) = Hα(x), 

where

Hα(x) =
∫
�

H(x − y)ηα(y)dy + α. (33)

As usual ηα is the smoothing kernel (or mollifier), α ∈ (0, δ], δ > 0 and Hα → H if α → 0+. 
Then the assumption (b) becomes

(bh) Let Hα be the functions defined in (33). Assume that there exist two strictly positive se-
quences of constants, called Hm,α and HM,α , such that

lim
α→0+ Hm,α = 0, lim

α→0+ HM,α = 1

and

Hm,α ≤ Hαx ≤ HM,α ≤ 1, ∀x ∈ �.

Moreover, the assumption (e) must be also modified. In fact, it is not possible to obtain an 
α-independent lower bound for nα as pα if g = −∞, due to the degeneracy of the ellipticity 
for α → 0+. Therefore (e) becomes

(eh) gω ∈ C(0, ∞) ∩ L1
loc([0, ∞)), for w = n, p, is a strictly increasing function such that:

lim gω(ν) = +∞, lim+ gn(ν) := gω ∈ [0,+∞).

ν→+∞ ν→0
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3.1. First hybrid limit: fully hybrid limit

Introducing the new notation for α as listed above, (8) becomes

⎧⎪⎪⎨
⎪⎪⎩

2ε2∇ · (Hα∇√
nα

) = √
nα(Vα + g(nα) − βnα),

2ε2∇ · (Hα∇√
p

α

) = √
p

α
(−Vα + g(pα) − βpα

),

−λ2�Vα = n − p − C,∫
�

nα(x)dx = N,
∫
�

pα(x)dx = P,
∫
�

Vα(x)dx = 0,

(34)

where the subscript α indicates that the solutions of the problem above depend on the parame-
ter α, introduced in (33).

The relevant energy is

α = 2ε2
∫
�

Hα|∇√
nα|2dx + 2ε2

∫
�

Hα|∇√
pα|2dx

+
∫
�

G(nα)dx +
∫
�

G(pα)dx

+ λ2

2

∫
�

|∇V [nα − pα − C]|2dx. (35)

Our aim is to prove that for α → 0 the sequence of solutions (nα, pα, Vα) of the problem (34)
converges in some suitable space to the weak solution of the following hybrid model

⎧⎪⎪⎨
⎪⎪⎩

2ε2∇ · (H∇√
n
) = √

n(V + g(n) − βn),

2ε2∇ · (H∇√
p
) = √

p(−V + g(p) − βp),

−λ2�V = n − p − C,∫
�

n(x)dx = N,
∫
�

p(x)dx = P,
∫
�

V (x)dx = 0.

(36)

Definition 3.1. A set of functions (n, p, V )(x) is said to be a weak solution of (36), if it holds

2ε2
∫
�

H∇√
n · ∇φdx +

∫
�

√
n(V + g(n) − βn)φdx = 0, (37)

2ε2
∫
�

H∇√
p · ∇φdx +

∫
�

√
p(−V + g(p) − βp)φdx = 0, (38)

λ2
∫
�

∇V · ∇φdx =
∫
�

(n − p − C)φdx, (39)

∫
�

n(x)dx = N,

∫
�

p(x)dx = P,

∫
�

V (x)dx = 0, (40)

for any φ ∈ C∞(�).
0



1858 F. Di Michele et al. / J. Differential Equations 263 (2017) 1843–1873
The convergence result, namely, the existence of the weak solution to (36), is summarized as 
follows.

Theorem 3.2. Assume (a), (bh), (c), (d), (eh). Let (nα, pα, Vα) ∈ L∞(�) ∩ H 1(�) be the se-
quence of solutions of the problem (34). Then there exist (n, p, V ) such that

⎧⎪⎨
⎪⎩

nα ⇀ n in L2(�),

pα ⇀ p in L2(�),

Vα ⇀ V in H 1(�),

as α → 0 (41)

and the limit functions (n, p, V )(x) are the weak solutions to hybrid problem (36).

Proof. Within this section K̄ is a general α-independent constant. Due to the conservation of the 
total number of particles, ‖nα‖L1(�) = N and ‖pα‖L1(�) = P . Arguing as in Lemma 2.7 we can 
prove the following relations

‖Vα‖L∞ ≤ K̄, (42)∫
�

nαVαdx ≤ K̄,

∫
�

pαVαdx ≤ K̄, (43)

∫
�

√
nαVαdx ≤ K̄,

∫
�

√
pαVαdx ≤ K̄, (44)

∫
�

nαgα(nα)dx ≤ K̄,

∫
�

pαgα(pα)dx ≤ K̄, (45)

|βn,α|, |βp,α| ≤ K̄. (46)

As shown in Lemma 2.8, we can find a positive constant K̄M such that

nα, pα ≤ K̄M, (47)

and then
∫
�

n2
αdx ≤ K̄MN ≤ K̄,

∫
�

p2
αdx ≤ K̄MP ≤ K̄.

Therefore there exists (n, p)(x) such that

(nα,pα) ⇀ (n,p) weakly in L2(�). (48)

We multiply the Poisson equation (34)3 by V and integrate by parts

∫
|∇V |2dx = 1

λ2

∫
V (n − p − C)dx
� �
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Then, using the Young’s inequality, in view of the Poincarè inequality and of the assump-
tion (d), we get ‖Vα‖H 1 ≤ K̄ , and therefore

Vα → V strongly in L2(�) and Vα ⇀ V weakly in H 1(�). (49)

By nα, pα ≤ K̄M , in view of the assumption (eh) one can show that

∫
�

nαg(nα)2dx ≤ K̄,

∫
�

pαg(pα)2dx ≤ K̄. (50)

Again, as shown in Lemma 2.7, it is not difficult to show that

2ε2Hm,α

∫
�

|∇√
nα|2dx + 2ε2Hm,α

∫
�

|∇√
pα|2 dx + 2Gm|�| (51)

+ λ2

2

∫
�

|∇V [nα − pα − C]|2dx ≤ K̄,

which implies, by the assumption (bh), that

∫
�

H 2
α |∇n|2dx ≤

∫
�

Hα|∇n|2dx ≤ K̄, (52)

∫
�

H 2
α |∇p|2dx ≤

∫
�

Hα|∇p|2dx ≤ K̄. (53)

Finally (45), (47) and (eh) implies

∫
�

nαgα(nα)2 ≤ K̄,

∫
�

pαgα(pα)2 ≤ K̄. (54)

It remains to prove that (n, p, V ) is the weak solution of (36). First of all we multiplying (34)1
by φ, where φ ∈ C∞

0 (�) is any given test function. After integration by parts we get

∫
�

Hα∇nα · ∇φ dx +
∫
�

√
nα(Vα + g(nα) − βn)φ dx = 0. (55)

In view of the estimates derived above, (55) converges weakly in L2 to the weak form of the 
limit problem, namely

∫
�

H∇n · ∇φ dx +
∫
�

√
n(V + g(n) − βn)φ dx = 0, (56)

therefore (n, V ) is a weak solution of (8)1.
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In the same way, we can show that (p, V ) is a weak solution of (36)2. Let us consider (34)3, 
multiply it by φ and integrate it by parts, then we have

λ2
∫
�

∇Vα · ∇φ dx +
∫
�

(nα − pα − C)φ dx = 0, (57)

which, in view of (49) and (48), converges in L2 to the weak formulation of (36)3. �
3.2. Second hybrid limit: classical-hybrid limit

In some experimental situations the quantum effects correspond to a high concentration of just 
one carrier, electrons, for example. In this case the holes can be described by using the classical 
model in the whole domain, whereas the electrons by using the hybrid model. Therefore, in this 
section, we assume that Hn

α converges to an appropriate step function, whereas Hp
α converges to 

zero, as α → 0.
In this way the device is again divided into two sub-domains: a classic sub-domain where 

Hn
αn

= H
p
αp → 0 and a quantum one where only the electrons exhibit a quantum behaviour, 

therefore Hn
αn

→ 1 and Hp
αp → 0. One possible choice is to set

Hn
α (x) = Hα, Hp

α (x) = α2, (58)

where Hα has been already defined in (33). Under these assumptions, (8) becomes

⎧⎪⎪⎨
⎪⎪⎩

2ε2∇ · (Hα∇√
nα

) = √
nα(Vα + g(nα) − βnα),

2(εα)2�
√

p
α

= √
p

α
(−Vα + g(pα) − βpα

),

−λ2�Vα = nα − pα − C,∫
�

nα(x)dx = N,
∫
�

pα(x)dx = P,
∫
�

Vα(x)dx = 0.

(59)

The relevant energy is

α = 2ε2
∫
�

Hα|∇√
nα|2dx + 2(εα)2

∫
�

|∇√
pα|2dx +

∫
�

G(nα)dx

+
∫
�

G(pα)dx + λ2

2

∫
�

|∇V [nα − pα − C]|2dx. (60)

Our aim is to prove that for α → 0 the sequence of solutions (nα, pα, Vα) of the problem (59)
converges in some suitable space to the solution of the following hybrid model

⎧⎪⎪⎨
⎪⎪⎩

2ε2∇ · (H(x)∇√
n
) = √

n(V + g(n) − βn),√
p(−V + g(p) − βp) = 0,

−λ2�V = n − p − C,∫
�

n(x)dx = N,
∫
�

p(x)dx = P,
∫
�

V (x)dx = 0.

(61)
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Definition 3.3. A pair of functions (n, p, V )(x) is said to be a weak solution of (61), if it holds

2ε2
∫
�

H∇√
n · ∇φdx +

∫
�

√
n(V + g(n) − βn)φdx = 0, (62)

∫
�

√
p(−V + g(p) − βp)φdx = 0, (63)

λ2
∫
�

∇V · ∇φdx =
∫
�

(n − p − C)φdx, (64)

∫
�

n(x)dx = N,

∫
�

p(x)dx = P,

∫
�

V (x)dx = 0, (65)

for any φ ∈ C∞
0 (�).

The convergence result is summarized in the following theorem.

Theorem 3.4. Assume (a), (bh) (c), (d), (eh) hold and the function Hα(x) is given in (58). Let 
(nα, pα, Vα) ∈ L∞(�) ∩ H 1(�) be the sequence of solutions of the problem (59). Then there 
exists (n, p, V ) such that

⎧⎪⎨
⎪⎩

nα ⇀ n in L2(�),

pα ⇀ p in L2(�),

Vα ⇀ V in H 1(�),

as α → 0, (66)

where the limit function (n, p, V )(x) is the weak solution to the hybrid problem (61).

Proof. The proof follows by using the same calculation detailed in Theorem 3.2. �
4. The semi-classical limit

In this section, we discuss the semi-classical limit (ε → 0) for the hybrid QHD model pre-
sented in Section 2. By carrying out such a limit, we expect to recover the minimizer of the 
limiting functional. To verify these properties for the problem (4) is important to validate the 
model. For such a purpose, let us consider the energy functional (35) by fixing the index α, say 
ᾱ, as follows

ε = 2ε2
∫
�

Hᾱ|∇√
n|2dx + 2ε2

∫
�

Hᾱ|∇√
p|2dx +

∫
�

G(n)dx

+
∫
�

G(p)dx + λ2

2

∫
�

|∇V [n − p − C]|2dx. (67)

The limiting problem coincides with the following classical problem
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
n(V + g(n) − βn) = 0, for, if n > 0 x ∈ �,√
p(−V + g(p) − βp) = 0, for, if p > 0 x ∈ �,√
n(V + g(n) − βn) ≥ 0, for, if n = 0 x ∈ �,√
p(−V + g(p) − βp) ≥ 0, for, if p = 0 x ∈ �,

−λ2�V = n − p − C, for x ∈ �∫
�

n(x)dx = N,
∫
�

p(x)dx = P,
∫
�

V (x)dx = 0,

(68)

where

c =
∫
�q

G(n)dx +
∫
�q

G(p)dx + λ2

2

∫
�q

|∇V [n − p − C]|2dx (69)

is the limiting energy functional. We just recall that the problem (68), related to the energy 
functional (69), admits a unique regular solution (n0, p0, V0) which is the unique minimizer 
of (69), as proved in Lemma 1 in [30].

Theorem 4.1. Assume (a)–(e) hold. Let (nε, pε, Vε) ∈ L∞(�) ∩ H 1(�) be the sequence of solu-
tions of the problem (34) for α = ᾱ, and (n0, p0, V0) ∈ L∞(�) ∩ H 1(�) be the unique solution 
to the classical problem (68). Then there exists a subsequence (nε, pε, Vε) (not relabeled) such 
that (nε, pε, Vε) → (n0, p0, V0), weakly in H 1(�) and strongly in L2(�).

Proof. Our aim is to prove c(n0, p0) = limε→0 ε(nε, pε). We observe that, for all ε > 0,

ε(nε,pε) − c(nε,pε) = 2ε2
∫
�

Hᾱ(x)|∇√
nε|2dx + 2ε2

∫
�

Hᾱ(x)|∇√
pε|2dx.

According to the assumption 
√

n0, 
√

p0 ∈ H 1(�), one can write

ε(n0,p0) = c(n0,p0) + 2ε2
∫
�

Hᾱ|∇√
n0|2dx + 2ε2

∫
�

Hᾱ|∇√
p0|2dx.

As c(n0, p0) ≤ c(nε, pε) one can deduce∫
�

|∇√
nε|2dx +

∫
�

|∇√
pε|2dx ≤

∫
�

|∇√
n0|2dx +

∫
�

|∇√
p0|2dx, (70)

that along with the hypotheses ‖nε‖L2 = N and ‖pε‖L2 = P , implies

‖nε‖H 1,‖pε‖H 1 ≤ K,

where K is, within this section, an ε-independent constant.
Thus, the previous uniform bound gives us the existence of a weakly H 1(�) convergent sub-

sequence (nε, pε). Let’s call its limit as (n∗, p∗). Consequently, from the assumption (c), we also 
have

Vε → V ∗ as ε → 0 strongly in L3(�),

where V ∗ = V [n∗ − p∗ − C].
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In order to prove n∗ = n0 and p∗ = p0, we observe that

c(n0,p0) ≤ lim inf
ε→0

c(nε,pε) ≤ lim inf
ε→0

ε(nε,pε)

≤ lim sup
ε→0

ε(nε,pε) ≤ lim inf
ε→0

ε(n0,p0)

= c(n0,p0),

then c(n0, p0) = limε→0 ε(nε, pε).
From the weakly-L2 sequential continuity of the functional c, we can write

c(n∗,p∗) = lim inf
ε→0

c(nε,pε) ≤ lim inf
ε→0

ε(nε,pε) = c(n0,p0), (71)

then we can conclude that (n∗, p∗) is a minimizer of (68) on �c. The uniqueness of the minimizer 
in �c implies n∗ = n0 and p∗ = p0. �
5. Numerical simulations

In the previous part of this paper, we have introduced a bipolar hybrid model, which is able to 
account for localized quantum effects by means of a modified expression of the Bohm potential. 
Compared to the previous results, obtained using a similar approach (see [14]), here we get, as 
a limit, a fully hybrid solution. In fact no semiclassical region linking classical and quantum 
domain has to be introduced. In other words the hybrid function Hα converges to the Heavisade 
function for α → 0+ (see Section 3).

In this section we would like to analyze, from the numerical point of view, the behaviour of 
the solution at the interface between classical and quantum system. Therefore we consider, as a 
test device, a simple p|n| junction, modelled by the following doping profile

C̄(x) =
{

1, ∀x ∈ [
0,1/2

]
,

−1, ∀x ∈ (1/2,1
]
,

(72)

approximated as follows

C(x) = −(1 − qC) tanh(hC(x − (1/2))) x ∈ [0,1],

where qC = 10−4 and hC = 103. The behaviour of the doping profile is plotted in Fig. 1.
The quantum function for the electrons is

{
Quantum Region ∀x ≤ (1/2 + δ),

Classical Region ∀x > (1/2 + δ),
(73)

whereas for the holes

{
Quantum Region ∀x ≥ (1/2 − δ),

Classical Region ∀x < (1/2 − δ),
(74)

where 0 < δ < 1/2.
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Fig. 1. Behaviour of the doping profile, assuming qC = 10−4 and hC = 103.

Fig. 2. Behaviour of the quantum function Qn for δ = 0.1, q = 0.01 and different values of h.

The functions Qn(x), Qp(x) are approximated as follows

Qn(x) = −1 − q

2
tanh(h(x − (1/2 + δ))) + 1

2
, x ∈ [0,1]

Qp(x) = 1 − q

2
tanh(h(x − (1/2 − δ))) + 1

2
, x ∈ [0,1].

Here δ = 0.1, q = 0.01 and different value of h are considered. Three examples of Qn and Qp , 
obtained setting h = 50, 100, 150, are plotted in Fig. 2 and in Fig. 3, respectively. The parameter 
h assigns how well the functions Qn and Qp approximate the step function.

We consider system (4) in the one-dimensional and isothermal case

⎧⎪⎪⎨
⎪⎪⎩

V̄x + κ
κ−1 (nκ−1)x − 2ε2

(
Qn

√
n̄xx√
n̄

+ Qn
x

√
n̄x√

n̄

)
x

= 0,

−V̄x + κ
κ−1 (pκ−1)x − 2ε2

(
Qp

√
p̄xx√
p̄

+ Q
p
x

√
p̄x√

p̄

)
x

= 0,

−λ2V̄ = n̄ − p̄ − C,

(75)
xx
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Fig. 3. Behaviour of the quantum function Qn for δ = 0.1, q = 0.01 and different values of h.

coupled with the following set of mixed boundary conditions

n̄(0) = 1 n̄x(0) = n̄x(1) = 0,

p̄(0) = 1 p̄x(0) = p̄x(1) = 0, (76)

V̄ (0) = 1 V̄x(1) = 0.

The obtained solution, namely (n̄, p̄, V̄ ), must be renormalized as to satisfy

∫
�

n(x)dx = N,

∫
�

p(x)dx = P,

∫
�

V (x)dx = 0. (77)

The conditions listed above can be simply achieved by setting

n = N + n̄ −
1∫

0

n̄dx, p = P + p̄ −
1∫

0

p̄dx, V = V̄ −
1∫

0

V dx, (78)

where (n, p, V ) is the solution of system (4) (or equivalently (8)).
To solve system (75), we use COLNEW, a SCILAB function for boundary value problems 

(see [3] and [4] for more details about the code and the integration method).
The parameters of the problem are the scaled Debye length λ, the scaled Plank constant ε and 

the exponent of the pressure function κ . Within this section we assume

λ = 0.8, κ = 2, ε = 0.01, N = 1, P = 1.

We consider the behaviour of V , n and p together with their first derivatives, for different values 
of the parameter h. In particular, nx and px could play an important role in our hybrid model, due 
to the presence of the new terms, ∇Qn · ∇n and ∇Qp · ∇p, in the Bohm potentials. Clearly, if 
Qn becomes the Heavisade functions we have, in the Bohm potential, a singular term δ(x) · ∇n, 
and the same holds for the holes p.
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Fig. 4. Behaviour of the charge densities n and p and their first derivatives, nx and px , assuming h = 50. We observe a 
small oscillation in the values of nx and px around x + δ and x − δ, respectively.

Fig. 5. Behaviour of the electrical potential V and its first derivative Vx , assuming h = 50.

According to our theoretical results (see Theorem 3.2), in the hybrid case we just have 
n, p ∈ L2(�). As a consequence ∇Qn · ∇n and ∇Qp · ∇p could be not well defined at the inter-
faces. Therefore it is very important, in our opinion, to understand, at least numerically and in the 
one-dimensional regularized case, what happens to nx and px at the interfaces. Roughly speak-
ing, one could aspect that, when Qn and/ or Qp approach the Heavisade function (for large h), 
n and/or p are not continuous and nx and px could be something like the Dirac function.

Three cases are considered: h = 50 (Fig. 4–Fig. 5), h = 100 (Fig. 6–Fig. 7) and h = 150
(Fig. 8–Fig. 9).
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Fig. 6. Behaviour of the charge densities n and p and their first derivatives, nx and px , assuming h = 100. The amplitude 
of the oscillations of nx and px around x + δ and x − δ, respectively, has increased compared to the previous case.

Fig. 7. Behaviour of the electrical potential V and its first derivative Vx , assuming h = 100.

We can observe an oscillation in the values of nx and px around x + δ and x − δ, respectively. 
This effect is a consequence of the modified Bohm potential that we have introduced. The ampli-
tude of these oscillations increases with h, whereas their period appears to decrease. One could 
conjecture that, for h → +∞, the amplitude of these oscillations increases until to infinity and 
the correspondent period goes to zero. Therefore the effect of the modified Bohm potential on 
nx and px would be no visible at all. To verify this hypothesis a more complex numerical code 
should be used. This will be the subject of a forthcoming, paper still in preparation.
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Fig. 8. Behaviour of the charge densities n and p and their first derivatives, nx and px , assuming h = 150. The amplitude 
of the oscillations of nx and px around x + δ and x − δ, respectively is still increasing.

Fig. 9. Behaviour of the electrical potential V and its first derivative Vx , assuming h = 150.

Finally we compare the H-QBM presented in this paper and the QHD model, often used to 
describe quantum devices. Two cases are considered, namely h = 50 and h = 150. As shown 
Fig. 10, the behaviour of V and Vx obtained using the H-QBM and the QHD are in very good 
agreement. The same holds for n and p (see Fig. 11 and Fig. 12). Indeed, as expected, the 
behaviour of nx and px obtained using the H-QBM and the QHD differs due to presence of the 
oscillations discussed above around the interface region, that is x + δ for the electrons and x − δ

for the holes, whereas no remarkable differences are visible elsewhere.
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Fig. 10. Behaviour of the charge densities V and Vx computed using the H-QBM (h = 50) and the QHD. The behaviour 
of V and Vx are exactly overlapping.

Fig. 11. Behaviour of the charge densities n and nx computed using the H-QBM (h = 50) and the QHD. An oscillation 
of nx around x + δ is visible only for the H-QBM. This effect at the interface is a consequence of the modified Bohm 
potential.

Similar results are obtained for h = 150 as shown in Fig. 13, Fig. 14, and Fig. 15.
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Fig. 12. Behaviour of the charge densities p and px computed using the H-QBM (h = 50) and the QHD. An oscillation 
of px around x − δ is visible only for the H-QBM. This effect at the interface is a consequence of the modified Bohm 
potential.

Fig. 13. Behaviour of the charge densities V and Vx computed using the H-QBM (h = 150) and the QHD. The behaviour 
of V and Vx are exactly overlapping.
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Fig. 14. Behaviour of the charge densities n and nx computed using the H-QBM (h = 150) and the QHD. An oscillation 
of nx around x + δ is visible only for the H-QBM. This effect at the interface is a consequence of the modified Bohm 
potential.

Fig. 15. Behaviour of the charge densities p and px computed using the H-QBM (h = 150) and the QHD. An oscillation 
of px around x − δ is visible only for the H-QBM. This effect at the interface is a consequence of the modified Bohm 
potential.
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