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Asymptotic Profiles of Solutions for the BBM-Burgers Equation
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1. Introduction and main result

We are concerned with the asymptotic behavior of solutions to the Cauchy
problem for the Benjamin-Bona-Mahony-Burgers equation (say also the BBM-
Burgers equation, or the BBM-B for simplicity)

(1.1)

Uy — Unxy — Uy + UPU, =0
ul,_y = tp(x) — 0, as x — 400,

where xe R, t >0, p > 1 is integer, the initial value = up(x) satisfies

(1.2) JOO up(x)dx # 0.

—o0

On the time-asymptotic behavior of the solution to Eq. (1.1), there are a
number of works, see [1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18] and the
references therein. Among them, many works, cf. [1, 3, 4, 5, 6, 7, 13, 14, 17,
18], are concerned with the asymptotic behavior of the solution as follows: if
(1.2) holds, then the solution u(x,?) converges to 0 in the sharp forms

(@)= = W)L+ 072 fu(@®)] . = O(1)(A + 1)~

While in [11, 12] the first author showed that, if

JOO up(x)dx =0,

—00

then the solution u(x,?) converges to 0 much faster as follows
Ju@dllz= = O +07", [u(@)l: = 01+~
and the L'-decay rate
lu@liz: = oMU +07  for p =2,

which are sharp too.
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In all above mentioned works, 0 is considered as the asymptotic state of
the solution u(x,t) for the BBM-Burgers equation. Very recently, Kinami-
Mei-Omata [10] found that a good asymptotic profile of the solution u(x, ¢) is its
corresponding diffusion wave but not the 0. Namely, the convergence to the
diffusion wave is faster than to the 0. The diffusion wave means the solution
of the Burgers equation for p =1 or the heat equation equation p > 2, more
precisely, the Burgers solution for p =1 to the Burgers equation

0, — Oy + 06, =0
(13) {H(x,O):Ho(x)—>0 as x — +oo,

such a solution is called the corresponding nonlinear diffusion wave; or the
solution for p > 2 to the heat equation

(1.4) {0"0’”‘:0

0(x,0) = p(x) — 0 as x — o0,

this solution is called the corresponding linear diffusion wave.
When

JOO up(x)dx = JOO Oo(x)dx # 0

—0 —0o0

holds, Kinami-Mei-Omata [10] proved the convergence rates as

O(1)(1 + ¢)" /8% for p =1
1 = 0)(Dl = § O)(1+ 07/ In2+7), for p=2
o1+, for p >3
and
O(1)(1 + 1) /9%, for p=1
I = O)(Dll: = § 01+ 1) In2+1),  for p=2
o)1 + 1) ¥4, for p > 3.

A similar problem is also studied by G. Karch in [9], but his convergence rates
are weaker than those in [10].

Therefore, in the case [* ug(x)dx # 0, it is clear that the convergences to
the diffusion waves are faster than to the 0. This means, comparing with the 0
the corresponding diffusion wave is a better asymptotic profile for the BBM-B
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solution. Now our questions are, what is the optimal asymptotic profile for
the BBM-B equation and what is the convergence rate? These are our main
interests in the present paper. By means of the variable scaling method, we
discover that the real asymptotic profile is neither the 0 nor the linear diffusion
wave (for the case p >2), but should be the solution of the corresponding
nonlinear parabolic equation

6, — Opr + 070, = 0
(1.5) { ! M

l,_o = bo(x) — 0, as x — +oo,

where the initial datum 6y(x) is asked to satisfy

(1.6) Jw 4o () — Bo(x)]dx = 0.

—0

We shall further show some much faster convergence rates as follows

O(1)(1 4 1)~ "/®e for p=1
-1

[ = 6)(@)|| L~ = { on(1+n7", for p>2

and

o)1+~ ®%  for p=1

(= 0) ()2 = { o)1+ 174, for p > 2,

where ¢ > 0 is any given constant.
Now let us make an analysis on what optimal asymptotic profile is for the
BBM-Burgers equation (1.1). Setting the following scalings to our variables

(L.7) t— t/e? x— x/e, u—e"u

for some positive constants m and ¢, where €<« 1, we then scale the BBM-
Burgers equation (1.1) to

(1.8) Uy — Uy — Uy + €™ \WPu, = 0.

Balancing the leading order terms, we choose m = 1/p, and Eq. (1.8) is
reduced to

(1.9) Up — Uy — Unx + 1PUy = 0.
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For ¢ « 1, we neglect the small term —¢?u,,,, and conduct the asymptotic state
equation of the BBM-B equation (1.1) as follows

(1.10) U — Uex + u, = 0.

This parabolic solution should be the optimal asymptotic profile of Eq. (1.1).
By other choice of m we derive other asymptotic states considered
previously.
Let m be chosen as mp < 1, we then rewrite Eq. (1.8) as

(1.11) slme(ut — Uy — Uxx) + Uu, = 0.

For ¢« 1, the term e&'™P(u, — e’y — uy,) may be neglected so that the
asymptotic equation of Eq. (1.11) is

up+1
wu, =0, ie., ) =0
r+1j,

Integrating it over (too,x] and noting that, formally u(+o0,¢) = 0, we obtain

uP(x, ) = P (+00,1) = 0, namely, u(x, 1) = 0.

This means that the 0 is the asymptotic state of the solution u(x, ¢) of the BBM-
B equation. This case has been well studied by many people, for example see
1, 3, 4,5, 6,7, 11, 12,13, 14, 17).

Now let m=1. Then Eq. (1.8) becomes

(1.12) Uy — & Uy — U + 8 1 uPuy = 0.

When p = 1, dropping the small term —&?u,,, due to & < 1, we see casily from
(1.12) that the asymptotic state equation is the Burgers equation

(1.13) Up — Uy + tthy = 0.

When p > 2, we neglect the small terms —&2u,,, and &’ 'uPu,, and obtain the
heat equation

(1.14) Uy — gy = 0.

The solutions for the Cauchy problem to Egs. (1.13) and (1.14) are the so-called
nonlinear and linear diffusion waves. Such diffusion waves are considered as
the asymptotic profiles in each case p =1, p=2 and p > 3 by Karch [9] and
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Kinami-Mei-Omata [10] very recently, and the convergence rates to them are
given too.

Now let us state our main results. Firstly, we note that, by using the
Green function method together with the basic energy estimates, when

Oo(x) € L'(R)N H*(R),

Jeffrey and Zhao [8] prove that the solution &(x,7) of Eq. (1.5) exists uniquely
and globally in time, and has the decay rates as in (1.15) below. In the same
fashion, we can further prove that, if

Oo(x) € L'(R) N H*(R),
then
106:()]1 e = O()(1 + 7"V j=0,1,2.

We list all of them as follows, and say that they are contributed by Jeffrey and
Zhao [8], although the last part on L' estimates (1.16) is excluded there.

Theorem 1.1 (I8]). Suppose that 6y(x) € H*(R)N L' (R) holds. Then there
exists a positive constant 8y such that when |0o||.1 + |60l 2 < S0, then the
Cauchy problem (1.5) has a unique global solution 6(x,t)

0(x,t) e C(0, c0; H*(R)NL'(R)) N L%(0, 00; H'(R)),
and satisfies
(115)  00)e = OM) (ol + (180l g2) (1 + 1)+ Da=D/),
l<g<ow, j=01,2.
Furthermore, if
0o e L"(R)NH*(R),
then
(1.16)  [[606:(D) ]l = O)(Boll s + NBollg) (1 + )7 7UP j=0,1,2.
Now our main results are as follows.

Theorem 1.2. Suppose that (1.6),

(1.17) ()= [ u(y) — bo(ldy € W (R),
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and Oy(x) € L'(R)NH*(R) hold. Let n:=||6o||;: + |60l g+ Then there exists
a positive constant &y such that when ||| 31 + 4 < 6o, then the Cauchy problem
(1.1) has a unique global solution u(x,1t)

u(x, 1) — 0(x,t) € C(0, c0; H'(R)),

and satisfies that:
(i) If p=1, for any o >0, then the following estimates hold

(1.18) 1 = )(B)]l 2 = O(1)(1 4 1)=*,
(1.19) 1 = 0),(1)ll 2 = O(1)(1 4 1)+,
(1.20) 1 = O) (D] o = O(1)(1 +1)~T/9*.

(i) If p =2, the convergence rates are much faster as follows

(1.21) I = O)(®)]l 2 = O(1)(1 + 1)/,
(1.22) 1 = 0), (D)1l = O()(1 + )7,
(1.23) 1w = O)(D)ll . = O()(L+2)".

Using L?, L*®-results in Theorem 1.2 and the interposing inequality
g
-2 2
1£lee < IAIEP1ZEE, for 2<g <o,

we can obtain immediately L9-decay rates as follows.

Corollary 1.1. Under the assumptions in Theorem 1.2, then for 2 < g < o
it follows

120) -0l = { CDATOTT I forp =1
' b O(1)(1 + 1)~' 7072, Jor p>2.

Remark 1.1. 1. The rates in Case p=1 of Theorem 1.2 have been
shown in [10], we list here again only for completeness.

2. In Case p =2, our convergence rates are much better than that to the
diffusion wave in [9, 10]. This means that the solution 6(x, ) of the nonlinear
parabolic equation (1.5) is a better asymptotic profile of the BBM-B solution
u(x, t) than the linear diffusion wave (1.4) is. However, in Case p = 1, it seems
that the rates are not sharp. Is it possible to improve them to be optimal ones
like those in our Case p > 2?
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3. As shown in the Appendix below, the BBM-B solution u(x,7) of
Eq. (1.1) exists globally for any large initial datum, and so does the parabolic
solution 6(x,t) of Eq. (1.5). This fact inform us that it should be possible
to have the convergence u(x,t) — 0(x,t) for the large initial perturbation prob-
lem. Therefore, it is quite interesting to study such an asymptotic conver-
gence u(x,t) — O(x,t) with some decay rates for a large initial perturbation!
However, this question in theoretical proof is difficult and remains still open.
We expect to have more contributions on it in the future.

Notations. We now introduce some notation for simplicity. C always
denotes some positive constants without confusion. o%f := o%f/axk. L”
presents the Lebesque integral space with the norm ||-||;,. Especially, L? is
the square integral space with the norm || - ||,., and L*® is the essential bounded
space with the norm || - ||;». H* =and W*? denote the usual Sobolev spaces
with the norms || - || g« and || - ||y« ,, respectively. Suppose that f € L' N L%(R),
we define the Fourier transforms of f as follows:

Ffl&) =f(&) = JRf(x)e*"xé dx.

Let T and B be a positive constant and a Banach space, respectively.
C*(0,T; B) (k = 0) denotes the space of B-valued k-times continuously differ-
entiable functions on [0,T], and L?(0,T;B) denotes the space of B-valued
L2-functions on [0,7]. The corresponding spaces of B-valued functions on
[0,00) are defined similarly.

2. Reformulation of the original problem

From Egs. (1.1) and (1.5), we have

, ubtl  grtl
(2.1) (u—0), =ty —ot{u—6) .+ FES S| x:()_
Since 6(+o0,f) =0, and we expect u(+o0,?) =0, uy(£o0,7) =0, then after
integrating (2.1) over (—oo, o), we have formally
d [e 0]
(2.2) —J [u(x, 1) — O0(x,t)]dx = 0.
dt)_o

Thanks to the essential assumption (1.6), we integrate (2.2) over [0,7 with
respect to ¢ to have

(2.3) Jw (1) — O(x, ]dx — J o () — B (x)]dx = 0.
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Therefore, it is natural to introduce
24)  o(x0) = J (1) — 00y, Oldy, i, ve(x, 1) = u(x, 1) — O(x, 1),
—00

which satisfies

0+ v,)"T wpt!
2.5 xt — Uxxxt — Hxx ™ UWxxx - =0.
( ) Uxr — Uxxxt 1 — Ulxxx + ( [7+1 P+1 :

Integrating it over (-—o0,x] with respect to x, and noting wu(too,?) =0,
0(xo0,t) =0, we obtain

0+ v,)?Th wpt!

Ut_Uxxt—owxx—gm—l— p+1 _p+1:0,
(2.6)

Vo = J [uo(¥) — Oo(»)]dy = vo(x).

-0
That is,
Ut — Uxxt — Wxx = Fp,
2.7 :
( ) { U|t:0 = U()(x),
where
(2.8) F,=0,— —1—[(0+v )p+1 _9p+1] =0, — _l_zp:a_givpﬂ—i p>1
14 Xt p—I—l X xt p+1i=0 i X 5 =

for some positive constants a; = C, ;.

Theorem 2.1. Under the assumptions of Theorem 1.2, there exists a positive
constant 0y, such that, when ||vo|| ys.1 +n < 01, then the Cauchy problem (2.7) has
a unique global solution v(x,t) satisfying

v(x,1) € C(0, 0; H*(R)).

Furthermore, we have the following estimates.
1. When p=1, for any given o > 0, the solution v(x,t) of (2.7) satisfies

1
(2.9) (1 + 0 @I alp(0) | 2 + (1 + 0" |oxx(D)]] 2
i=0

J

< C(llvoll w1 +n)-
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2. When p =2, the solution v(x,t) of (2.7) satisfies

2

(2.10) S+ alu(0)]2 < Clllvollwss + 1)
Jj=0

By Theorem 2.1 and the well-known Sobolev inequalities as, if f e H!,
then

(2.11) 1/ e < V2IFILE £l 2

we can obtain the decay rates for ||v(?)|| . and [lvx(?)||;~ as follows.

Corollary 2.1. Under the assumptions in Theorem 1.2, it follows

_Joma+o WA for p=1
(212) ”U([)”L"O - { 0(1)(1 + t)—1/27 fOV p> 2
and

_Joma+o " for p=1
(213) ”Ux(l‘)HL"O - { 0(1)(1 + I)_l, for p= 2.

Once Theorem 2.1 is proved, we then very easily obtain Theorem 1.2 by
u(x,t) — 6(x,t) = vy(x,t). Therefore, to prove Theorem 2.1 is our main goal in
the following.

We now define the solution spaces as follows, for any T >0 and given
0>0,

X,(0,T) = {ve C(0,00; HX(R)) | My(T) <3},  p=1,

where

1
(2.14) M\(T) = sup {Z + 1) o)l + (140! "Ilvxx()HLz}
J=

0<t<T

(2.15) M,(T) = sup Z + 08502, for p=2.

0<t<T

We are going to state the local existence and the a priori estimates.

Proposition 2.1 (Local Existence). Suppose that vy € H*(R) holds, then
there exists a positive constant Ty such that the Cauchy problem (2.7) has a
unique solution v(x,t) € X,(0,To) satisfying M,(To) <2M,(0) for all p > 1.
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Proposition 2.2 (A Priori Estimate). Let T be a positive constant, and
v(x,t) € X,(0,T) (p=1) be a solution of the Cauchy problem (2.7). Suppose
that the assumptions in Theorem 1.2 hold, then there exist positive constants s
and C independent of T such that if M, <03, then for t€[0,T] the following
estimates hold:

1. When p=1, for any >0

1

(2.16) o+ ) o ln(0) 12+ (140" w02
=0

C(llvoll s, -+ n).-
2. When p =2,

2
(2.17) S+ 0 alu(0)] 2 < Cllvol s + 1)
j=0

Using the continuation argument based on Propositions 2.1 and 2.2, we
can prove Theorem 2.1. So, to prove the above two propositions is our goal.
Since Proposition 2.1 can be proved in the standard way, our main effort will be
made on the proof of Proposition 2.2 in the next section.

3. A priori estimates

Since the case p =1 has been proved in [10], we focus only on the case
p=2. Asin [12, 10], taking the Fourier transform to Eq. (2.7), we have

b, — (i€)*, — a(i&)* = F

namely,

with the solution
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Then taking the inverse Fourier transform to the above resultant equation, we
have

t

(2 ot =g | e iz 5 |

0

JOO 8% Bt~ S)F (s )did
—w 14+ &2

Differentiating it with respect to x, we have

B3 nd =g | @ et i@
b t / pitx g~ B(O) (1~ s)F « S)
L[ 5

We first have two lemmas which were proved by the first author in [12).
The second lemma is to estimate the initial perturbation.

Lemma 3.1 ([12]). It holds

0 lflje CB(&)t ()2
34 _dEé < C(1 J .
(3.4) Jw(1+52)(1+|5|)f ¢= it

Lemma 3.2 ([12]). If vo € W*!(R), then

3 H%J (&) e POy ()| < Clloplly s (140"

LZ
for j=0,1,2.

We are going to estimate the nonlinear term.

Lemma 3.3. Let v(x,1) € X,(0,T) (p =2), then

(3.6) L:

for j=0,1,2.

1 (® o BEO(-s)

zfx
) (l‘f) 1+& Fy (¢, 5)de des

< Cly+ (7 + M(T))P (1 + o)~ (H207

Proof. Let ve X,(0,T) (p=2). Due to the definition of X,(0,7) and
the Sobolev inequality (2.11) it is easy to obtain

(3.7) [o(0)]l = < V2H@)I5 Nox(@)I1E < V2My(T)(1 + 1)~/

and

(3.8) o2 (@)l < V2[5 oae (D)5 < V2Mp(T)(1 +2)™"
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On the other hand, thanks to (2.8) we get

1 ¢ i p+l—j
(3.9) <1047 Dl
and
(3.10) |0xFp| < |Oxxe| + 1020xx]

P . .
a1 0l T o (p 1= I ]
=1

Applying (3.7), (3.8) and Theorem 1.1 to (3.9) and (3.10), we then have

o0

(3.11) sup|Fp(f,s)|£J |F,(x,s)|dx
teR

— 00

© 1 4 . )
< Ol +—— > a;|07v2 7| 2d
h ,[ {| xrl—}_l"l‘ljzoa]I > |} i

—0o0

1 _ (e 0]
< 0l + 100 JJ 1G0s]dx
P+ -0
1 &l J p—1-j 2
1 2 OO I | " ol

1
< 10xe(le + 2= 7 l10()]|Z- 10l 2 llox()1l 2

> a0 x5 a5 -
j=0
< c{n(l +5)72 £ an? My(T)(1 +5)~PHI72
pil . . N
3 an My (T sy
=0
< Clp(1+ )77 + (g + My(2)7 (1 +5) ")
< Cly+ (1 + My(T))" (1 + 572,
where we used p > 2, namely, (p+1)/2>3/2 and (2p—j+ 1/)2/

for 0 <j < p — 1, which implies (1 + )~ @72 < (1 457+
and we have
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o]

(3.12) 2ug|é||ﬁp(f,s)|sj |0xF,(x, 5)|dx

—00

IA

p+1

—00

0
J {|0xxt| + Joxx] [ox|” +

P . . . .
> g lj167 10001 + (p+ 1 j>|efvf:-fvxxn}dx
=1

-1 @
< Oea8) 11 + ()17 J [0t

o]

1 14 ) . (>
0 Do MO ol | s
=] —e

+ o+ 1= DI x5 | |evxx|dx]

< 10xe(8) 11+ Hox( 1 Nox () 22 o (8) ] .2
P . .
+#Zajmw<s>ui;l||vx<s>||i;f||0x<s>||uuvx(s)np

p+1j:1

+ (P + 1= DIOS) = o () 1E 10 22 1Dxx(5) 1 2]

< cfutt+97 4 a4

]

1 ) ; )
- T3 p—i+l —(2p—j+2)/2
T 2 UMD+

0+ L= M) (1 0y e |
< cfnt1+97 + M (0 14y

34 My(T)P (1 457122

=)
< Clp+ (n+ My(T))P (1 +5)72,

where we used p>2, 1<j<p, namely, p+1>3 and 2p—-;+2)/2>
(p+2)/2 =2, which imply (1+5) 7™ < (14572 and (1+s5)~ @722 <
(145" P2 < (14972
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Making use of Parseval’s equality, (3.11), (3.12), Lemma 3.1, and the well-
known inequality (cf. [16, 12]) ‘

t .
J (1+1—8)"(1+5)bds < C(1 4 1) ™™n@?) for a,b > 0 and max(a,b) > 1,
0
we can prove this lemma as follows

ds

L2

© e BO(—s)
IJ © Fy(&,)dé =

_ pltxe T
- 1 +52
ds

2n

|| = B(&)(1=s)

,[0 TézFP(é’s) L
t ) e—ZB(f)(tfs) A ) 1/2
L(Jwﬁ:gz—)zwp(f,s)l dé) ds

Lo o 28O0 \/?
< J sup |F,(&, )| J ———d¢ | ds
0(€eR

(3.13) J’

0

o (148

< Clp+ (7 + M,(T))"] J(:(l +8) (1 41— s) Vs

< Cln+ (n+ M,(T)"™(1 + )4,

ds

L2

Ly G e (t=s) ~
léel XTFP(é,S)dé

ds

L2

L |EPe2BO=s) 1/2
:J0<J m(leTz)zm’(f’s)lzdf) ds

£ (Es) 12628 i 1/2d
< —_—
[ [ ) @

—Ey (&)

< Cln+ (n + Mp(T))"] J;(l +5) (11— ) s

< Clnp + (n+ M,(T))"1(1 + 13/,
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and
01 (= PO
[ R O
B(&)(t—s) 7 d
_L 1+<§2 Byles)| ds
0 4 _-2B(E)(t-s) 1/2
j (] Bl sl dc) ds
0 &y’
/2
© |gfe2BO0-
)|E, dé| d
= L?‘iﬁ L+ leDIE (&, s>|)<Joo(1 +EH (1 + e ¢ &
< Clp+ (n + My(T))"*"]
x jt[a +5) P (149 (L 41— )" Mds
0
(3.15) < Cln+ (n+ M (T))"] Jt(l +5) (1 41— 57
0
(3.16) < Cln+ (n+ M(T))PM(1 4 )=/,
Thus, we proved (3.6) for j=0,1,2. 0

Proof of Proposition 2.2 (A Priori Estimates). Let v(x,t) € X,(0,T) be the
unique solution of Eq. (3.2), p > 2. From (3.3), Lemma 3.2, and Lemma 3.3
we obtain

(3.17) Ha){v(t) Iz < HZ_ln Jioo (i€) e e By, (5)dé

t
g
0

< Cllool gy (1 + 0120

L2

1 e O
Ej_w(lf) _fjré—sz(é’S)dé ds

L2

+ Cln+ (4 M,(T))P)(1 + 1)~ 1+20)/4

for j=0,1,2. Multiplying (3.17) on both sides by (14 7)~! "/ (j =0,1,2),
respectively, and adding all of them, we then obtain

2

M) = sup S (14002 B0l,s < Cllanlyss +1-+ 0+ M7,
<t< j=0
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that 1is,
p . .
(3.18) My(T)|1 = C Y- an’ My(T)"™ | < Clllvollyan + 1+ 7).
=0
Since there is some positive constant C; > 0 such that
p . .
CY_am’My(T)"™ < Ci(n+ My(T)Y,
j=0
(3.18) is reduced to
(3.19) M,(T)[1 = Ci(n+ Mp(T))"] < Clllvoll s + 1+ 77].

Let us choose d3 in Proposition 2.2 to be

03 < minq 1 ! !
3 ’4C1’(4C1)1/p 3

when n < d3 and M,(T) < d3, from (3.19) we prove
My(T) < 2C]|lvollgss + 1+ 0" < Calljvoll s +7)

for some positive constant C,. That means

5
(L+ D2 800(0) ) 12 < Callvoll s + 7]
j=0

holds for all z€ [0, T].
Thus, the proof of the a priori estimates is complete. ]

Appendix: Global existence for large initial values

As indicated in Remark 1.1, we are going to give a proof on the
global existences of the solutions u(x, ) to Eq. (1.1) and 6(x, ) to Eq. (1.5) for
large initial data. The method we will adopt is still the elementary energy
method.

Theorem 3.1. For any ug(x) e H*(R), the Cauchy problem (1.1) has a
unique global solution

u(x,t) € C°(0,4+00; H*(R)),  ux(x,t) € L*(0,+c0; H'(R)).
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Furthermore, u(x,t) satisfies
t
(A1) u(®l7 +L (D)7 dT < 2ol + 227 | 2P for all 1> 0.

Theorem 3.2. For any 6y(x) e H*(R), the Cauchy problem (1.5) has a
unique global solution

0(x, 1) € C°(0,+o0; H*(R)),  Ox(x,t) € L*(0,+00; H'(R)).

Furthermore, 0(x,t) satisfies
t

(82) 100+ | 10:(0) e e < 20000+ 27 WOolE ™ for ail 120,
0

We are going to prove Theorem 3.1. Since Theorem 3.2 can be proved in
the quite same way, we shall omit the details. Now let us define the solution
space for the Cauchy problem (1.1) by

(A3) YM(tl,tz) e {u I ue Co(tl, t; Hz(R)), Uy € Lz(l‘l, tz;Hl(R))
with sup |[u()| 4 < M}

[t1, 2]

where 1), t, and M are some positive constants.
We now prove two results as follows. One is the local existence, another is
the a priori estimates.

Proposition 3.1 (Local Existence). Consider the Cauchy problem with the

initial time t

(A4) { Uy — Uxxr — Olhxx + upux =0
ul,_, = u(x). }

Then, if u;(x) € H*(R) and .||y < M, then there exists ty = to(M) > 0 such

that there exists a unique solution u(x,t) to (A4) in Yap(z, v+ fy).

The proof of Proposition 3.1 can be done by an iteration method for its
integral equation. Since it is standard, we omit the detail.

Proposition 3.2 (A Priori Estimates). Let M and T be arbitrarily fixed, and
u(x,t) € You(0,T) be a solution of (1.1). Then it holds that

t
A5 I+ | (o) < 2l + 2 fuol 370
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Proof. Multiplying (1.1) by u and integrating it over [0, ] x R, we get the
first basic energy equality

t
(A6) umm@r+;Lwawﬁwr=wm@b

Furthermore, multiplying (1.1) by —u,, and integrating it over [0, x R, we
then obtain

t

D @+ 2 a2 | woaudsds = ool
oJr

Making use of the Sobolev inequality (2.11), for f € H!(R),

£ < V2IALE NS < (A1 + 1Al72) 2,

and noting the first basic energy equality (A.6), and the Cauchy inequality
lab| < ea? + (4¢) 'b? for any & > 0, we have

t

(A.8) 4

J Uy ttPuy dxdt
0Jr

t lt
<2 WM@&+—JJM%m%MT
280R
t
<2 wmmm+ wmnjnm@m
! 2 2r-! 2 20 [ 2
< 22| sl B+ == (0l + [0 | sl

t -2

2P
< 2¢ | fuell et + = [loll
Jo

ol

Substituting (A.8) into (A.7) and choosing ¢ = 1/2, we have

t
(A9) wﬂw;+LwM<wwh<WMMA4wam”P

Thus, combining (A.6) and (A.9), we prove the estimate (A.5). O

Proof of Theorem 3.1. For any given initial value uy(x) € H*(R), let M
be the constant such that

M? = 2o 2 + 27 luoll 57,



BBM-Burgers Equation 169

then there exists a unique local solution u(x,?) € Y24,(0,4) by Proposition 3.1
with 7= 0. For such a local solution in [0, %], by using Proposition 3.2, we
have the a priori estimate as follows

t
(2)]%2 +J (D) | 3 de < 2l 2 + 277 uo |27 < M2,
0

which implies u € Y3(0,%) and |u(zo)||;> < M2. Now at the “initial” time
7 =1y, Proposition 3.1 gives u(x,t) e You(t0,2t0). So it extends u(x,¢)e
Y21(0,2t). Then Proposition 3.2 further shows the a priori estimate (A.5) for
all 1€[0,2¢] and u € Y (0,2¢y), especially, the solution u(x,¢) at ¢ = 2f to be
bounded as ||u(2%)||;: < M. Repeating the previous procedure, we will finally
prove u(x,t) € Xp(0,4+00) and (A.l). '
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