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Abstract

This paper concerns a parabolic–hyperbolic system on the half space R+ with boundary effect. The 
system is derived from a singular chemotaxis model describing the initiation of tumor angiogenesis. We 
show that the solution of the system subject to appropriate boundary conditions converges to a traveling 
wave profile as time tends to infinity if the initial data is a small perturbation around the wave which is 
shifted far away from the boundary but its amplitude can be arbitrarily large.
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1. Introduction

To model the dynamics and interaction between signaling molecules vascular endothelial 
growth factor (VEGF) and vascular endothelial cells during the initiation of tumor angiogen-
esis, the following PDE–ODE hybrid model was proposed in [12]
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{
ut = (Dux − ξu(ln c)x)x,

ct = −μuc,
(1.1)

where u(x, t) and c(x, t) denote the density of vascular endothelial cells and concentration of 
VEGF, respectively. The parameter D > 0 is the diffusivity of endothelial cells, ξ > 0 is re-
ferred to as the chemotactic coefficient measuring the intensity of chemotaxis and μ denotes the 
degradation rate of the chemical c. Here the chemical diffusion is neglected since it is far less 
important than its interaction with endothelial cells as treated in [12].

The striking feature of model (1.1) is that the first equation contains a logarithmic sensitiv-
ity function ln c which is singular at c = 0. This singular logarithmic sensitivity was first used by 
Keller and Segel in their original seminal paper [10] to describe the propagation of traveling wave 
band formed by bacterial chemotaxis observed in the experiment of Adler [1]. Its mathematical 
derivation was later given in [28] and biological relevance was provided in [9] by both experimen-
tal measurements and model simulations. Therefore the logarithm is a meaningful chemotactic 
sensitivity representation though it causes great challenges in its mathematical analysis and nu-
merical computations. Hence among other things, the foremost mathematical question is how to 
resolve the logarithmic singularity in order to being able to carry the analysis forward. Toward 
this end, a Cole–Hopf type transformation as follows was used in [11,32]

v = − 1

μ
(ln c)x = − 1

μ

cx

c
(1.2)

which transforms the system (1.1) into a parabolic–hyperbolic system:{
ut − χ(uv)x = Duxx,

vt − ux = 0,
(1.3)

where χ = μξ > 0. Apparently the transformed system (1.3) is much more manipulable math-
ematically than the original singular system (1.1) since the singularity vanishes. Therefore the 
Cole–Hopf transformation (1.2) is the key to open a door to study the singular system (1.1). On 
the other hand, as a newly derived system of conservation laws from biology, the system (1.3)
itself is of great interest to study. There has been an amount of interesting works carried out for 
the transformed system (1.3). In the one dimensional whole space R, the existence of traveling 
wavefront solutions of (1.3) was obtained first in [32] and nonlinear stability of traveling wave 
solutions with large wave amplitude was subsequently established by the third author with his 
collaborators in a series of works [8,18,19]. The stability of composite waves of (1.3) in R was 
proved in [16]. For the bounded domain, there are a few results obtained in [17,31,33] which 
showed that the asymptotic profile of solutions of (1.3) is a constant in one- and multidimen-
sions if zero-flux boundary conditions are imposed. However it is still unknown how to prescribe 
the suitable boundary conditions to obtain a non-constant asymptotic profile (such as wave-like 
solution) for the model (1.3). In this paper, we shall make a step forward to this question by con-
sidering the asymptotic behavior of solutions of initial–boundary problem (1.3) in the half-space 
R+ = [0, ∞) with the following initial data

(u, v)(x,0) = (u0, v0)(x), x ∈R+ (1.4)

and boundary conditions:

u(0, t) = u−, (u, v)(∞, t) = (u+, v+), t ∈ R+, (1.5)
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where u± > 0 due to the biological relevance. The main goal of this paper is to show that the 
solution of (1.3)–(1.5) with (x, t) ∈ R+ × R+ converges to a (shifted) traveling wave profile 
as time tends to infinity. Our results may shed light on the way how to prescribe appropriate 
boundary conditions to obtain a non-constant wave profile in the bounded domain, which remains 
an interesting open question up to date.

The problem of the stability of traveling waves in the half-space R+ with the boundary effect 
has been an important topic of PDEs arising from fluid mechanics and gas dynamics. Liu and Yu 
in [23] first studied the scalar Burgers equation, followed a generalization by Liu and Nishihara 
in [22]. For the case of system, Matsumura and Mei [24] solved the viscous p-system for the first 
time. For the other relevant studies on the asymptotic stability of solutions with boundary effects, 
we refer to [5–7,25–27] and references therein. In this paper, we shall first employ the idea of [24]
to identify the appropriate asymptotic wave profile of solutions of (1.3)–(1.5) and then use the 
method of energy estimates to show that the solution of (1.3)–(1.5) converges to the identified 
wave profile with a shift under suitable initial perturbations. Compared to the results and analysis 
of [24], there are two essential differences. First the wave strength in [24] was subject to certain 
conditions, but our results do not impose any condition on the wave strength and particularly hold 
for arbitrarily large wave strength. Second the nonlinear advection term of p-system considered 
in [24] has no interactive nonlinearity as in the model (1.3). Due to these distinctions, the analysis 
and estimates in our paper are much more complicated than those in [24]. Furthermore the idea 
of “constructing total differential” in the higher-order energy estimates used in [8] for the whole 
space R no longer applies due to the presence of boundaries. In this paper, we develop new ideas 
of “cancelation” (see the proof of Lemma 3.7) to establish the higher-order estimates and achieve 
our goal.

Before concluding the Introduction, we briefly mention some other results related to the sys-
tem (1.3) below. First in the one dimensional bounded interval � ⊂ R, the global existence of 
solutions of (1.3) was first established in [33] for small data, and later in [31] the asymptotic 
behavior of solutions was established for large data. In the multidimensional bounded domain 
� ⊂ R

d(d = 2, 3), the global existence and exponential decay rates of solutions under Neu-
mann boundary conditions were obtained in [17] for small data. In the one dimensional whole 
space R, except afore-mentioned traveling wave solutions studied in [8,18,19,32], the global 
well-posedness of (1.3) was established in [3] for large data under the condition that v0 has a 
positive lower bound. For the multidimensional whole space Rd (d ≥ 2), when the initial data is 
close to the constant ground state (ū, 0), there are a few studies on the system (1.3). First in [13], 
the global well-posedness and regularity criterion of classical solutions of (1.3) were obtained 
if (u0, v0) ∈ Hs(Rd) for s > d

2 + 1 and ‖(u0 − ū, v0)‖Hs is small. Later the global existence of 

mild solutions in critical Besov space Ḃ
− 1

2
2,1 × (Ḃ

− 1
2

2,1 )d with minimal regularity was established 
in [4] in the Chemin–Lerner space framework. The global well-posedness of strong solutions 
of (1.3) in R3 was recently established in [2] by the Fourier analysis if ‖(u0 − ū, v0)‖L2×H 1

is small, where algebraic decay rate of solutions was given under the additional condition that 
‖(u0 − ū, v0)‖H 2×H 1 is small. Finally, we refer the readers to the works [14,15,20,29,31] where 
the chemical diffusion is incorporated.

The rest of paper is organized as follows. In Section 2, the existence and properties of traveling 
wave solutions of (1.3) in the whole space R will be studied first. Then we identify the asymptotic 
wave profile of solutions to the initial–boundary value problem (1.3)–(1.5) in the half space R+
and state our main results. In Section 3, we show the nonlinear stability of wave profiles of 
(1.3)–(1.5) and prove our main results.
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2. Preliminaries and main results

We first explain some conventions used throughout the paper. C denotes a generic positive 
constant which can change from one line to another depending on the context. Hk(R+) denotes 

the usual k-th order Sobolev space on R+ with norm ‖f ‖Hk(R+) :=
(∑k

j=0

∫
R+ |∂j

x f |2dx
)1/2

. 
For simplicity, we denote ‖ · ‖ := ‖ · ‖L2(R+) and ‖ · ‖k := ‖ · ‖Hk(R+).

In this section, we shall present our main results concerning the asymptotic behavior of 
solutions of the initial boundary value problem (1.3)–(1.5). To this end, we first identify the 
appropriate asymptotic profile of solutions. We depart form the existence of traveling wave solu-
tions of (1.3) in the whole space R.

2.1. Traveling wave profiles

The traveling wave solution of (1.3) on R is a non-constant special solution (U, V ) ∈ C∞(R)

in the form of

(u, v)(x, t) = (U,V )(z), z = x − st,

which satisfies {−sU ′ − χ(UV )′ = DU ′′,
−sV ′ − U ′ = 0,

(2.1)

with boundary condition

U(±∞) = u±, V (±∞) = v±, (2.2)

where ′ = d
dz

and s is the wave speed. Here we require u± ≥ 0 due to the biological interest. 
Integrating (2.1) in z over R yields the Rankine–Hugoniot condition as follows

{−s(u+ − u−) − χ(u+v+ − u−v−) = 0,

−s(v+ − v−) − (u+ − u−) = 0,
(2.3)

which gives

s2 + χv+s − χu− = 0. (2.4)

In this paper, we only consider the case s > 0 and the results for s < 0 follow similarly. Solving 
(2.4) for s yields that

s = −χv+ +√
(χv+)2 + 4χu−

2
. (2.5)

Then the existence of traveling wave solutions of (1.3) in R is given as follows.



5172 M. Mei et al. / J. Differential Equations 259 (2015) 5168–5191
Proposition 2.1. Assume that u± and v± satisfy (2.3). Then the system (2.1) admits a unique (up 
to a translation) monotone traveling wave solution (U, V )(x − st) with the wave speed s given 
by (2.5), which satisfies:

U ′ < 0, V ′ > 0, (2.6)

and the following asymptotic decay rates at far field:

|U(z) − u±| ∼ |u− − u+|e−λ|z|, z → ±∞,

|V (z) − v±| ∼ |u− − u+|e−λ|z|, z → ±∞, (2.7)

where

λ = χ(u− − u+)

Ds
> 0. (2.8)

Proof. Integrating the second equation of (2.1), one has that

sV + U = �1 = sv+ + u+ = sv− + u−. (2.9)

Substituting (2.9) into the first equation of (2.1), we obtain a unique solution (U(z), V (z)) up to 
a translation which is explicitly given as (see the details in [8])

U(z) = u+ − u+ − u−
eλz + 1

, V (z) = �1 − U

s
= v− + (u− − u+)eλz

s(eλz + 1)
, (2.10)

where λ is defined in (2.8). Further calculations give rise to

U ′ = λ(u+ − u−)eλz

(eλz + 1)2
, V ′ = −U ′

s
.

Noticing that s > 0, we can easily find that U ′ < 0, V ′ > 0, which leads to

u+ < U(z) < u−, v− < V (z) < v+. (2.11)

Moreover, simple calculations yield

|U(z) − u+| =
∣∣∣∣u+ − u−

eλz + 1

∣∣∣∣∼ |u− − u+|e−λz, as z → ∞,

|U(z) − u−| =
∣∣∣∣ (u− − u+)eλz

eλz + 1

∣∣∣∣∼ |u− − u+|eλz, as z → −∞.

The above two results can be combined as

|U(z) − u±| ∼ |u− − u+|e−λ|z|, as z → ±∞. (2.12)
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In a similar way, we get that

|V (z) − v±| ∼ |u− − u+|e−λ|z|, as z → ±∞.

The proof of lemma is complete. �
Remark 2.1. The traveling wave solutions of the parabolic–hyperbolic system (1.3) in R ob-
tained in Proposition 2.1 are mathematically valid for any u− > 0 and u+, v± ∈R. In this paper, 
we shall consider the case u− > 0, u+ > 0, v− = 0 and explore the asymptotic behavior of solu-
tions to the transformed system (1.3) in the half space with boundary conditions given by (1.5). 
The initial–boundary value problem of (1.3)–(1.5) in the half space R+ for other values of u+ and 
v± remains unsolved in the present paper due to the technical difficulty. However if the results 
were transferred to original system (1.1) via the Cole–Hopf transformation (1.2), one finds that 
the biologically meaningful traveling wave solutions of (1.1) exist if and only if u− > 0, v− < 0
and u+ = v+ = 0 (see the details in [21]).

2.2. Asymptotic profile

In [8], it was shown that if the initial date is a small perturbation of the traveling wave profile 
(V , U)(x − st), then the solution of (1.3) in R approaches the shifted wave profile (V , U)(x −
x0 + st) as time tends to infinity where the shift x0 is determined by the initial date. For the 
problem in the half space R+ considered in the present paper, the value of traveling profile 
(V , U)(x − st) at the boundary x = 0 is always less than u−. This generates an initial boundary 
layer (u − U)|(x,t)=(0,0) = u− − U(0), which could make the solutions fail to converge to a 
shifted wave profile (V , U)(x − st − x0) in general. In order to get convergence, it is natural 
to take a shift β � 1 such that the initial boundary layer around the shifted wave |(u(x, t) −
U(x − st − β)|(x,t)=(0,0)| = |u− − U(−β)| � 1. With this treatment, one may expect that the 
solution of (1.3) will asymptotically approach the wave profile U(x − st − β − α) with a shift α
(comparable with x0 above) if the initial data is a small perturbation of the shifted wave profile 
U(x − st − β). One key question in this argument is how to determine the shift α for a given 
sufficiently large shift β . In the following, inspired by the idea in [24], we shall clarify the relation 
between α and β .

First from the second equation of (1.3), we have

(v − V )t = (u − U)x, (U,V ) = (U,V )(x − st + α − β). (2.13)

Integrating (2.13) over R+ with respect to x and using the boundary condition (1.5), we have

d

dt

∞∫
0

[v(x, t) − V (x − st + α − β)]dx = (u − U)|∞x=0 = U(−st + α − β) − u−. (2.14)

Integrating (2.14) with respect to t , we get

∞∫
[v(x, t) − V (x − st + α − β)]dx
0
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=
∞∫

0

[v0(x) − V (x + α − β)]dx +
t∫

0

[U(−sτ + α − β) − u−]dτ. (2.15)

By the idea of conservation of mass principle (e.g. see [30]), we are looking for α such that

∞∫
0

[v(x, t) − V (x − st + α − β)]dx → 0 as t → ∞. (2.16)

Then, we set

I (α) :=
∞∫

0

[v0(x) − V (x + α − β)]dx +
∞∫

0

[U(−st + α − β) − u−]dt. (2.17)

From (2.15) and (2.16), we see that the shift α satisfies I (α) = 0. Differentiating (2.17) with 
respect to α, we have

I ′(α) = −
∞∫

0

V ′(x + α − β)dx +
∞∫

0

U ′(−st + α − β)dt

= −[v+ − V (α − β)] − 1

s
[u− − U(α − β)]

= −v+ − u−
s

+ v− + u−
s

= −v+, (2.18)

where we have used (2.9) and v− = 0. Then, integrating (2.18) in α over (0, α) gives

I (α) = I (0) − v+α =
∞∫

0

[v0(x) − V (x − β)]dx +
∞∫

0

[U(−st − β) − u−]dt − v+α. (2.19)

Note that I (α) = 0. Then the shift α = α(β) is determined explicitly by

α := 1

v+

⎧⎨
⎩

∞∫
0

[v0(x) − V (x − β)]dx +
∞∫

0

[U(−st − β) − u−]dt

⎫⎬
⎭ . (2.20)

This, combined with (2.15) and (2.16), gives

∞∫
0

[v(x, t) − V (x − st + α − β)]dx

= I (α) −
∞∫
[U(−sτ + α − β) − u−]dτ
t
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= −
∞∫
t

[U(−sτ + α − β) − u−]dτ → 0 as t → ∞. (2.21)

This implies from (2.15) that

∞∫
0

[v0(x) − V (x + α − β)]dx = −
∞∫

0

[U(−sτ + α − β) − u−]dτ.

Thus, by such a heuristical analysis, the expected asymptotic profile for the IBVP (1.3)–(1.5)
is the selected pair of traveling waves (V , U)(x − st + α − β) with β � 1 and α = α(β) � 1. In 
fact, this is true as given in the following theorem which is the main result of this paper.

Theorem 2.2. Let u+ > 0, v− = 0 and β be a positive constant. Then there exists a constant 
δ0 > 0 such that if

‖�0‖2 + ‖
0‖2 + β−1 ≤ δ0, (2.22)

where

(�0,
0)(x) = −
∞∫

x

(u0(y) − U(y − β), v0(y) − V (y − β))dy, (2.23)

the initial–boundary value problem (1.3)–(1.5) has a unique global solution (u, v)(x, t) satisfy-
ing

u(x, t) − U(x − st + α − β) ∈ C([0,∞);H 1) ∩ L2((0,∞);H 2),

v(x, t) − V (x − st + α − β) ∈ C([0,∞);H 1) ∩ L2((0,∞);H 1)

where α is a shift constant determined by (2.20). Furthermore, the solution has the following 
asymptotic stability:

sup
x∈R+

|(u, v)(x, t) − (U,V )(x − st + α − β)| → 0, as t → ∞.

3. Proof of Theorem 2.2

3.1. Reformulation of the problem

This section is devoted to proving Theorem 2.2. Since (1.3) is a system of conservation, we 
employ the technique of taking antiderivative to define the perturbation functions as follows:

(φ(x, t),ψ(x, t)) = −
∞∫
(u(y, t) − U(y − st + α − β), v(y, t) − V (y − st + α − β))dy
x
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for (x, t) ∈ R+ ×R+. That is

(u, v)(x, t) = (U,V )(x − st + α − β) + (φx,ψx)(x, t). (3.1)

Substituting (3.1) into (1.3), using (2.1) and integrating the system with respect to x, we obtain 
that (φ, ψ)(x, t) satisfies{

φt = Dφxx + χV φx + χUψx + χφxψx, t > 0, x ∈R+,

ψt = φx,
(3.2)

with initial perturbation

(φ0,ψ0)(x) = −
∞∫

x

(u0(y) − U(y + α − β), v0(y) − V (y + α − β))dy, (3.3)

and boundary condition

ψ |x=0 =
∞∫
t

[U(−st + α − β) − u−]dτ = A(t), (3.4)

where (2.21) has been used.
We look for solutions of the system (3.2) in the following solution space:

X(0, T ) := { (φ(x, t),ψ(x, t))
∣∣φ ∈ C([0, T ];H 2),φx ∈ L2((0, T );H 2)

ψ ∈ C([0, T ];H 2),ψx ∈ C([0, T ];H 1) ∩ L2((0, T );H 1)}.
Set

N(t) := sup
τ∈[0,t]

(‖ψ(·, τ )‖2 + ‖φ(·, τ )‖2).

By the Sobolev embedding theorem, we have

sup
τ∈[0,t]

{‖φ(·, τ )‖L∞,‖φx(·, τ )‖L∞ ,‖ψ(·, τ )‖L∞,‖ψx(·, τ )‖L∞} ≤ N(t). (3.5)

For the problem (3.2)–(3.4), we have the following results.

Theorem 3.1. Let u+ > 0, v− = 0. Then there exists a positive constant ε0, such that if N(0) +
β−1 ≤ ε0, then the problem (3.2)–(3.4) has a unique global solution (φ, ψ) ∈ X([0, ∞)) such 
that

‖φ‖2
2 + ‖ψ‖2

2 +
t∫

0

(‖φx(τ)‖2
2 + ‖ψx(τ)‖2

1)dτ ≤ C
(
‖φ0‖2

2 + ‖ψ0‖2
2 + e−λβ

)

≤ C(N2(0) + e−λβ), (3.6)
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for any t ∈ [0, ∞). Moreover, it follows that

sup
x∈R+

|(φx,ψx)(x, t)| → 0 as t → ∞. (3.7)

Note that the initial conditions in Theorem 2.2 and Theorem 3.1 are slightly different. The 
following lemmas reveal the relation between them.

Lemma 3.2. Let (2.22) hold. Then α → 0 provided that ‖
0‖2 → 0 and β → ∞.

Proof. From (2.10) and (2.12), it follows that

0 < u− − U(−st − β) ≤ Ce−λ(st+β).

This gives | ∫∞
0 [u− − U(−st − β)]dt | ≤ Ce−λβ . It follows from (2.20) that

|α| ≤ 1

v+

⎧⎨
⎩
∣∣∣∣∣∣

∞∫
0

[v0(x) − V (x − β)]
∣∣∣∣∣∣dx +

∣∣∣∣∣∣
t∫

0

[U(−st − β) − u−]dt

∣∣∣∣∣∣
⎫⎬
⎭

≤ C(|
0(0)| + e−λβ) ≤ C(‖
0‖2 + e−λβ) → 0,

as ‖
0‖2 → 0 and β → ∞. �
Lemma 3.3. Let (2.22) hold. Then ‖φ0‖2 + ‖ψ0‖2 → 0 if ‖�0‖2 + ‖
0‖2 → 0 and β → ∞.

Proof. By (2.23) and (3.3), we have

φ0(x) = −
∞∫

x

[u0(y) − U(y + α − β)]dy

= �0(x) +
∞∫

x

[U(y + α − β) − U(y − β)]dy

= �0(x) +
∞∫

x

α∫
0

U ′(y + θ − β)dθdy

= �0(x) +
α∫

0

[u+ − U(x + θ − β)]dθ. (3.8)

Notice that (2.7) yields

|u+ − U(x + θ − β)| ≤ Ce−λ|x+θ−β| ≤ Ce−λ|x−β|.

Set B(x) = ∫ α[u+ − U(x + θ − β)]dθ . Then we have
0
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‖B‖2 ≤ Cα2

∞∫
0

e−2λ|x−β|dx

≤ Cα2

β∫
0

e−2λ(β−x)dx + Cα2

∞∫
β

e−2λ(x−β)dx

≤ Cα2

2λ
(2 − e−2λβ)

≤ Cα2, (3.9)

where Lemma 3.2 has been used and C is independent of α and β . Similarly, we can obtain that 
‖B‖2 ≤ C|α|. This, together with (3.8) and Lemma 3.2 gives

‖φ0‖2 ≤ C(‖�0‖2 + ‖B‖2) ≤ C(‖�0‖2 + |α|),

which goes to zero as β → ∞ and ‖�0(x)‖2 → 0. In the same way, we can get that

‖ψ0‖2 → 0

provided ‖
0‖2 → 0 and β → ∞. Thus, the proof of Lemma 3.3 is complete. �
Theorem 2.2 is a consequence of Theorem 3.1 and Lemma 3.3. Hence it remains to prove 

Theorem 3.1 which follows from the local existence theorem and the a priori estimates given 
below.

Proposition 3.4 (Local existence). Suppose that the assumptions in Lemma 3.1 hold. For any 
ε1 > 0, there exists a positive constant T0 depending on ε1 such that if (φ0, ψ0) ∈ H 2 with 
N(0) +β−1 ≤ ε1, then the problem (3.2)–(3.4) has a unique solution (φ, ψ) ∈ X(0, T0) satisfying 
N(t) ≤ 2ε1 for any 0 ≤ t ≤ T0.

Proposition 3.5 (A priori estimate). Assume that (φ, ψ) ∈ X(0, T ) is a solution obtained in
Proposition 3.4 for a positive constant T . Then there is a positive constant ε2 > 0, independent 
of T , such that if

N(t) ≤ ε2

for any 0 ≤ t ≤ T , then the solution (φ, ψ) of (3.2)–(3.4) satisfies (3.6) for any 0 ≤ t ≤ T .

The local existence in Proposition 3.4 can be proved using the standard fixed point theorem 
and we omit the details for brevity. Proposition 3.5 is the key to establish Theorem 3.1. Next we 
focus on proving Proposition 3.5 by the energy estimates.

Due to Lemma 3.2 and the conditions in Theorem 2.2, in the sequel we may assume, without 
loss of generality, that β > 1 and |α| < 1. Since N(t) is small (see Proposition 3.5), we assume 
that N(t) < 1 in the following.



M. Mei et al. / J. Differential Equations 259 (2015) 5168–5191 5179
3.2. Boundary estimates

To derive the a priori estimate, we first give boundary estimates.

Lemma 3.6. Assume that u+ > 0, v− = 0. Let (φ, ψ) be a solution of (3.2)–(3.4). Then the 
following boundary estimates hold

∣∣∣∣∣∣
t∫

0

(
χφψ + Dφφx

U
+ DUxφ

2

2U2
+ χV φ2

2U

)∣∣∣
x=0

dτ

∣∣∣∣∣∣≤ Ce−λβ, (3.10)

∣∣∣∣∣∣
t∫

0

(
φtφx

U
+ χψtψx + DUxφ

2
x

2U2
− χφxψx − χV φ2

x

2U

)∣∣∣
x=0

dτ

∣∣∣∣∣∣≤ Ce−λβ, (3.11)

∣∣∣∣∣∣
t∫

0

(
φxφxx + φxtφxx

U

)
|x=0dτ

∣∣∣∣∣∣≤ Ce−λβ, (3.12)

where λ is defined in (2.8).

Proof. From the second equation of (3.2) and the boundary condition (3.4), we have

ψt |x=0 = φx |x=0 = u− − U(−st + α − β). (3.13)

Thus, by the facts | − st + α − β| = st + β − α because s > 0 and β > α, and Proposition 2.1, 
we have

|U(−sτ + α − β) − u−| ≤ Ce−λ|−st+α−β| ≤ Ce−λ(β−α)e−λst ≤ Ce−λβe−λst ,

and

|ψ(0, t)| = |ψ |x=0| = |A(t)| ≤ Ce−λβe−λst . (3.14)

Since φx |x=0 = ψt |x=0 = A′(t), we have φxt |x=0 = A′′(t) and conclude that A(t) ∈ W 3,1(0, ∞)

and

∣∣∣ dk

dtk
A(t)

∣∣∣≤ Ce−λβe−λst , k = 0,1,2,3,

‖A(t)‖W 3,1(0,∞) ≤ Ce−λβ. (3.15)

It follows from (3.5) that

|φ(0, t)| ≤ sup
x∈R+

|φ(x, t)| ≤ CN(t),

|φx(0, t)| + |ψx(0, t)| ≤ sup
+
|φx(x, t)| + sup

+
|ψx(x, t)| ≤ CN(t). (3.16)
x∈R x∈R
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On the other hand, since −st + α − β < 0 by β > |α| and u± > 0 then

U(−st + α − β) > U(0) = u− + u+
2

> 0,

where we have used the monotonicity of U(z) and (2.10). This means

1

U(−st + α − β)
≤ 1

U(0)
≤ C. (3.17)

Furthermore, using (2.10) with v− = 0, we have

U ′(−st + α − β) = λ(u+ − u−)eλ(−st+α−β)

(eλ(−st+α−β) + 1)2
≤ Ce−λβe−λst

and

V (−st + α − β) = (u− − u+)eλ(−st+α−β)

s(eλ(−st+α−β) + 1)
≤ Ce−λβe−λst .

The above two inequalities lead to

t∫
0

|U ′(−sτ + α − β)|dτ ≤ Ce−λβ (3.18)

and

t∫
0

|V (−sτ + α − β)|dτ ≤ Ce−λβ. (3.19)

Next, let us give the proofs of (3.10)–(3.12). Using (3.14)–(3.16), we have∣∣∣∣∣∣
t∫

0

φψ |x=0dτ

∣∣∣∣∣∣≤ C

t∫
0

|A(τ)| |φ(0, τ )|dτ ≤ Ce−λβ. (3.20)

In a similar way, we get∣∣∣∣∣∣
t∫

0

(φφx)|x=0dτ

∣∣∣∣∣∣≤ C

t∫
0

∣∣A′(τ )
∣∣ |φ(0, τ )|dτ ≤ Ce−λβ (3.21)

and ∣∣∣∣∣∣
t∫
(ψtψx)|x=0dτ

∣∣∣∣∣∣=
∣∣∣∣∣∣

t∫
(φxψx)|x=0dτ

∣∣∣∣∣∣≤ C

t∫ ∣∣A′(τ )
∣∣ |ψx(0, τ )|dτ ≤ Ce−λβ. (3.22)
0 0 0
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Using (3.15)–(3.19), we get

∣∣∣∣∣∣
t∫

0

φφx

U
|x=0dτ

∣∣∣∣∣∣≤ C

t∫
0

∣∣A′(τ )
∣∣ |φ(0, τ )|dτ ≤ Ce−λβ, (3.23)

∣∣∣∣∣∣
t∫

0

V φ2

U
|x=0dτ

∣∣∣∣∣∣≤ C

t∫
0

|V (−sτ + α − β)|
∣∣∣φ2(0, τ )

∣∣∣dτ ≤ Ce−λβ, (3.24)

∣∣∣∣∣∣
t∫

0

Uxφ
2

U2
|x=0dτ

∣∣∣∣∣∣≤ C

t∫
0

∣∣U ′(−sτ + α − β)
∣∣ ∣∣∣φ2(0, τ )

∣∣∣dτ ≤ Ce−λβ, (3.25)

∣∣∣∣∣∣
t∫

0

V φ2
x

U
|x=0dτ

∣∣∣∣∣∣≤ C

t∫
0

|V (−sτ + α − β)|
∣∣∣φ2

x(0, τ )

∣∣∣dτ ≤ Ce−λβ, (3.26)

∣∣∣∣∣∣
t∫

0

Uxφ
2
x

U2
|x=0dτ

∣∣∣∣∣∣≤ C

t∫
0

∣∣U ′(−sτ + α − β)
∣∣ ∣∣∣φ2

x(0, τ )

∣∣∣dτ ≤ Ce−λβ. (3.27)

Then (3.10) follows from (3.20) and (3.22)–(3.25). To prove other boundary estimates, we make 
use of ψxt = φxx (see the second equation of (3.2)), integration by parts, and (3.15)–(3.17) to get

∣∣∣∣∣∣
t∫

0

φtφx

U
|x=0dτ

∣∣∣∣∣∣≤ C

∣∣∣∣∣∣
t∫

0

A′(τ )φt (0, τ )

U(−sτ + α − β)
dτ

∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣
t∫

0

{
A′(τ )φ(0, τ )

U(−sτ + α − β)

}
t

dτ

∣∣∣∣∣∣+ C

∣∣∣∣∣∣
t∫

0

A′′(τ )φ(0, τ )

U(−sτ + α − β)
dτ

∣∣∣∣∣∣
+ C

∣∣∣∣∣∣
t∫

0

sφ(0, τ )A′(τ )U ′(−sτ + α − β)

U2(−sτ + α − β)
dτ

∣∣∣∣∣∣
≤ C

∣∣∣∣ A′(t)φ(0, t)

U(−st + α − β)

∣∣∣∣+ C

∣∣∣∣A′(0)φ0(0)

U(α − β)

∣∣∣∣
+ C

t∫
0

(∣∣A′′(τ )
∣∣+ ∣∣A′(τ )

∣∣) |φ(0, τ )|dτ

≤ CN(t)

⎡
⎣|A′(t)| + |A′(0)| +

t∫
0

(∣∣A′′(τ )
∣∣+ ∣∣A′(τ )

∣∣)dτ

⎤
⎦

≤ Ce−λβ. (3.28)
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Thus (3.11) results from (3.22) and (3.26)–(3.28). Following a process similar to (3.28), we can 
derive ∣∣∣∣∣∣

t∫
0

(φxφxx)|x=0dτ

∣∣∣∣∣∣≤ Ce−λβ and

∣∣∣∣∣∣
t∫

0

φxtφxx

U
|x=0dτ

∣∣∣∣∣∣≤ Ce−λβ,

which lead to (3.12). This completes the proof of Lemma 3.6. �
Then the L2-estimate is given as follows.

Lemma 3.7. Let the assumptions in Proposition 3.5 hold. Then there exists a constant C > 0
such that

‖φ‖2 + ‖ψ‖2 +
t∫

0

‖φx‖2 dτ ≤ C

⎛
⎝‖φ0‖2 + ‖ψ0‖2 + e−λβ + N(t)

t∫
0

∞∫
0

ψ2
x dxdτ

⎞
⎠ . (3.29)

Proof. Multiplying the first equation of (3.2) by φ/U and the second by χψ and adding these 
equalities, we obtain

1

2

(
φ2

U

)
t

− φ2

2

(
1

U

)
t

+
(

χψ2

2

)
t

= Dφφxx

U
+ χ (φψ)x + χV φφx

U
+ χφφxψx

U

Noting that

φ2

2

(
1

U

)
t

= − sφ2

2

(
1

U

)
x

,

φφxx

U
=
(

φφx

U

)
x

− φ2
x

U
− φφx

(
1

U

)
x

=
(

φφx

U

)
x

− φ2
x

U
−
(

φ2

2

(
1

U

)
x

)
x

+ φ2

2

(
1

U

)
xx

,

V φφx

U
= 1

2

(
V φ2

U

)
x

− φ2

2

(
V

U

)
x

,

we get

1

2

(
φ2

U
+ χψ2

)
t

+ Dφ2
x

U
=
(

χφψ + Dφφx

U
+ DUxφ

2

2U2
+ χV φ2

2U

)
x

+ φ2

2

[(
D

U

)
xx

−
(

s + χV

U

)
x

]
+ χφφxψx

U
. (3.30)

By using (2.1) and the fact that Ux < 0 and 0 < u+ ≤ U ≤ u−, it can be checked that(
D

U

)
xx

−
(

s + χV

U

)
x

= 2u+
U3

(s + χv+) · Ux < 0. (3.31)

Substituting (3.31) into (3.30) and integrating the equation over [0, ∞) × [0, t], we derive
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1

2

∞∫
0

(
φ2

U
+ χψ2

)
dx + D

t∫
0

∞∫
0

φ2
x

U
dxdτ

= 1

2

∞∫
0

(
φ2

0

U
+ χψ2

0

)
dx −

t∫
0

(
χφψ + Dφφx

U
+ DUxφ

2

2U2
+ χV φ2

2U

)
|x=0dτ

+ χ

t∫
0

∞∫
0

φxψxφ

U
dxdτ

≤ χ

2
‖ψ0‖2 + C‖φ0‖2 +

∣∣∣∣∣∣
t∫

0

(
χφψ + Dφφx

U
+ DUxφ

2

2U2
+ χV φ2

2U

)
|x=0dτ

∣∣∣∣∣∣
+ DN(t)

2

t∫
0

∞∫
0

φ2
x

U
dxdτ + N(t)χ2

2D

t∫
0

∞∫
0

ψ2
x

U
dxdτ,

where we have used the fact that ‖φ(·, t)‖L∞ ≤ N(t) by (3.5). Then, using (3.10) and 0 < u+ ≤
U ≤ u−, we obtain (3.29) and the proof of Lemma 3.7 is complete. �

The next lemma gives the estimate of the first order derivatives of (φ, ψ).

Lemma 3.8. Let the assumptions in Proposition 3.5 hold. Then there exists a constant C > 0
such that

‖φ‖2
1 + ‖ψ‖2

1 +
t∫

0

(
‖φx‖2

1 + ‖ψx‖2
)

dτ ≤ C
(
‖φ0‖2

1 + ‖ψ0‖2
1 + e−λβ

)
. (3.32)

Proof. Multiplying the first equation of (3.2) by −φxx/U and the second by −χψxx and adding 
these equalities, we obtain

−φtφxx

U
− χψtψxx = −Dφ2

xx

U
− χ (φxψx)x − χV φxφxx

U
− χφxψxφxx

U
.

Simple calculations give us that

−φtφxx

U
= −

(
φtφx

U

)
x

+
(

φt

U

)
x

φx

= −
(

φtφx

U

)
x

+ φxtφx

U
+
(

1

U

)
x

φtφx

= −
(

φtφx

U

)
x

+
(

φ2
x

2U

)
t

+
(

1

U

)
x

sφ2
x

2
+
(

1

U

)
x

φtφx︸ ︷︷ ︸,

I
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I =
(

1

U

)
x

φx (Dφxx + χV φx + χUψx + χφxψx)

=
(

Dφ2
x

2

(
1

U

)
x

)
x

− Dφ2
x

2

(
1

U

)
xx

+ χV

(
1

U

)
x

φ2
x

+ χU

(
1

U

)
x

ψxφx + χ

(
1

U

)
x

φ2
xψx,

−ψtψxx = − (ψtψx)x +
(

ψ2
x

2

)
t

,

−V φxφxx

U
= −1

2

(
V φ2

x

U

)
x

+ φ2
x

2

(
V

U

)
x

.

Thus we get from the above inequalities that

1

2

(
φ2

x

U
+ χψ2

x

)
t

+ Dφ2
xx

U
=
(

φtφx

U
+ χψtψx + DUxφ

2
x

2U2
− χφxψx − χV φ2

x

2U

)
x

+ φ2
x

2

[(
D

U

)
xx

−
(

s + χV

U

)
x

]
+ χVxφ

2
x

U

− χU

(
1

U

)
x

ψxφx − χ

(
1

U

)
x

φ2
xψx − χφxψxφxx

U
. (3.33)

Integrating (3.33) over [0, ∞) × [0, t] and using (3.31), we obtain

1

2

∞∫
0

(
φ2

x

U
+ χψ2

x

)
dx + D

t∫
0

∞∫
0

φ2
xx

U
dxdτ

= 1

2

∫ (
φ2

x0

U
+ χψ2

x0

)
dx −

t∫
0

(
φtφx

U
+ χψtψx + DUxφ

2
x

2U2
− χφxψx − χV φ2

x

2U

)
|x=0dτ

+ χ

t∫
0

∞∫
0

Vxφ
2
x

U
dxdτ + χ

t∫
0

∞∫
0

Uxψxφx

U
dxdτ

+ χ

t∫
0

∞∫
0

Uxφ
2
xψx

U2
dxdτ − χ

t∫
0

∞∫
0

φxxφxψx

U
dxdτ.

Duo to (2.10), it is easy to get that Ux = U ′ = λ(u+−u−)eλz

(eλz+1)2 and Vx = −Ux

s
which imply

|Ux | ≤ λ(u− − u+), |Vx | ≤ λv+. (3.34)

Using the Cauchy–Schwarz inequality, the boundary estimate (3.11), (3.34) and ‖ψx(·, t)‖L∞ ≤
N(t) < 1 for any t ∈ [0, T ] by (3.5), we have
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∞∫
0

(
φ2

x

U
+ χψ2

x

)
dx + D

t∫
0

∞∫
0

φ2
xx

U
dxdτ

≤
∞∫

0

(
φ2

x0

U
+ χψ2

x0

)
dx + Ce−λβ + C

t∫
0

∞∫
0

φ2
x

U
dxdτ + C

t∫
0

∞∫
0

Uψ2
x dxdτ

+ DN(t)

2

t∫
0

∞∫
0

φ2
xx

U
dxdτ + CN(t)

t∫
0

∞∫
0

φ2
x

U
dxdτ,

which together with (3.29) yields

∞∫
0

(
φ2

x

U
+ χψ2

x

)
dx + D

(
1 − N(t)

2

) t∫
0

∞∫
0

φ2
xx

U
dxdτ

≤ C

⎛
⎝‖φ0‖2

1 + ‖ψ0‖2
1 + e−λβ + N(t)

t∫
0

∞∫
0

ψ2
x dxdτ +

t∫
0

∞∫
0

Uψ2
x dxdτ

⎞
⎠ . (3.35)

Now we claim

t∫
0

∞∫
0

ψ2
x dxdτ ≤ C

(
‖ψ0‖2

1 + ‖φ0‖2 + e−λβ
)
. (3.36)

Indeed multiplying the first equation of (3.2) by ψx , we get

χUψ2
x = φtψx − Dφxxψx − χV φxψx − χφxψ

2
x . (3.37)

Integrating (3.37) over [0, ∞) × [0, t], using the fact ψxt = φxx and following results

φtψx = (φψx)t − φψxt = (φψx)t − φφxx = (φψx)t − (φφx)x + φ2
x,

φxxψx = ψxtψx = 1

2
(ψ2

x )t ,

we obtain

D

2

∞∫
0

ψ2
x dx + χ

t∫
0

∞∫
0

Uψ2
x dxdτ

= D

2

∞∫
ψ2

0xdx +
∞∫

φψxdx −
∞∫

φ0ψ0xdx +
t∫
(φφx)|x=0dτ
0 0 0 0



5186 M. Mei et al. / J. Differential Equations 259 (2015) 5168–5191
+
t∫

0

∞∫
0

φ2
xdxdτ − χ

t∫
0

∞∫
0

V φxψxdxdτ − χ

t∫
0

∞∫
0

φxψ
2
x dxdτ

≤ D + 1

2

∞∫
0

ψ2
0xdx + 1

2

∫
φ2

0dx + Ce−λβ + 1

D

∞∫
0

φ2dx + D

4

∞∫
0

ψ2
x dx +

t∫
0

∞∫
0

φ2
xdxdτ

+ C(1 + N(t))

t∫
0

∞∫
0

φ2
x

U
dxdτ + (1 + N(t))χ

4

t∫
0

∞∫
0

Uψ2
x dxdτ,

where we have used Young’s inequality and the fact ‖ψx(·, t)‖L∞ ≤ N(t), |V | ≤ C. From this 
inequality and using 0 < u+ ≤ U ≤ u− and (3.29), it follows that

∞∫
0

ψ2
x dx +

t∫
0

∞∫
0

Uψ2
x dxdτ

≤ C

⎛
⎝ ∞∫

0

ψ2
0xdx +

∞∫
0

φ2
0dx + Ce−λβ +

∞∫
0

φ2

U
dx +

t∫
0

∞∫
0

φ2
x

U
dxdτ

⎞
⎠

≤ C

⎛
⎝‖ψ0‖2

1 + ‖φ0‖2 + e−λβ + N(t)

t∫
0

∞∫
0

ψ2
x dxdτ

⎞
⎠ . (3.38)

Choosing N(t) sufficiently small and using 0 < u+ ≤ U ≤ u−, we get (3.36) from (3.38). Then 
substituting (3.36) into (3.35) yields

∞∫
0

ψ2
x dx +

∞∫
0

φ2
x

U
dx + D

t∫
0

∞∫
0

φ2
xx

U
dxdτ ≤ C

(
‖ψ0‖2

1 + ‖φ0‖2
1 + Ce−λβ

)
. (3.39)

Thus, by 0 < u+ ≤ U ≤ u−, (3.29) and (3.39), we derive (3.32). �
Next, we give the estimates of the second order derivative of (φ, ψ).

Lemma 3.9. Let the assumptions in Proposition 3.5 hold. Then there exists a constant C > 0
such that

‖φxx‖2 + ‖ψxx‖2 +
t∫

0

(
‖φxxx‖2 + ‖ψxx‖2

)
dτ ≤ C

(
‖φ0‖2

2 + ‖ψ0‖2
2 + e−λβ

)
. (3.40)

Proof. We differentiate (3.2) with respect to x to get{
φxt = Dφxxx + χUxψx + χUψxx + χVxφx + χV φxx + χφxxψx + χφxψxx,

ψ = φ .
(3.41)
xt xx
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Multiplying the first equation of (3.41) by −φxxx/U , one gets

−φxtφxxx

U
= −Dφ2

xxx

U
− χψxxφxxx − χφxxx

U
(Uxψx + Vxφx + V φxx + φxxψx + φxψxx).

(3.42)

If we follow the standard procedure to integrate (3.42) with respect to x over R+ to derive 
the estimate of ‖φxx‖2, the boundary term 

∫ t

0 φxxψxx |x=0dτ will be present, which is out of 
control in our problem. Hence to avoid this boundary estimate, below we shall develop a new 
idea by constructing the term χψxxφxxx from the second equation of (3.41) and canceling the 
term −χψxxφxxx in (3.42) which causes the boundary estimates. By doing this, new boundary 
estimate arising is 

∫ t

0 φxtφxx |x=0dτ which is however under control (see (3.12)). To this end, we 
differentiate the second equation of (3.41) and multiply the resultant equation by χψxx to get(

χψ2
xx

2

)
t

= χψxxφxxx. (3.43)

Adding (3.42) and (3.43) up and noticing that

−φxtφxxx

U
= −

(
φxtφxx

U

)
x

+ φxxtφxx

U
− Uxφxtφxx

U2

= −
(

φxtφxx

U

)
x

+
(

φ2
xx

2U

)
t

− sUxφ
2
xx

2U2

− Uxφxx

U2
(Dφxxx +χUxψx +χUψxx +χVxφx +χV φxx +χφxxψx +χφxψxx),

we obtain

1

2

(
φ2

xx

U
+ χψ2

xx

)
t

+ Dφ2
xxx

U

=
(

φxtφxx

U

)
x

+ sUxφ
2
xx

2U2
− χφxxx

U
(Uxψx + Vxφx + V φxx + φxxψx + φxψxx)

+ Uxφxx

U2
(Dφxxx + χUxψx + χUψxx + χVxφx + χV φxx + χφxxψx + χφxψxx).

(3.44)

Integrating (3.44) with respect to x over [0, ∞) and rearranging the resulting equation, we get

1

2

d

dt

∞∫
0

(
φ2

xx

U
+ χψ2

xx

)
dx + D

∞∫
0

φ2
xxx

U
dx

= −φxtφxx

U
|x=0 − χ

∞∫
0

φxxx

U

(
Uxψx + Vxφx + V φxx + φxxψx + φxψxx − DUxφxx

χU

)
dx

︸ ︷︷ ︸

I1
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+
∞∫

0

Uxφxx

U2

(
sφxx

2
+ χUxψx + χUψxx + χVxφx + χV φxx + χφxxψx + χφxψxx

)
dx

︸ ︷︷ ︸
I2

.

(3.45)

Because 
∣∣∣Ux

U

∣∣∣, |Ux | and |Vx | are all bounded, ‖ψx(·, t)‖L∞ ≤ N(t) < 1 and ‖φx(·, t)‖L∞ ≤
N(t) < 1 for any t ∈ [0, T ], we get by the Cauchy–Schwartz inequality that

I1 ≤ D + N(t)

2

∞∫
0

φ2
xxx

U
dx + C

∞∫
0

Uψ2
x dx + C

∞∫
0

φ2
x

U
dx

+ C(1 + N(t))

∞∫
0

φ2
xx

U
dx + CN(t)

∞∫
0

ψ2
xx

U
dx,

I2 ≤ C(1 + N(t))

∞∫
0

φ2
xx

U
dx + C

∞∫
0

Uψ2
x dx + C

∞∫
0

φ2
x

U
dx

+ C

∞∫
0

Uψ2
xxdx + CN(t)

∞∫
0

ψ2
xx

U
dx.

Substituting the above two inequalities into (3.45), integrating the resultant inequality over [0, t]
and using (3.32), one has

∞∫
0

φ2
xx

U
dx +

∞∫
0

ψ2
xxdx +

t∫
0

∞∫
0

φ2
xxx

U
dxdτ

≤ C

⎛
⎝‖φ0‖2

2 + ‖ψ0‖2
2 + e−λβ +

t∫
0

∞∫
0

Uψ2
xxdxdτ + N(t)

t∫
0

∞∫
0

ψ2
xxdxdτ

⎞
⎠ . (3.46)

Next we estimate the term 
∫ t

0

∫∞
0 Uψ2

xxdxdτ . Multiplying the first equation of (3.41) by ψxx , 
we obtain

χUψ2
xx = φxtψxx − (Dφxxx + χUxψx + χVxφx + χV φxx + χφxxψx + χφxψxx)ψxx.

With the following identities

φxxt = ψxxx,

φxtψxx = (φxψxx)t − φxψxxt = (φxψxx)t − φxφxxx = (φxψxx)t − (φxφxx)x + φ2
xx,

φxxxψxx = ψxxtψxx = 1
(ψ2

xx)t ,
2
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we have

D

2
(ψ2

xx)t + χUψ2
xx = (φxψxx)t − (φxφxx)x + φ2

xx

− (χUxψx + χVxφx + χV φxx + χφxxψx + χφxψxx)ψxx.

Thus, integrating the above equation over [0, ∞) × [0, t] and using the Cauchy–Schwartz in-
equality, we have

D

2

∞∫
0

ψ2
xxdx + χ

t∫
0

∞∫
0

Uψ2
xxdxdτ

≤ 1

D

∞∫
0

φ2
xdx + D

4

∞∫
0

ψ2
xxdx +

(
D + 1

2

) ∞∫
0

ψ2
0xxdx + 1

2

∞∫
0

φ2
0xdx

+
t∫

0

(φxφxx)|x=0dx +
t∫

0

∞∫
0

φ2
xxdxdτ + (1 + N(t))χ

4

t∫
0

∞∫
0

Uψ2
xxdxdτ

+ C

⎛
⎝ t∫

0

∞∫
0

ψ2
x

U
dxdτ +

t∫
0

∞∫
0

φ2
x

U
dxdτ +

t∫
0

∞∫
0

φ2
xx

U
dxdτ

⎞
⎠+ N(t)

t∫
0

∞∫
0

ψ2
xxdxdτ.

Then it follows from (3.12) and (3.32) that

∞∫
0

ψ2
xxdx +

t∫
0

∞∫
0

Uψ2
xxdxdτ

≤ C

⎛
⎝‖φ0‖2

1 + ‖ψ0‖2
2 + e−λβ + N(t)

t∫
0

∞∫
0

ψ2
xxdxdτ

⎞
⎠ . (3.47)

When N(t) is small enough, the above inequality gives

∞∫
0

ψ2
xxdx +

t∫
0

∞∫
0

ψ2
xxdxdτ ≤ C

(
‖φ0‖2

1 + ‖ψ0‖2
2 + e−λβ

)
, (3.48)

where 0 < u+ ≤ U ≤ u− has been used. This together with (3.46) leads to

∞∫
0

ψ2
xxdx +

∞∫
0

φ2
xx

U
dx +

t∫
0

∞∫
0

φ2
xxx

U
dxdτ ≤ C

(
‖φ0‖2

2 + ‖ψ0‖2
2 + e−λβ

)
, (3.49)

which in combination with (3.48) gives (3.40). The proof of Lemma 3.9 is finished. �
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Finally, the desired estimate (3.6) follows from (3.32) and (3.40), and the proof of Proposi-
tion 3.5 is complete.

3.3. Proof of Theorem 3.1

To complete the proof of Theorem 3.1, we only need to prove (3.7) since the rest has been 
implied by Proposition 3.5. From (3.6), we have

‖φx(·, t),ψx(·, t)‖1 → 0 as t → ∞.

Hence, for all x ∈R+,

φ2
x(x, t) = 2

∣∣∣∣∣∣
∞∫

x

φxφxx(y, t)dy

∣∣∣∣∣∣
≤ 2

⎛
⎝ ∞∫

0

φ2
xdy

⎞
⎠1/2⎛⎝ ∞∫

0

φ2
xxdy

⎞
⎠1/2

≤ ‖φx(·, t)‖1 → 0 as t → ∞.

Similarly, we have

ψx(x, t) → 0 as t → ∞ for all x ∈ R+.

Hence (3.7) is proved and the proof of Theorem 3.1 is complete.
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