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Abstract. This paper is concerned with the stability of non-monotone trav-
eling waves to a nonlocal dispersion equation with time-delay, a time-delayed

integro-differential equation. When the equation is crossing-monostable, the

equation and the traveling waves both loss their monotonicity, and the travel-
ing waves are oscillating as the time-delay is big. In this paper, we prove that
all non-critical traveling waves (the wave speed is greater than the minimum
speed), including those oscillatory waves, are time-exponentially stable, when

the initial perturbations around the waves are small. The adopted approach

is still the technical weighted-energy method but with a new development.
Numerical simulations in different cases are also carried out, which further

confirm our theoretical result. Finally, as a corollary of our stability result, we
immediately obtain the uniqueness of the traveling waves for the non-monotone
integro-differential equation, which was open so far as we know.

1. Introduction. Subsequently to our previous study [15] on the stability of mono-
tone traveling waves to the nonlocal dispersion equation, in this paper we further
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consider the stability of non-monotone traveling waves to the nonlocal dispersion
equation with time-delay{

vt −D(J ∗ v − v) + d(v) = K ∗ b(v(t− r, ·)),
v(s, x) = v0(s, x), s ∈ [−r, 0], x ∈ R.

(1)

This model represents the population dynamics of single species like Australian
blowflies [9, 13, 14, 15, 31, 37, 38]. Here, v(t, x) denotes the total population of
matured species at time t and location x, J(x) and K(x) are non-negative, unit and
symmetric kernels, where, J(x− y) is thought of as the probability distribution of
jumping from location y to location x, and the convolution

J ∗ v =

∫
R

J(x− y)v(t, y)dy

is the rate at which individuals are arriving to position x from all other places,
while, the term

−v(t, x) = −
∫
R

J(x− y)v(t, x)dy

stands the rate at which they are leaving the location x to travel to all other places.
The form D(J ∗v−v) is called the nonlocal dispersion and represents transportation
due to long range dispersion mechanisms, where D > 0 is the coefficient of spacial
diffusion for the species. It can be verified by Fourier transform and Taylor formula
[2, 3, 4, 15, 16, 17, 37] that

J ∗ v − v ≈ Cvxx,
when J(x) is compactly supported. The parameter r > 0 is the maturation time
for the species, mathematically, we call it the time-delay. d(v) is the death rate
function, and b(v) is the birth rate function. Summarizing from the ecological
background set-up, we may assume throughout the paper that:

(H1) d(v) is a non-negative, C2-smooth increasing function, and satisfies d′(v) ≥
d′(0) > 0 for v ∈ [0,∞);

(H2) b(v) is a non-negative, non-monotone, C2-smooth function, and satisfies b′(0)
≥ |b′(v)| for v ∈ [0,∞);

(H3) Both kernels J(x) and K(x) are non-negative, symmetric and unit,

J(x) ≥ 0, J(−x) = J(x),

∫
R

J(x)dx = 1, (2)

K(x) ≥ 0, K(−x) = K(x),

∫
R

K(x)dx = 1, (3)

and satisfies∫
R

|x|J(x)e−ηxdx <∞ and

∫
R

|x|K(x)e−ηxdx <∞ for any η > 0; (4)

(H4) Two constant equilibria of (1): v− = 0 is unstable and v+ is stable, namely,
d(0) = 0, b(0) = 0, d(v+) = b(v+), d′(0)− b′(0) < 0 and d′(v+)− b′(v+) > 0.

There are two well-known examples of the equation (1) satisfying (H1)-(H4). One
is the so-called nonlocal dispersion Nicholson’s blowflies equation [11, 13, 14, 24, 22,
23, 25, 32] with

d(v) = δv and b(v) = pve−av, for δ > 0, a > 0, p > 0, (5)

where v− = 0, v+ = 1
a ln p

δ . When p
δ > e, the birth rate function b(v) is a uni-

modality function with the maximum at v∗ := 1
a ∈ (0, v+), and it can be verified
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that |b′(v)| ≤ b′(0) for v ∈ [0,∞). The other is the so-called nonlocal dispersion
Mackey-Glass equation [20, 12, 18, 22, 23] with

d(v) = δv and b(v) =
pv

1 + avq
, for δ > 0, a > 0, p > 0, (6)

where v− = 0, v+ =
(
p−δ
δa

) 1
q

. When p
δ >

q
q−1 , the birth rate function b(v) is non-

monotone with uni-modality at v∗ := [a(q− 1)]−1/q ∈ (0, v+), and it can be verified
that |b′(v)| ≤ b′(0) for v ∈ [0,∞).

The main purpose in this paper is to study the stability for all non-critical travel-
ing waves to (1), particularly, for those oscillating waves. The traveling wavefronts
for (1) connecting two steady states v± at far fields are the special solutions to (1)
in the form of v(t, x) = φ(x+ ct), namely,

cφ′(ξ)−D
(∫

R

J(y)φ(ξ − y)dy − φ(ξ)
)

+ d(φ(ξ))

=

∫
R

K(y)b(φ(ξ − y − cr))dy,

φ(±∞) = v±, φ(ξ) ≥ 0,

(7)

where ξ = x + ct and ′ = d
dξ . The existence and uniqueness of the traveling waves

for the local/nonlocal dispersion equations with or without time-delay have been
intensively studied recently in [5, 6, 7, 8, 15, 31, 36]. When the dynamical system
is non-monotone, the effect of time-delay is essential, because, when the time-delay
is large, the traveling waves will be oscillating, or even no traveling waves exist.
This phenomenon is totally different from the case without time-delay, even if the
governing equation is non-monotone. The existence of the monotone/non-monotone
traveling waves has been investigated in [37, 38] recently, when the equation is non-
monotone. But, the uniqueness of the traveling waves in this case is unknown yet.

Now let us have a brief review on the existence of these waves. Let φ(ξ) = φ(x+ct)
be a traveling wave of (1), namely, the solution of (7). In order to specify the wave
speed c, let us linearize (7) around φ = 0, then

cφ′ −D
(∫

R

J(y)φ(ξ − y)dy − φ(ξ)
)

+ d′(0)φ = b′(0)

∫
R

K(y)φ(ξ − y − cr)dy.

Heuristically, we expect φ(ξ) = O(1)e−λ|ξ| = O(1)eλξ → 0 as ξ → −∞ for some
eigenvalue λ > 0. Substituting this to the above linearized equation, we obtain the
following characteristic equation for the pair of (c, λ):

cλ−D
∫
R

J(y)e−λydy +D + d′(0) = b′(0)e−λcr
∫
R

K(y)e−λydy. (8)

To investigate the admission of (c, λ) to the above characteristic equation, we denote

Gc(λ) : = cλ−D
∫
R

J(y)e−λydy +D + d′(0),

Hc(λ) : = b′(0)

∫
R

K(y)e−λ(y+cr)dy.

Since

G′′c (λ) = −D
∫
R

y2J(y)e−λydy < 0, and

H ′′c (λ) = b′(0)e−λcr
∫
R

(y + cr)2K(y)e−λydy > 0,
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so Gc(λ) is concave downward and Hc(λ) is concave upward. Note that Gc(0) =
d′(0) < b′(0) = Hc(0), from the graphs of Gc(λ) and Hc(λ), then Gc(λ) and Hc(λ)
are either touched at a unique tangent point, or intersect with two points, or never
cross, based on different value of c > 0. For the tangent point (c∗, λ∗), it can be
uniquely determined by

Gc∗(λ∗) = Hc∗(λ∗), G′c∗(λ∗) = H ′c∗(λ∗),

namely,

c∗λ∗ −D
∫
R

J(y)e−λ∗ydy +D + d′(0) = b′(0)e−λ∗c∗r
∫
R

K(y)e−λ∗ydy, (9)

c∗ +D

∫
R

yJ(y)e−λ∗ydy = −b′(0)e−λ∗c∗r
∫
R

(y + c∗r)K(y)e−λ∗ydy. (10)

When c > c∗ > 0, there exist two numbers 0 < λ1 < λ2, such that the characteristic
equation (8) has two solutions (c, λ1) and (c, λ2). That is, Gc(λi) = Hc(λi) for
i = 1, 2, and Gc(λ) > Hc(λ) for λ1 < λ < λ2, namely,

cλi−D
∫
R

J(y)e−λiydy+D+d′(0) = b′(0)e−λicr

∫
R

K(y)e−λiydy, i = 1, 2, (11)

and, for λ ∈ (λ1, λ2),

cλ−D
∫
R

J(y)e−λydy +D + d′(0) > b′(0)e−λcr
∫
R

K(y)e−λydy. (12)

When 0 < c < c∗, the characteristic equation (8) has no solution. Therefore, as
showed in [37, 38], when c ≥ c∗ > 0, the traveling waves of (7) exist, and when
c < c∗, no traveling waves exist. For the existing traveling waves, they may be
non-monotone and oscillatory around v+ when the time-delay r is suitably large
[12, 19, 33, 34]. Furthermore, notice from [9], when |b′(v+)| > d′(v+), there exists
a number r > 0, if the time-delay is bigger: r ≥ r, there will be no traveling waves.
Such a phenomenon for the local Nicholson’s blowflies model has been theoretically
studied and numerically reported recently in [12, 19]. The uniqueness of traveling
wavefronts in the case of |b′(v+)| ≥ d′(v+) was proved in [1]. But, to our best
knowledge, the uniqueness of the traveling waves for the nonlocal and non-monotone
equation (1) in the case |b′(v+)| > d′(v+) with 0 < r < r̄ are still unknown.

The main target of the present paper is to show the stability of the monotone/non-
monotone wavefronts to (1) for all c > c∗, where the wave speed c under considera-
tion can be allowed sufficiently close to the minimum wave speed c∗. We concentrate
ourselves on the non-critical waves with c > c∗, and will leave the more challeng-
ing case of the critical waves with c = c∗ for future. The difficulties we have to
face in this paper are the nonlocality and the non-monotonicity for the dispersal
reaction-diffusion equation with time-delay (1).

Now let us draw a background picture on the progress of the study in this subject.
When the birth rate function b(v) and the death rate function d(v) are monotone
for v ∈ [0, v+] under consideration, the equation (1) and its traveling waves both are
monotone for any time-delay r > 0. In this case, when the wave speed is sufficiently
large c � 1, Pan-Li-Lin [31] first showed the local stability of those fast traveling
waves by the weighted energy method developed in [24, 25, 22, 23, 28]. Later then,
Huang-Mei-Wang [15] showed that, all monotone traveling waves φ(x+ct) with c ≥
c∗ are globally stable, and particularly, the non-critical monotone traveling waves
φ(x+ct) with c > c∗ are exponentially stable, and the critical monotone waves φ(x+
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c∗t) are algebraically stable. The adopted method is the combination of Fourier
transform and the weighted energy estimates with the monotone technique. When
the birth rate function b(v) is non-monotone for v ∈ [0, v+] under consideration,
the monotone technique cannot be applied any more, because the equation (1)
losses its monotonicity, and the traveling waves will be oscillating or even not exist
when the time-delay r is big enough. Following [24, 25, 22, 23, 35], by the regular
weighted energy method, Zhang-Ma [38] proved that the waves with sufficiently
large c � 1 are locally stable. The exponential convergence rate is also derived.
However, the most interesting cases are for the slower waves with c > c∗ (c can be
arbitrarily close to c∗), and particularly, the case for the critical oscillating waves
with c = c∗. Very recently, for the local Nicholson’s blowflies equation, Lin-Lin-
Lin-Mei [19] succeeded in obtaining the stability of all monotone/non-monotone
traveling waves with c > c∗, by means of the regular L2-weighted energy method
with a new development by a nonlinear Halanay’s inequality. But, from the previous
studies [25, 23], we understand that, the regular L2-weighted energy method cannot
be perfectly applied to solve the stability of these slower waves with c ≥ c∗ for the
nonlocal equation (the equation involves integrals). The nonlocal terms usually yield
some gaps in the L2-energy estimates, which cause us to need to take c� 1 so then
we can control these gaps. In order to avoid such a trouble, for the case of nonlocal
but still monotone equation, Mei-Ou-Zhao [26], Mei-Wang [27] and Huang-Mei-
Wang [15] showed the stability for all (monotone) traveling waves with c ≥ c∗ by the
L1-energy method but it sufficiently depends on the advantage of the monotonicity
of both the equation itself and the traveling waves. Notice that, in this paper
the equation (1) is nonlocal and non-monotone, and the traveling waves may be
oscillating when r is big, so the above mentioned approaches, including the regular
weighted energy method, the monotone method and Fourier transform method,
they all seem to fail in obtaining the stability of the wavefronts for (1). Therefore,
we need to look for a new strategy to treat this nonlocal and non-monotone case.
Inspired by the study on classical Fisher-KPP equation by Moet [30] and the study
on hyperbolic p-system by Matsumura-Mei [21], where they introduced a suitable
transform function (or say, an anti-weight) to switch the equation to a new equation
(we call it the anti-weighted energy method), we realize that some gaps caused by
the integral terms in the L2 weighted energy estimates may not come out with this
new transformed equation. On the other hand, we recognize that the oscillations
usually occur around the stable node u+ when ξ → +∞, and we can come over the
difficulty caused by these oscillations by the nonlinear Halanay’s inequality [19]. So,
with such two observations, we may prove the stability for these oscillatory traveling
waves with any c > c∗ to the integro-differential equation (1).

The paper is organized as follows. In Section 2, we state our main stability the-
orems for the non-critical traveling waves to (1), and give the applications to the
dispersion Nicholson’s blowflies equation and the dispersion Mackey-Glass equa-
tion, respectively. Some numerical simulations are also carried out in this section.
We test the dispersion Nicholson’s blowflies equation with p/δ > e2 such that the
working equation is non-monotone. When the time delay is small, the solution nu-
merically behaves like a stable monotone traveling wave, and when the time-delay
is a bit large, the solution then numerically behaves like a stable oscillatory travel-
ing wave. These reported results further confirm our stability theorems. Then, in
what follows, we concentrate ourselves on the theoretical proof of the stability theo-
rems. In Section 3, we reformulate the equation (1) to the corresponding perturbed
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equation around a given non-critical traveling wave, and state the stability of the
new perturbed equation. Section 4 is devoted to the proof of stability theorem.
The adopted approach is the so-called transformed energy method and Halanay’s
inequality. In Section 5, as a corollary of our stability theorem, we prove the unique-
ness of traveling waves in the non-monotone case, which is still open so far as we
know.

In what follows, we always denote a generic constant by C > 0, and a specific
positive constant by Ci > 0 (i = 0, 1, 2, · · · ). Let I be an interval, typically I = R.
L2(I) is the space of the square integrable functions defined on I, and Hk(I) (k ≥
0) is the Sobolev space of the L2-functions f(x) defined on the interval I whose

derivatives di

dxi f (i = 1, · · · , k) also belong to L2(I). Let T > 0 be a number and B
be a Banach space. We denote by C([0, T ];B) the space of the B-valued continuous
functions on [0, T ] and L2([0, T ];B) is the space of the B-valued L2-functions on
[0, T ].

2. Main theorems and numerical simulations. In this section we state the
exponential stability of all non-critical monotone/non-monotone traveling waves to
(1), and its applications to Nicholson’s blowflies equation (5) and Mackey-Glass
equation (6), respectively. The proof of this stability theorem will be carried out in
the next two sections. To numerically support our theoretical results, we will also
present some numerical simulations at the end of this section.

For a given monotone/non-monotone non-critical traveling wave φ(x+ct) = φ(ξ)
of (7) with c > c∗, it is known that

φ(ξ) = O(1)e−λ1|ξ| → 0 as ξ → −∞,

where λ1 = λ1(c) is the eigenvalue specified in (11), and Gc(λ) − Hc(λ) > 0 for
λ ∈ (λ1, λ2) (see (12) above). Now we define a weight function as follows

w(x) = e−2λx, for λ ∈ (λ1, λ2). (13)

We now state our main stability theorems as follows.

Theorem 2.1 (Stability of monotone/non-monotone traveling waves). Under the
conditions (H1)-(H4), for any given traveling wave φ(x+ ct) with c > c∗ to Eq. (1),
whatever it is monotone or non-monotone, suppose that V0(s, x) := v0(s, x)−φ(x+

cs) ∈ C([−r, 0];C(R)),
√
w(x)V0(s, x) ∈ C([−r, 0];H1(R)) ∩ L2([−r, 0];H1(R)),

and lim
x→+∞

V0(s, x) =: V0,∞(s) ∈ C[−r, 0] exists uniformly with respect to s ∈ [−r, 0],

and

max
s∈[−r,0]

‖V0(s)‖2C + ‖
√
wV0(0)‖2H1 +

∫ 0

−r
‖
√
wV0(s)‖2H1ds ≤ δ20 ,

for some positive number δ0.

1. When d′(v+) ≥ |b′(v+)|, for any time-delay r > 0, then the solution v(t, x) of
(1) uniquely and globally exists in time, and satisfies

v(t, x)− φ(x+ ct) ∈ Cunif [−r,∞),√
w(x)[v(t, x)− φ(x+ ct)] ∈ C([−r,∞);H1(R)), (14)

∂x
(√

w(x)[v(t, x)− φ(x+ ct)]
)
∈ L2([−r,∞);H1(R)),

and

sup
x∈R
|v(t, x)− φ(x+ ct)| ≤ Ce−µt, t > 0 (15)
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for some constant µ > 0, where Cunif [−r, T ] is defined by, for 0 < T ≤ ∞,

Cunif [−r, T ] := { u(t, x) ∈ C([−r, T ]×R) such that

lim
x→+∞

u(t, x) exists uniformly in t ∈ [−r, T ]}.

2. When d′(v+) < |b′(v+)|, but the time-delay is small: 0 < r < r, where

r :=
π − arctan(

√
|b′(v+)|2 − d′(v+)2/d′(v+))√
|b′(v+)|2 − d′(v+)2

, (16)

then the solution v(t, x) of (1) uniquely and globally exists in time, and sat-
isfies (14) and the stability (15).

Since the uniqueness of the traveling waves for the non-monotone nonlocal dis-
persion equation (1) still remains open, here we address it as a corollary of Theorem
2.1.

Corollary 1 (Uniqueness of traveling waves). Let (H1)-(H4) hold, and let either
d′(v+) ≥ |b′(v+)| with any time-delay r > 0, or d′(v+) < |b′(v+)| but with a small
time-delay 0 < r < r, where r is defined in (16). Then, for any traveling waves
φ(x+ct) of (1), whatever they are monotone or non-monotone, with the same speed
c > c∗ and the same exponential decay at ξ = −∞:

φ(ξ) = O(1)e−λ1|ξ| as ξ → −∞, (17)

they are unique up to shift.

Now, we apply the stability theorem 2.1 to the nonlocal dispersion Nicholson’s
blowflies equation (1) with b(v) = pve−av and d(v) = δv. Here, v− = 0, v+ = 1

a ln p
d ,

and b(v) is non-monotone for v ∈ [0,∞) when p
δ > e, and automatically satisfies

the conditions (H1)-(H4). As a direct application of Theorem 2.1, we immediately
obtain the following stability of monotone/non-monotone traveling waves for the
case with the Nicholson’s birth rate b(v) = pve−av.

Theorem 2.2 (Stability of monotone/non-monotone traveling waves). Let b(v) =
pve−av and d(v) = δ > 0, and the kernels J(x) and K(x) satisfy (H3). For any
given traveling wave φ(x+ ct) with c > c∗ connecting with v− = 0 and v+ = 1

a ln p
δ ,

whatever it is monotone or non-monotone, suppose that V0(s, x) := v0(s, x)−φ(x+

cs) ∈ C([−r, 0];C(R)),
√
w(x)V0(s, x) ∈ C([−r, 0];H1(R)) ∩ L2([−r, 0];H1(R)),

and the limit lim
x→+∞

V0(s, x) =: V0,∞(s) ∈ C[−r, 0] exists uniformly with respect to

s ∈ [−r, 0], and

max
s∈[−r,0]

‖V0(s)‖2C + ‖
√
wV0(0)‖2H1 +

∫ 0

−r
‖
√
wV0(s)‖2H1ds ≤ δ20 ,

for some positive number δ0 > 0.

1. When e < p
δ ≤ e2, for any time-delay r > 0, then, the solution v(t, x) of (1)

uniquely and globally exists in time in the space (14), and the stability (15)
with some constant µ > 0 holds for all t > 0.

2. When p
δ > e2 but with a small time-delay 0 < r < r, where

r :=
π − arctan

√
ln p

δ (ln p
δ − 2)

d
√

ln p
δ (ln p

δ − 2)
, (18)

then, the solution v(t, x) of (1) uniquely and globally exists in time in the
space (14), and the stability (15) with some constant µ > 0 holds for all t > 0.



1338 RUI HUANG, MING MEI, KAIJUN ZHANG AND QIFENG ZHANG

Next, we are going to state the stability result for the nonlocal dispersion Mackey-
Glass equation (1) with b(v) = pv

1+avq for a > 0, p > 0, q > 1, and d(v) = δv.

Here, v− = 0, v+ =
(
p−δ
δa

) 1
q

, and b(v) is non-monotone for v ∈ [0,∞) when p
δ >

q
q−1 , and automatically satisfies the conditions (H1)-(H4). As a direct application

of Theorem 2.1, we immediately obtain the following stability of monotone/non-
monotone traveling waves for the case with the Mackey-Glass birth rate b(v) =
pv

1+avq .

Theorem 2.3 (Stability of monotone/non-monotone traveling waves). Let b(v) =
pv

1+avq and d(v) = δ > 0, and the kernels J(x) and K(x) satisfy (H3). For any given

traveling wave φ(x + ct) with c > c∗ connecting with v− = 0 and v+ =
(
p−δ
δa

) 1
q

,

whatever it is monotone or non-monotone, suppose that V0(s, x) := v0(s, x)−φ(x+

cs) ∈ C([−r, 0];C(R)),
√
w(x)V0(s, x) ∈ C([−r, 0];H1(R)) ∩ L2([−r, 0];H1(R)),

and the limit lim
x→+∞

V0(s, x) =: V0,∞(s) ∈ C0[−r, 0] exists uniformly with respect to

s ∈ [−r, 0], and

max
s∈[−r,0]

‖V0(s)‖2C + ‖
√
wV0(0)‖2H1 +

∫ 0

−r
‖
√
wV0(s)‖2H1ds ≤ δ20 ,

for some positive number δ0 > 0.

1. When q
q−1 < p

δ ≤
q
q−2 , for any time-delay r > 0, then, the solution v(t, x)

of (1) uniquely and globally exists in time in the space (14), and the stability
(15) with some constant µ > 0 holds for all t > 0.

2. When p
δ >

q
q−2 but with a small time-delay 0 < r < r, where

r :=
π − arctan

(
δ−1
√

[(q − 1)pδ − q]2 − δ2
)

√
[(q − 1)pδ − q]2 − δ2

, (19)

then, the solution v(t, x) of (1) uniquely and globally exists in time in the
space (14), and the stability (15) with some constant µ > 0 holds for all t > 0.

Finally, at the end of this section, we are going to report some numerical results,
which will further demonstrate that the solution behaves like a monotone traveling
wave or an oscillatory traveling wave when the time-delay r is small or big.

Let us consider the nonlocal dispersion Nicholson’s blowflies equation (1) by
taking the kernels as

J(x) = K(x) =
1√
4π
e−x

2

,

and the birth rate function and death rate function selected as Nicholson’s type:

b(v) = pve−av, d(v) = δv.

Thus, this equation possesses two constant equilibria: v− = 0 and v+ = 1
a ln p

δ .
When p

δ > e, the birth rate b(v) is non-monotone, where b(v) is increasing for v ∈
[0, 1a ] and decreasing for v ∈ [ 1a , v+]. The condition d′(v+) ≥ |b′(v+)| is equivalent

to e < p
δ ≤ e

2, and d′(v+) < |b′(v+)| is for p
δ > e2. We choose the initial data

v0(s, x) =
v+

1 + e−kx
+ 0.1(cosx)e−0.001(x−500)

2

, s ∈ [−r, 0], (20)

which implies
|v0(s, x)− v±| = O(1)e−k|x| as x→ ±∞,
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Figure 1. Case 1: p
δ = 12 > e2 with small time-delay r =

0.1. From (a) to (i), the solution v(t, x) plots at times t =
0, 2, 5, 10, 20, 50, 100, 200, 300, which behaves as a stable
monotone traveling wave (no change of the wave’s shape after a
large time in the sense of stability) and travels from right to left.

where k > 0. For simplicity, we take D = δ = a = k = 1, and p = 12 so then
p
δ > e2, but leave the time-delay r free. Since p

δ > e2, from (16), we can calculate
r = 2.062047407711962 · · · . The traveling waves exist for 0 < r < r, and no
traveling waves exist for r ≥ r.
Case 1. Convergence to a monotone traveling wave when the time-delay
is small. In this case, we take r = 0.1 < r. The numerical results reported in
Figure 1 demonstrate that the solution v(t, x) of (1) behaves like a stable monotone
traveling wave after a large time.

Case 2. Convergence to an oscillatory traveling wave when the time-
delay is a little big. In this case, we take r = 1.0 < r. The numerical results
reported in Figure 2 demonstrate that the solution v(t, x) of (1) behaves like a stable
oscillatory traveling wave after a large time. In order to see how the oscillations of
the solution v(t, x) around v+ behave, let us enlarge v(t, x) at t = 180 in Figure 3.

3. Reformulation of the problem. This section is devoted to the proof of The-
orem 2.1 for the stability of those monotone or non-monotone traveling waves of
(1) .

Let φ(x + ct) = φ(ξ) be a given traveling wave of (1) with speed c > c∗ (no
matter it is monotone or non-monotone), and v(t, x) be the solution of (1) with a
small initial perturbation around the wave φ(x+ cs) for s ∈ [−r, 0]. Denote

V (t, ξ) := v(t, x)− φ(x+ ct) = v(t, ξ − ct)− φ(ξ),
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Figure 2. Case 2: p
δ = 12 > e2 with small time-delay r =

1.0. From (a) to (i), the solution v(t, x) plots at times t =
0, 2, 5, 10, 20, 50, 150, 200, 300, which behaves as a stable
oscillatory traveling wave (no change of the wave’s shape after a
large time in the sense of stability) and travels from right to left.
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Figure 3. Case 2: p
δ = 12 > e2 with small time-delay r = 1.0.

In order to see how the oscillations of v(t, x) behave, we present a
large scale plot for v(t, x) at t = 180.
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V0(s, ξ) := v0(s, x)− φ(x+ cs).

Then V (t, ξ) satisfies

∂V

∂t
+ c

∂V

∂ξ
−D(J ∗ V − V ) + d′(φ)V

−
∫
R

K(y)b′(φ(ξ − cr − y))V (t− r, ξ − y − cr)dy

= −P (V (t, ξ)) +

∫
R

K(y)Q(V (t− r, ξ − y − cr))dy, t > 0, ξ ∈ R,

V (s, ξ) = V0(s, ξ), s ∈ [−r, 0], ξ ∈ R,
(21)

where
P (V ) := d(φ+ V )− d(φ)− d′(φ)V (22)

with φ = φ(ξ) and V = V (t, ξ), and

Q(V ) := b(φ+ V )− b(φ)− b′(φ)V (23)

with φ = φ(ξ − cr) and V = V (t − r, ξ − cr). By Taylor’s expansion formula, we
know

|P (V )| ≤ C|V |2 and |Q(V )| ≤ C|V |2 (24)

for some positive constant C.
Let 0 ≤ T ≤ ∞, we define the solution space for (21) as follows

X(−r, T ) = {V | V ∈ C([−r, T ];C(R)) ∩ Cunif [−r, T ],
√
wV ∈ C([−r, T ];H1(R)), and (25)
√
wV ∈ L2([−r, T ];H1(R))}

equipped with the norm

N(T )2 = sup
t∈[−r,T ]

(
‖V (t)‖2C + ‖(

√
wV )(t)‖2H1 +

∫ t

−r
‖(
√
wV )(t)‖2H1dt

)
. (26)

Now we state the corresponding stability theorem for the initial value problem
(21) as follows.

Theorem 3.1 (Stability). Under the conditions (H1)-(H4), suppose that V0(s, ξ) ∈
X(−r, 0) and N(0) ≤ δ0.

1. When d′(v+) ≥ |b′(v+)|, for any time-delay r > 0, then the solution V (t, ξ) of
(21) uniquely and globally exists in X(−r,∞), and satisfies

sup
ξ∈R
|V (t, ξ)| ≤ Ce−µt, t > 0 (27)

for some constant µ > 0.
2. When d′(v+) < |b′(v+)|, but the time-delay is small: 0 < r < r for a specified

r in (16), then the solution V (t, ξ) of (21) uniquely and globally exists in
X(−r,∞), and satisfies the stability (27).

Notice that, Theorem 2.1 is equivalent to Theorem 3.1, and Theorem 3.1 can
be proved by the continuity extension method [24, 25] based on the following local
existence and the a priori energy estimates.

Proposition 1 (Local existence). Let (H1) − (H4) hold, and let d′(v+) ≥ |b′(v+)|
for any r > 0 or d′(v+) < |b′(v+)| for 0 < r < r hold. Suppose V0(s, ξ) ∈ X(−r, 0),
and N(0) ≤ δ1 for a given positive constant δ1 > 0, then there exists a small
t0 = t0(δ1) > 0 such that the local solution V (t, ξ) of (21) uniquely exists for
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t ∈ [−r, t0], and satisfies V ∈ X(−r, t0) and N(t0) ≤ C1 N(0) for some constant
C1 > 1.

Proposition 2 (A priori estimates). Assume that (H1)− (H4) hold, and d′(v+) ≥
|b′(v+)| for any r > 0 or d′(v+) < |b′(v+)| for 0 < r < r hold. Let V ∈ X(−r, T )
be a local solution of (21) for a given constant T > 0, then there exist positive
constants δ2 > 0, C2 > 1 and µ > 0 independent of T and V (t, ξ) such that, when
N(T ) ≤ δ2, then

‖V (t)‖2C + ‖(
√
wV )(t)‖2H1 +

∫ t

0

e−2µ(t−s)‖(
√
wV )(s)‖2H1ds ≤ C2e

−2µtN(0)2 (28)

holds for t ∈ [0, T ].

The local existence (Proposition 1) can be similarly proved by the standard
iteration technique (c.f. [19] and the references therein). The detail of the proof
is omitted. The a priori estimates (Proposition 2) will be the main effort in the
paper, and will be proved in next section.

4. A priori estimates. In this section, we are going to establish the a priori
estimates. The adopted approach is the so-called transformed energy method com-
bining with Fourier transform and nonlinear Halanay’s inequality.

Let V (t, ξ) ∈ X(−r, T ) be the local solution of the Cauchy problem (21). So,
V ∈ Cuinf [−r, T ]. Based on this, we first derive the boundedness of V as well as its
exponential decay in time, when ξ is sufficiently close to ∞.

Lemma 4.1. There exist a large number x0 � 1 (independent of t) and a number
µ1 > 0, such that:

1. When d′(v+) ≥ |b′(v+)|, for all r > 0, then

‖V (t)‖L∞[x0,∞) ≤ Ce−µ1t‖V0‖L∞([−r,0]×R) (29)

provided N(T )� 1;
2. When d′(v+) < |b′(v+)|, but for 0 < r < r, where r is defined in (16), namely,

r =
π − arctan(

√
|b′(v+)|2 − d′(v+)2/d′(v+))√
|b′(v+)|2 − d′(v+)2

,

then the exponential decay (29) holds for N(T )� 1.

Proof. Since V (t, ξ) ∈ X(−r, T ), by the definition of Cunif [0, T ], we have that
limξ→+∞ V (t, ξ) exists uniformly with respect to t ∈ [0, T ].

Let us go back to the original equations (1) and (10), and denote

V(t, x) = v(t, x)− φ(x+ ct).

Namely, V(t, x) = V (t, ξ) and satisfies

∂V
∂t
−D(J ∗ V − V) + d′(φ)V

−
∫
R

K(y)b′(φ(x+ c(t− r)− y))V(t− r, x− y)dy

= −P (V(t, x)) +

∫
R

K(y)Q(V(t− r, x− y))dy, t > 0, ξ ∈ R,

V(s, x) = V0(s, x), s ∈ [−r, 0], x ∈ R,

(30)
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Denote z(t) := V (t,∞) = V(t,∞) and z0(s) := V0(s,∞) for s ∈ [−r, 0]. Since
V ∈ Cunif [0, T ], namely, limξ→∞ V (t, ξ) = limx→∞ V(t, x) = z(t) is uniformly in t,
we have

lim
x→∞

Vt(t, x) = zt(t), lim
x→∞

d′(φ(x+ ct))Vt(t, x) = d′(v+))zt(t),

and

lim
x→+∞

J ∗ V = lim
ξ→+∞

∫
R

J(y)V(t, x− y)dy =

∫
R

J(y)z(t)dy = z(t)

∫
R

J(y)dy = z(t),

and

lim
x→+∞

∫
R

K(y)b′(φ(x+ c(t− r)− y))V(t− r, x− y)dy

=

∫
R

K(y)b′(v+)z(t− r)dy = b′(v+)z(t− r)
∫
R

K(y)dy

= b′(v+)z(t− r),
and

lim
x→∞

P (V(t, x)) = P (z(t)),

and

lim
x→+∞

∫
R

K(y)Q(V(t− r, x− y)dy = lim
x→+∞

∫
R

K(y)Q(z(t− r))dy = Q(z(t− r)),

all of these limits are uniformly with respect to t ∈ [0, T ]. Thus, by taking x→ +∞
to equation (30), we have{

z′(t) + d′(v+)z(t)− b′(v+)z(t− r) = −P (z(t)) +Q(z(t− r)),
z(s) = z0(s), s ∈ [−r, 0].

(31)

Applying the nonlinear Halanay’s inequality given in [19], we have that: when
d′(v+) ≥ |b′(v+)|, for all r > 0, then

|z(t)| ≤ C‖z0‖L∞(−r,0)e
−µ1t (32)

for some 0 < µ1 < d′(0), provided N(T ) � 1; while, when d′(v+) < |b′(v+)|, but
for 0 < r < r, where r is defined in (16), then the above decay estimate (32) holds
for N(T )� 1.

From (30), it is equivalent to

(ed
′(0)tV)t −D(J ∗ V − V) + [d′(φ)− d′(0)]V

−
∫
R

K(y)b′(φ(x+ c(t− r)− y))V(t− r, x− y)dy

= −P (V(t, x)) +

∫
R

K(y)Q(V(t− r, x− y))dy.

Integrating the above equation with respect to t over [0, t], we get

V(t, x)

= e−d
′(0)t

[
V0(0, x) +D

∫ t

0

(J ∗ V − V)(s, x)ds−
∫ t

0

[d′(φ)− d′(0)]V(s, x)ds

+

∫ t

0

∫
R

K(y)b′(φ(x+ c(s− r)− y))V(s− r, x− y)dyds

−
∫ t

0

P (V(s, x))ds+

∫ t

0

∫
R

K(y)Q(V(s− r, x− y))dyds
]
.
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So, we then have, for 0 < µ1 < d′(0),

eµ1tV(t, x) = e−[d
′(0)−µ1]t

[
V0(0, x) +D

∫ t

0

(J ∗ V − V)(s, x)ds

−
∫ t

0

[d′(φ)− d′(0)]V(s, x)ds

+

∫ t

0

∫
R

K(y)b′(φ(x+ c(s− r)− y))V(s− r, x− y)dyds

−
∫ t

0

P (V(s, x))ds+

∫ t

0

∫
R

K(y)Q(V(s− r, x− y))dyds
]
. (33)

Taking the limits to (33) as x→∞, and noting all these limits are uniformly in t,
and applying the facts |P (z)| ≤ Cz2, |Q(z)| ≤ Cz2 and the decay estimate (32) for
z(t), then we have

lim
x→∞

eµ1tV(t, x)

= e−[d
′(0)−µ1]t

[
lim
x→∞

V0(0, x) +D

∫ t

0

lim
x→∞

(J ∗ V − V)(s, x)ds

−
∫ t

0

lim
x→∞

[d′(φ)− d′(0)]V(s, x)ds

+

∫ t

0

lim
x→∞

∫
R

K(y)b′(φ(x+ c(s− r)− y))V(s− r, x− y)dyds

−
∫ t

0

lim
x→∞

P (V(s, x))ds+

∫ t

0

lim
x→∞

∫
R

K(y)Q(V(s− r, x− y))dyds
]

= e−[d
′(0)−µ1]t

[
z0(0) +D

∫ t

0

(J ∗ z(s)− z(s))ds

−[d′(v+)− d′(0)]

∫ t

0

z(s)ds+

∫ t

0

∫
R

K(y)b′(v+)z(s− r)dyds

−
∫ t

0

P (z(s))ds+

∫ t

0

∫
R

K(y)Q(z(s− r))dyds
]

= e−[d
′(0)−µ1]t

[
z0(0)− [d′(v+)− d′(0)]

∫ t

0

z(s)ds

+b′(v+)

∫ t

0

z(s− r)dyds−
∫ t

0

P (z(s))ds+

∫ t

0

Q(z(s− r))ds
]

≤ Ce−[d
′(0)−µ1]t

[
|z0(0)|+

∫ t

0

|z(s)|ds+

∫ t

0

|z(s− r)|ds

+

∫ t

0

|z(s)|2ds+

∫ t

0

|z(s− r))|2ds
]

≤ Ce−[d
′(0)−µ1]t

[
|z0(0)|+

∫ t

0

e−µ1sds+

∫ t

0

e−µ1(s−r)ds

+

∫ t

0

e−2µ1sds+

∫ t

0

e−2µ1(s−r)ds
]

≤ C, uniformly in t. (34)
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Thus, there exists a number x0 � 1 independent of t, such that when x ≥ x0, we
have:

sup
x∈[x0,∞)

|V(t, x)| ≤ Ce−µ1t‖V0‖L∞([−r,0]×R), t ≥ 0. (35)

either for d′(v+) ≥ |b′(v+)| with any r > 0, or for d′(v+) < |b′(v+)| but with
0 < r < r. Again, notice that V (t, ξ) = V(t, x) and ξ = x+ ct ≥ x ≥ x0 for x ≥ x0
and t ≥ 0, then (35) immediately implies,

sup
ξ∈[x0,∞)

|V (t, ξ)| ≤ Ce−µ1t‖V0‖L∞([−r,0]×R), t ≥ 0 (36)

either for d′(v+) ≥ |b′(v+)| with any r > 0, or for d′(v+) < |b′(v+)| but with
0 < r < r. Thus, (29) is proved.

Now we are going to establish the a priori estimates (28). Different from the
standard weighted energy method by multiplying (21) by w(ξ)V (t, ξ), we adopt the
transformed energy method. First of all, we shift V (t, ξ) to V (t, ξ + x0) by the
constant x0 given in Lemma 4.1, then we introduce the following transformation

U(t, ξ) =
√
w(ξ)V (t, ξ + x0) = e−λξV (t, ξ + x0), (37)

where e−λξ →∞ as ξ → −∞, and e−λξ → 0 as → +∞. Substituting V = w−1/2U
to (21), then we derive the following equation for U(t, ξ)

∂U

∂t
+ c

∂U

∂ξ
−D

∫
R

J(y)e−λyU(t, ξ − y)dy + [cλ+D + d′(φ(ξ + x0))]U

−
∫
R

K(y)b′(φ(ξ − y − cr + x0))e−λ(y+cr)U(t− r, ξ − y − cr)dy

= −
√
w(ξ)P (V (t, ξ + x0)) +

∫
R

K(y)
√
w(ξ)Q(V (t− r, ξ − y − cr + x0))dy,

U |t=s =
√
w(ξ)V0(s, ξ + x0) =: U0(s, ξ), (s, ξ) ∈ [−r, 0]×R.

(38)
Next, we prove the a priori estimates (28) by serval lemmas.

Lemma 4.2. It holds that

1

2

d

dt
‖U(t)‖2L2 + µ2‖U(t)‖2L2 + C3

[
‖U(t)‖2L2 − ‖U(t− r)‖2L2

]
≤ I1(t) + I2(t), (39)

where

µ2 : = cλ+D + d′(0)−D
∫
R

J(y)e−λydy − b′(0)e−λcr
∫
R

K(y)e−λydy

> 0, ( see (12)), (40)

C3 : =
1

2
b′(0)e−λcr

∫
R

K(y)e−λydy > 0, (41)

I1(t) : = −
∫
R

√
w(ξ)U(t, ξ)P (V (t, ξ + x0))dξ, (42)

I2(t) : =

∫
R

U(t, ξ)

(∫
R

K(y)
√
w(ξ)Q(V (t− r, ξ − y − cr + x0))dy

)
dξ. (43)

Proof. Multiplying (38) by U and integrating the resultant equation over R with
respect to ξ, we have

1

2

d

dt
‖U(t)‖2L2 +

∫
R

[
cλ+D + d′(φ(ξ + x0))

]
U2(t, ξ)dξ
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−D
∫
R

U(t, ξ)

(∫
R

J(y)e−λyU(t, ξ − y)dy

)
dξ

−
∫
R

U(t, ξ)

(∫
R

K(y)b′(φ(ξ − y − cr + x0))e−λ(y+cr)U(t− r, ξ − y − cr)dy
)
dξ

= I1(t) + I2(t). (44)

We denote the terms in equation (44) by

I3 :=

∫
R

[
cλ+D + d′(φ(ξ + x0))

]
U2(t, ξ)dξ,

I4 :=D

∫
R

U(t, ξ)

(∫
R

J(y)e−λyU(t, ξ − y)dy

)
dξ,

I5 :=

∫
R

U(t, ξ)

(∫
R

K(y)b′(φ(ξ − y − cr + x0))e−λ(y+cr)U(t− r, ξ − y − cr)dy
)
dξ.

Now we give the estimates of I3−I5 respectively. First of all, from (H1), namely,
d′(φ) > d′(0) for φ > 0, we immediately have

I3 =

∫
R

[
cλ+D + d′(φ(ξ + x0))

]
U2(t, ξ)dξ ≥

[
cλ+D + d′(0)

]
‖U(t)‖2L2 . (45)

Next, by the Hölder inequality and the properties of Fourier transform (Parseval’s
equality), we can get the following optimal estimate

|I4| ≤ D
∫
R

|U(t, ξ)|
∣∣∣∣∫
R

J(y)e−λyU(t, ξ − y)dy

∣∣∣∣ dξ
≤ D‖U(t)‖L2

∥∥(Je−λy) ∗ U
∥∥
L2

= D‖U(t)‖L2

∥∥F [(Je−λy) ∗ U
]∥∥
L2

= D‖U(t)‖L2

∥∥F [Je−λy] · F [U ]
∥∥
L2

= D‖U(t)‖L2

(∫
R

∣∣F [J(y)e−λy](η)
∣∣2 · |F [U ](t, η)|2 dη

)1/2

= D‖U(t)‖L2

(∫
R

∣∣∣∣∫
R

e−iyηJ(y)e−λydy

∣∣∣∣2 · |F [U ](t, η)|2 dη

)1/2

≤ D‖U(t)‖L2

(∫
R

(∫
R

∣∣∣e−iyηJ(y)e−λy
∣∣∣ dy)2

· |F [U ](t, η)|2 dη

)1/2

= D‖U(t)‖L2

(∫
R

(∫
R

J(y)e−λydy

)2

· |F [U ](t, η)|2 dη

)1/2

= D

(∫
R

J(y)e−λydy

)
‖U(t)‖L2

(∫
R

|F [U ](t, η)|2 dη
)1/2

= D

(∫
R

J(y)e−λydy

)
‖U(t)‖2L2 . (46)

Similarly, noticing that |b′(φ)| ≤ b′(0), by the properties of Fourier transform, we
can derive the following optimal L2-energy estimate

|I5|
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≤
∫
R

|U(t, ξ)| ·
∣∣∣∣∫
R

K(y)b′(φ(ξ − y − cr + x0))e−λ(y+cr)U(t− r, ξ − y − cr)dy
∣∣∣∣ dξ

≤ b′(0)

∫
R

|U(t, ξ)| ·
∣∣∣∣∫
R

K(y)e−λ(y+cr)U(t− r, ξ − y − cr)dy
∣∣∣∣ dξ

= b′(0)

∫
R

|U(t, ξ)| ·
∣∣∣(K(y)e−λ(y+cr)

)
∗ U(t− r, ξ − cr)

∣∣∣ dξ
≤ b′(0)‖U(t)‖L2

∥∥∥((K(y)e−λ(y+cr)
)
∗ U
)

(t− r)
∥∥∥
L2

= b′(0)‖U(t)‖L2

∥∥∥F [K(y)e−λ(y+cr) ∗ U
]

(t− r)
∥∥∥
L2

= b′(0)‖U(t)‖L2

∥∥∥F [K(y)e−λ(y+cr)
]
· F [U ] (t− r)

∥∥∥
L2

= b′(0)‖U(t)‖L2

(∫
R

∣∣∣∣∫
R

K(y)e−λ(y+cr) · e−iyηdy

∣∣∣∣2 · |F [U ] (t− r, η)|2dη

)1/2

≤ b′(0)‖U(t)‖L2

(∫
R

∣∣∣∣∫
R

K(y)e−λ(y+cr)dy

∣∣∣∣2 · |F [U ] (t− r, η)|2dη

)1/2

= b′(0)

(∫
R

K(y)e−λ(y+cr)dy

)
‖U(t)‖L2 ‖F [U ] (t− r)‖L2

= b′(0)

(∫
R

K(y)e−λ(y+cr)dy

)
‖U(t)‖L2 ‖U(t− r)‖L2

≤ b′(0)

(∫
R

K(y)e−λ(y+cr)dy

)(
1

2
‖U(t)‖2L2 +

1

2
‖U(t− r)‖2L2

)
. (47)

Substituting (45), (46) and (47) to (44), we have

1

2

d

dt
‖U(t)‖2L2 +

(
cλ+D + d′(0)−D

∫
R

J(y)e−λydy

)
‖U(t)‖2L2

−1

2
b′(0)

(∫
R

K(y)e−λ(y+cr)dy
)[
‖U(t)‖2L2 + ‖U(t− r)‖2L2

]
≤ I1(t) + I2(t),

namely,

1

2

d

dt
‖U(t)‖2L2 +

1

2
b′(0)

(∫
R

K(y)e−λ(y+cr)dy
)[
‖U(t)‖2L2 − ‖U(t− r)‖2L2

]
+

(
cλ+D + d′(0)−D

∫
R

J(y)e−λydy − b′(0)

∫
R

K(y)e−λ(y+cr)dy

)
‖U(t)‖2L2

≤ I1(t) + I2(t),

which immediately implies (39). The proof is complete.

Lemma 4.3. There exists 0 < µ < µ2 such that

‖U(t)‖2L2 +

∫ t

0

e−2µ(t−s)‖U(s)‖2L2ds

≤ Ce−2µt
(
‖U0(0)‖2L2 +

∫ 0

−r
e2µs‖U0(s)‖2L2ds

)
(48)

provided N(T )� 1.
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Proof. Multiplying the inequality (39) by e2µt and integrating the resultant inequal-
ity with respect to t over [0, t], where µ > 0 will be selected later, we have

e2µt‖U(t)‖2L2 + 2(µ2 − µ)

∫ t

0

e2µs‖U(s)‖2L2ds

+2C3

∫ t

0

e2µs[‖U(s)‖2L2 − ‖U(s− r)‖2L2 ]ds

≤ ‖U0(0)‖2L2 + 2

∫ t

0

e2µs
[
I1(s) + I2(s)

]
ds. (49)

Notice that, by the change of variable s− r → s,∫ t

0

e2µs‖U(s− r)‖2L2ds

=

∫ t−r

−r
e2µ(s+r)‖U(s)‖2L2ds

=

∫ 0

−r
e2µ(s+r)‖U(s)‖2L2ds+

∫ t−r

0

e2µ(s+r)‖U(s)‖2L2ds

≤
∫ 0

−r
e2µ(s+r)‖U0(s)‖2L2ds+

∫ t

0

e2µ(s+r)‖U(s)‖2L2ds. (50)

Substituting (50) to (49), we have

e2µt‖U(t)‖2L2 + 2
[
(µ2 − µ) + C3(1− e2µr)

] ∫ t

0

e2µs‖U(s)‖2L2ds

≤ C
(
‖U0(0)‖2L2 +

∫ 0

−r
e2µs‖U0(s)‖2L2ds

)
+2

∫ t

0

e2µs
[
I1(s) + I2(s)

]
ds. (51)

Now we can choose 0 < µ < µ2 to be small such that

C4 := (µ2 − µ) + C3(1− e2µr) > 0.

Then

‖U(t)‖2L2 + 2C4

∫ t

0

e−2µ(t−s)‖U(s)‖2L2ds

≤ Ce−2µt
(
‖U0(0)‖2L2 +

∫ 0

−r
e2µs‖U0(s)‖2L2ds

)
+2

∫ t

0

e−2µ(t−s)
[
I1(s) + I2(s)

]
ds. (52)

Next, we estimate the nonlinear terms involving I1 and I2. Since V (t, ξ) ∈ X(0, T ),
namely, V ∈ C0(R), we have

|V (t, ξ + x0)| ≤ CN(T ).

Thus, from (42) and (43), by Taylor’s expansion (see (24)), namely,

|P (V (s, ξ + x0))| ≤ CV 2(s, ξ + x0),

|Q(u(s− r, ξ − y − cr + x0))| ≤ CV 2(s− r, ξ − y − cr + x0),
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and noting U(t, ξ) =
√
w(ξ)V (t, ξ + x0) = e−λξV (t, ξ + x0) and U(t, ξ − y − cr) =√

w(ξ − y − cr)V (t, ξ − y − cr + x0) = e−λ(ξ−y−cr)V (t, ξ − y − cr + x0), we can
estimate

2

∫ t

0

e−2µ(t−s)I1(s)ds

= −2

∫ t

0

e−2µ(t−s)
∫
R

√
w(ξ)U(s, ξ)P (V (s, ξ + x0))dξds

≤ C
∫ t

0

e−2µ(t−s)
∫
R

√
w(ξ)|U(s, ξ)||V (s, ξ + x0)|2dξds

= C

∫ t

0

e−2µ(t−s)
∫
R

|U(s, ξ)|2|V (s, ξ + x0)|dξds

≤ CN(T )

∫ t

0

e−2µ(t−s)
∫
R

|U(s, ξ)|2dξds

= CN(T )

∫ t

0

e−2µ(t−s)‖U(s)‖2L2ds, (53)

and

2

∫ t

0

e−2µ(t−s)I2(s)ds

= 2

∫ t

0

e−2µ(t−s)
∫
R

√
w(ξ)U(s, ξ)

(∫
R

K(y)Q(V (s− r, ξ − y − cr + x0))dy

)
dξds

≤ C
∫ t

0

e−2µ(t−s)
∫
R

√
w(ξ)|U(s, ξ)| ·

(∫
R

K(y)V 2(s− r, ξ − y − cr + x0)dy

)
dξds

= C

∫ t

0

e−2µ(t−s)
∫
R

|U(s, ξ)| ·
(∫

R

K(y)
√
w(ξ)V 2(s− r, ξ − y − cr + x0)dy

)
dξds

= C

∫ t

0

e−2µ(t−s)
∫
R

|U(s, ξ)| ·
(∫

R

K(y)e−λξV 2(s− r, ξ − y − cr + x0)dy

)
dξds

= C

∫ t

0

e−2µ(t−s)
∫
R

|U(s, ξ)|

×
(∫

R

K(y)e−λ(ξ−y−cr)e−λ(y+cr)V 2(s− r, ξ − y − cr + x0)dy

)
dξds

= C

∫ t

0

e−2µ(t−s)
∫
R

|U(s, ξ)|

×
(∫

R

K(y)e−λ(y+cr)|U(s− r, ξ − y − cr)||V (s− r, ξ − y − cr + x0)|dy
)
dξds

≤ CN(T )

∫ t

0

e−2µ(t−s)

×
∫
R

|U(s, ξ)| ·
(∫

R

K(y)e−λ(y+cr)|U(s− r, ξ − y − cr)|dy
)
dξds

≤ CN(T )

∫ t

0

e−2µ(t−s)
(∫

R

K(y)e−λ(y+cr)dy

)[1

2
‖U(s)‖2L2 +

1

2
‖U(s− r)‖2L2

]
ds

(obtained by the same fashion in (47))
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= CN(T )

(∫
R

K(y)e−λ(y+cr)dy

)∫ t

0

e−2µ(t−s)
[1

2
‖U(s)‖2L2 +

1

2
‖U(s− r)‖2L2

]
ds

≤ CN(T )

(∫
R

K(y)e−λ(y+cr)dy

)∫ t

0

e−2µ(t−s)‖U(s)‖2L2ds

+ CN(T )

(∫
R

K(y)e−λ(y+cr)dy

)
e−2µt

∫ 0

−r
e2µs‖U0(s)‖2L2ds

(obtained by the same fashion in (50))

≤ CN(T )

∫ t

0

e−2µ(t−s)‖U(s)‖2L2ds+ Ce−2µt
∫ 0

−r
e2µs‖U0(s)‖2L2ds. (54)

Substituting (53) and (54) to (52), we have

‖U(t)‖2L2 + [2C4 − CN(T )]

∫ t

0

e−2µ(t−s)‖U(s)‖2L2ds

≤ Ce−2µt
(
‖U0(0)‖2L2 +

∫ 0

−r
e2µs‖U0(s)‖2L2ds

)
. (55)

Let N(T )� 1, we immediately obtain (48). The proof is complete.

Next we derive the estimates for the higher order derivatives of the solution.

Lemma 4.4. It holds that

‖Uξ(t)‖2L2 +

∫ t

0

e−2µ(t−s)‖Uξ(s)‖2L2ds

≤ Ce−2µt
(
‖U0(0)‖2H1 +

∫ 0

−r
e2µs‖U0(s)‖2H1ds

)
(56)

provided N(T )� 1.

Proof. Differentiating (38) with respect to ξ and multiplying it by ∂U
∂ξ , then inte-

grating the resultant equation with respect to ξ and t over R×[0, t], we can similarly
prove (56) provided N(T )� 1. The detail is omitted.

Thus, combining (48) and (56), we have established the following energy esti-
mates.

Lemma 4.5. It holds that

‖U(t)‖2H1 +

∫ t

0

e−2µ(t−s)‖U(s)‖2H1ds ≤ Cδ2e−2µt, (57)

namely,

‖
√
wV (t)‖2H1 +

∫ t

0

e−2µ(t−s)‖
√
wV (s)‖2H1ds ≤ Cδ2e−2µt, (58)

provided N(T )� 1, where

δ2 := ‖
√
wV0(0)‖2H1 +

∫ 0

−r
e2µs‖

√
wV0(s)‖2H1ds. (59)

From (57), by Sobolev’s inequality H1(R) ↪→ C0(R), we get

|U(t, ξ)| ≤ C‖U(t)‖H1 ≤ Cδe−µt.
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Notice that U(t, ξ) =
√
w(ξ)V (t, ξ+x0) = e−λξV (t, ξ+x0), and

√
w(ξ) = e−λξ ≥ 1

for ξ ∈ (−∞, 0], we then get

sup
ξ∈(−∞,0]

|V (t, ξ + x0)| ≤ Cδe−µt.

This proves the following estimate for the unshifted V (t, ξ).

Lemma 4.6. It holds that

‖V (t)‖L∞(−∞,x0] ≤ Cδe
−µt, (60)

provided N(T )� 1.

Finally, combining Lemma 4.6 and Lemma 4.1, we prove

Lemma 4.7. For 0 < µ < min{µ1, µ2} and N(T )� 1, it holds that:

1. When d′(v+) ≥ |b′(v+)|, for all r > 0, then

‖V (t)‖L∞(R) ≤ Cδe−µt; (61)

2. When d′(v+) < |b′(v+)|, but for 0 < r < r, where r is defined in (16), then

‖V (t)‖L∞(R) ≤ Cδe−µt. (62)

5. Uniqueness of traveling waves. This section is devoted to the proof of Corol-
lary 1, the uniqueness of the traveling waves in the non-monotone case for the
nonlocal dispersion equation (1), which was not solved in [37, 38].

Assume that φ1(x+ ct) and φ2(x+ ct) are two different traveling waves with the
same speed c > c∗ and the same exponential decay at −∞:

φ1(ξ) = C1e−λ1|ξ| as ξ → −∞,
and

φ2(ξ) = C2e−λ1|ξ| as ξ → −∞,
for some positive constants C1 and C2, where λ1 = λ1(c) > 0 is defined in (11).
Let us shift φ2(x + ct) to φ2(x + ct + x∗) with some constant shift x∗. By taking
ξ → −∞, obviously ξ + x∗ < 0, then

φ2(ξ + x∗) = C2e−λ1|ξ+x∗| = C2eλ1(ξ+x∗) = C2eλ1x∗e−λ1|ξ| = C1e−λ1|ξ| as ξ → −∞
by selecting x∗ as

x∗ =
1

λ1
ln
C1
C2
.

Thus, we have

|φ2(ξ + x∗)− φ1(ξ)| = O(1)e−α|ξ| for α > λ1 as ξ → −∞.
This implies√

w(ξ)[φ2(ξ + x∗)− φ1(ξ)] = e−λ1(ξ−x0)[φ2(ξ + x∗)− φ1(ξ)] ∈ C(R) ∩H1(R).

Now we take the initial data for equation (1) by

v0(s, x) = φ2(x+ cs+ x∗), x ∈ R, s ∈ [−r, 0].

Obviously, with such a selected initial data, the corresponding solution to (1) is

v(t, x) = φ2(x+ ct+ x∗).

Applying the stability theorem 2.1, when d′(v+) ≥ |b′(v+)| with any time-delay
r > 0, or when d′(v+) < |b′(v+)| but with 0 < r < r, then

lim
t→∞

sup
x∈R
|φ2(x+ ct+ x∗)− φ1(x+ ct)| = 0,
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namely, φ2(x + ct + x∗) = φ1(x + ct) for all x ∈ R as t � 1. This proves the
uniqueness of the traveling waves up to a constant shift.
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cégeps. The research of KJZ was supported in part by NSFC No.11371082. The
research of QFZ was supported in part by the Joint Training Ph.D Program of
China Scholarship Council (201306160037).

REFERENCES

[1] M. Aguerra, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts, Math. Ann.,
354 (2012), 73–109.

[2] F. Andreu-Vaillo, J. M. Mazon, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion

Problems, Math. Surveys and Monographs, Vol. 165, Amer. Math. Soc., 2010.
[3] E. Chasseigne, M. Chaves and J. Rossi, Asymptotic behavior for nonlocal diffusion equations,

J. Math. Pure Appl., 86 (2006), 271–291.

[4] C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation
with Neumann boundary conditions by nonlocal diffusion problems, Arch. Rational Mech.

Anal., 187 (2008), 137–156.
[5] J. Coville, On uniqueness and monotonicity of solutions of non-local reaction-diffusion equa-

tion, Annali. di Matematica Pura Appl., 185 (2006), 461–485.

[6] J. Coville, J. Dávila and S. Mart́ınez, Nonlocal anisotropic dispersal with monostable nonlin-
earity, J. Differential Equations, 244 (2008), 3080–3118.

[7] J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc.

Roy. Soc. Edinburgh Sect. A, 137 (2007), 727–755.
[8] J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-

diffusion equations, Nonlinear Anal., 60 (2005), 797–819.

[9] J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone inte-
gral equations with applications, J. Differential Equations, 248 (2010), 2199–2226.

[10] P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in

Biomathematics, 28, Springer-Verlag, Berlin-New York, 1979.
[11] W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson’s blowflies revisited, Nature, 287

(1980), 17–21.
[12] A. Gomez and S. Trofimchuk, Global continuation of monotone wavefronts, J. London Math.

Soc., 89 (2014), 47–68.
[13] S. A. Gourley, J. W.-H. So and J. Wu, Nonlocalily of reaction-diffusion equations induced

by delay: Biological modeling and nonlinear dynamics, (Russian) Sovrem. Mat. Fundam.

Napravl., 1 (2003), 84–120; translation in J. Math. Sci., 124 (2004), 5119–5153.

[14] S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease
spread, in Nonlinear Dynamics and Evolution Equations (eds. H. Brunner, X.-Q. Zhao and X.

Zou), Fields Institute Communications, 48, Amer. Math. Soc., Providence, RI, 2006, 137–200.
[15] R. Huang, M. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with

monostable nonlinearity, Discret. Contin. Dyn. Syst. A, 32 (2012), 3621–3649.

[16] L. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, J. Math.

Pure Appl.(9), 92 (2009), 163–187.
[17] L. Ignat and J. D. Rossi, A nonlocal convolution-diffusion equation, J. Func. Anal., 251

(2007), 399–437.
[18] D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection

diffusion equation with nonlocal delayed effects, J. Nonlinear Sci., 13 (2003), 289–310.

[19] C.-K. Lin, C.-T. Lin, Y. P. Lin and M. Mei, Exponential stability of nonmonotone traveling
waves for Nicholson’s blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053–1084.

[20] M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science,

197 (1977), 287–289.
[21] A. Matsumura and M. Mei, Nonlinear stability of viscous shock profile for a non-convex

system of viscoelasticity, Osaka J. Math., 34 (1997), 589–603.

http://www.ams.org/mathscinet-getitem?mr=MR2957619&return=pdf
http://dx.doi.org/10.1007/s00208-011-0722-8
http://www.ams.org/mathscinet-getitem?mr=MR2722295&return=pdf
http://dx.doi.org/10.1090/surv/165
http://dx.doi.org/10.1090/surv/165
http://www.ams.org/mathscinet-getitem?mr=MR2257732&return=pdf
http://dx.doi.org/10.1016/j.matpur.2006.04.005
http://www.ams.org/mathscinet-getitem?mr=MR2358337&return=pdf
http://dx.doi.org/10.1007/s00205-007-0062-8
http://dx.doi.org/10.1007/s00205-007-0062-8
http://www.ams.org/mathscinet-getitem?mr=MR2231034&return=pdf
http://dx.doi.org/10.1007/s10231-005-0163-7
http://dx.doi.org/10.1007/s10231-005-0163-7
http://www.ams.org/mathscinet-getitem?mr=MR2420515&return=pdf
http://dx.doi.org/10.1016/j.jde.2007.11.002
http://dx.doi.org/10.1016/j.jde.2007.11.002
http://www.ams.org/mathscinet-getitem?mr=MR2345778&return=pdf
http://dx.doi.org/10.1017/S0308210504000721
http://www.ams.org/mathscinet-getitem?mr=MR2113158&return=pdf
http://dx.doi.org/10.1016/j.na.2003.10.030
http://dx.doi.org/10.1016/j.na.2003.10.030
http://www.ams.org/mathscinet-getitem?mr=MR2595719&return=pdf
http://dx.doi.org/10.1016/j.jde.2010.01.009
http://dx.doi.org/10.1016/j.jde.2010.01.009
http://www.ams.org/mathscinet-getitem?mr=MR0527914&return=pdf
http://dx.doi.org/10.1038/287017a0
http://www.ams.org/mathscinet-getitem?mr=MR3174733&return=pdf
http://dx.doi.org/10.1112/jlms/jdt050
http://www.ams.org/mathscinet-getitem?mr=MR2129130&return=pdf
http://dx.doi.org/10.1023/B:JOTH.0000047249.39572.6d
http://dx.doi.org/10.1023/B:JOTH.0000047249.39572.6d
http://www.ams.org/mathscinet-getitem?mr=MR2223351&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2945832&return=pdf
http://dx.doi.org/10.3934/dcds.2012.32.3621
http://dx.doi.org/10.3934/dcds.2012.32.3621
http://www.ams.org/mathscinet-getitem?mr=MR2542582&return=pdf
http://dx.doi.org/10.1016/j.matpur.2009.04.009
http://www.ams.org/mathscinet-getitem?mr=MR2356418&return=pdf
http://dx.doi.org/10.1016/j.jfa.2007.07.013
http://www.ams.org/mathscinet-getitem?mr=MR1982017&return=pdf
http://dx.doi.org/10.1007/s00332-003-0524-6
http://dx.doi.org/10.1007/s00332-003-0524-6
http://www.ams.org/mathscinet-getitem?mr=MR3174173&return=pdf
http://dx.doi.org/10.1137/120904391
http://dx.doi.org/10.1137/120904391
http://dx.doi.org/10.1126/science.267326
http://www.ams.org/mathscinet-getitem?mr=MR1613096&return=pdf


TIME-DELAYED NONLOCAL DISPERSION EQUATIONS 1353

[22] M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-
diffusion equation. I. Local nonlinearity, J. Differential Equations, 247 (2009), 495–510.

[23] M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-

diffusion equation. II. Nonlocal nonlinearity, J. Differential Equations, 247 (2009), 511–529.
[24] M. Mei, J. W.-H. So, M. Li and S. Shen, Asymptotic stability of travelling waves for Nichol-

son’s blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sec. A, 134 (2004), 579–
594.

[25] M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed

reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sec. A, 138 (2008), 551–568.
[26] M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlo-

cal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762–2790;

Erratum, SIAM J. Math. Anal., 44 (2012), 538–540.
[27] M. Mei and Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equa-

tions, Int. J. Numer. Anal. Model. Seris B, 2 (2011), 379–401.

[28] M. Mei and Y. S. Wong, Novel stability results for traveling wavefronts in an age-structured
reaction-diffusion equations, Math. Biosci. Engin., 6 (2009), 743–752.

[29] J. A. J. Metz and O. Diekmann, The dynamics of Physiologically Structured Populations,

Springer, New York, 1986.
[30] H. J. K. Moet, A note on the asymptotic behavior of solutions of the KPP equation, SIAM

J. Math. Anal., 10 (1979), 728–732.
[31] S. Pan, W.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal

diffusion equation with delay, Nonlinear Anal., 72 (2010), 3150–3158.

[32] J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age
structure: I. Traveling wavefronts on unbounded domains, Roy. Soc. London Proc. Series A

Math. Phys. Eng. Sci., 457 (2001), 1841–1853.

[33] E. Trofimchuk and S. Trofimchunk, Admissible wavefront speeds for a single species reaction-
diffusion equation with delay, Discrete Contin. Dyn. Syst. A, 20 (2008), 407–423.

[34] E. Trofimchuk, V. Tkachenko and S. Trofimchuk, Slowly oscillating wave solutions of a single

species reaction-diffusion equation with delay, J. Differential Equations, 245 (2008), 2307–
2332.

[35] S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed

reaction-diffusion equations with crossing-monostability, Z. Angew. Math. Phys., 62 (2011),
377–397.

[36] H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation,
Publ. Res. Inst. Math. Sci., 45 (2009), 925–953.

[37] G.-B. Zhang, Traveling waves in a nonlocal dispersal population model with age-structure,

Nonlinear Anal., 74 (2011), 5030–5047.
[38] G.-B. Zhang and R. Ma, Spreading speeds and traveling waves for a nonlocal dispersal equa-

tion with convolution-type crossing-monostable nonlinearity, Z. Ang. Math. Phys., 64 (2013),
1643–1659.

Received December 2014; revised March 2015.

E-mail address: huang@scnu.edu.cn

E-mail address: ming.mei@mcgill.ca, mmei@champlaincollege.qc.ca

E-mail address: zhangkj201@nenu.edu.cn

E-mail address: zhangqifeng0504@gmail.com

http://www.ams.org/mathscinet-getitem?mr=MR2523688&return=pdf
http://dx.doi.org/10.1016/j.jde.2008.12.026
http://dx.doi.org/10.1016/j.jde.2008.12.026
http://www.ams.org/mathscinet-getitem?mr=MR2523689&return=pdf
http://dx.doi.org/10.1016/j.jde.2008.12.020
http://dx.doi.org/10.1016/j.jde.2008.12.020
http://www.ams.org/mathscinet-getitem?mr=MR2068117&return=pdf
http://dx.doi.org/10.1017/S0308210500003358
http://dx.doi.org/10.1017/S0308210500003358
http://www.ams.org/mathscinet-getitem?mr=MR2418127&return=pdf
http://dx.doi.org/10.1017/S0308210506000333
http://dx.doi.org/10.1017/S0308210506000333
http://www.ams.org/mathscinet-getitem?mr=MR2745791&return=pdf
http://dx.doi.org/10.1137/090776342
http://dx.doi.org/10.1137/090776342
http://www.ams.org/mathscinet-getitem?mr=MR2869588&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2591212&return=pdf
http://dx.doi.org/10.3934/mbe.2009.6.743
http://dx.doi.org/10.3934/mbe.2009.6.743
http://www.ams.org/mathscinet-getitem?mr=MR0860959&return=pdf
http://dx.doi.org/10.1007/978-3-662-13159-6
http://www.ams.org/mathscinet-getitem?mr=MR0533943&return=pdf
http://dx.doi.org/10.1137/0510067
http://www.ams.org/mathscinet-getitem?mr=MR2580167&return=pdf
http://dx.doi.org/10.1016/j.na.2009.12.008
http://dx.doi.org/10.1016/j.na.2009.12.008
http://www.ams.org/mathscinet-getitem?mr=MR1852431&return=pdf
http://dx.doi.org/10.1098/rspa.2001.0789
http://dx.doi.org/10.1098/rspa.2001.0789
http://www.ams.org/mathscinet-getitem?mr=MR2358264&return=pdf
http://dx.doi.org/10.3934/dcds.2008.20.407
http://dx.doi.org/10.3934/dcds.2008.20.407
http://www.ams.org/mathscinet-getitem?mr=MR2446193&return=pdf
http://dx.doi.org/10.1016/j.jde.2008.06.023
http://dx.doi.org/10.1016/j.jde.2008.06.023
http://www.ams.org/mathscinet-getitem?mr=MR2803477&return=pdf
http://dx.doi.org/10.1007/s00033-010-0112-1
http://dx.doi.org/10.1007/s00033-010-0112-1
http://www.ams.org/mathscinet-getitem?mr=MR2597124&return=pdf
http://dx.doi.org/10.2977/prims/1260476648
http://dx.doi.org/10.1016/j.na.2011.04.069
http://www.ams.org/mathscinet-getitem?mr=MR3130637&return=pdf
http://dx.doi.org/10.1007/s00033-013-0353-x
http://dx.doi.org/10.1007/s00033-013-0353-x
mailto:huang@scnu.edu.cn
mailto:ming.mei@mcgill.ca, \ \ mmei@champlaincollege.qc.ca
mailto:zhangkj201@nenu.edu.cn
mailto:zhangqifeng0504@gmail.com

	1. Introduction
	2. Main theorems and numerical simulations
	3. Reformulation of the problem
	4. A priori estimates
	5. Uniqueness of traveling waves
	Acknowledgments
	REFERENCES

