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ABSTRACT 
This paper establishes more results on the decay of solutions for the Rosenau-Burgers 

equation tht + ~ , , , ~ t  - C ~ U , ,  + p ~ ,  + 4 ( ~ ) ,  = 0. Some new results on the asymptotic 
behavior of the solutions have been developed by the Fourier transform method with 
energy estimates, which improve our previous work [6]. Furthermore, the stability of the 

stationary travelling wave solutions and the exponential timedecay rate are established 

by the technical weighted energy method. 
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1. Introduction 

Subsequent to our recent work [6], we continuously investigate the asymptotic be- 

havior of the solution for the Rosenau-Burgers equation (R-B) in the form 

ut + uzzzzt - CYU,, + Pu, + +(u), = 0, x E R', t > 0, ( 1 . 1 )  

* Research was partly supported by the JSPS Fhtxwh Fellowship for Young Scientists and by 

the Grantrin-Aid for JSPS No. P-96169 from the Miniatry of Culture, Education and Science of 

Japan, and by the Sasakawa Scientific Research Grant No.8-069 from the Japan Science Society. 
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334 MING ME1 

with initial data 

where a > 0, p E R are any fixed constants, the nonlinear function d(u) is suitably 

smooth, say 4(u) E C?, u* are the given constants called as the state end points. 

Equation (1.1) with a: = 0 is called as the Rosenau equation proposed by 

P. Rosenau [Ill for treating the dynamics of dense discrete systems in order to 

overcome the shortcomings by the KdV equation, since the KdV equation describes 

unidimensional propagation of waves, but wave-wave and wave-wall interactions 

cannot be treated by it. Such a model were studied by Park [lo] and by Chung 

and Ha [I] for the global existence of the solution to the IBVP. Equation (1.1) with 

a: > 0 is called the Rosenau-Burgers equation (R-B E) and somehow corresponds to 

the KdV-B equation and the BBM-B equation, but it is given neither by Rosenau 

nor by Burgers. In fact, from both mathematical and physical point of view, the 

Rosenau equation with the dissipative term -a:uz,, or say, the Rosenau-Burgers 

equation (1.1), is proposed if a good predictive power is desired. Such problems 

arise in some natural phenomena as, for example, in bore propagation and in water 

waves. For the Rosenau-Burgers equation (a > 0), in the case u+ = u- = 0, 

we studied the asymptotic behavior of the solution for the Cauchy problem (1.1) 

and (1.2) in [6]. Where, we proved time decay rates like IIu(t)ll La = ~ ( t - l l 4 )  for 

Idl(u)l 5 CIUIP-~ with p > 712, and Ilu(t)J(p = ~ ( t - ' / ~ )  for I$'(u)l 5 CIuIP-' 

with p > 2. However, these decay rates in the previous work [6] are not optimal. In 

the present paper, we shall improve them by the approach of the Fourier transform 

together with the energy estimates developed in the author's work [7] for the BBM- 

B equation via Zhang [13,14]. Another purpose in this paper is to prove the stability 

of the stationary travelling wave of (1.1) and the exponential time decay rate by the 

technical weighted energy method, which is used in Kawashima and Matsumura [3], 

see also Matsumura and Nishihara [5] and the author's works [8,9] for the generalized 

Burgers equation. Precisely, when u+ = u- = fi E R, we show that the solution of 

(1.1) and (1.2) tends toward the constant .ii in the forms Il(u - .ri)(t)llLa = O(t-3/4) 

and 1 1  (U - .ii)(t)llp = O(t-') for any nonlinearity $(u) E @, which improves our 
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ROSENAU-BURGERS EQUATION 335 

previous work [6]. For the details, see Theorem 2.1 and the Remark below. When 

u+ # u-, i.e, the shock strength is positive, under some restrictions on the state 

constants u*, there exists a stationary travelling wave solution of (1.1) in the form 

u(x - st)  = U(x), U ( f w )  = u*, with the zero speed s = 0, such a stationary 

travelling wave is unique up to shift. In this case, we prove that it is nonlinearly 

stable for both the nondegenerate shock condition r#!(u+) < -0 < c#!(u-) and 

the degenerate shock condition #(u+) = -P < #(u-) or @(u+) < -P = #(u-) 

or +'(u*) = -p. Especially, in the nondegenerate case @(u+) < -P < #(u-), 

we show that the solution u(t,x) of (1.1) and (1.2) asymptotically converges to 

the travelling wave U(x) at the decay rate ~ ( e - ~ ~ )  for some 8 > 0, if the initial 

perturbation is suitably small and decays like 0(e-"~1) for some Q > 0. 

Our plan in this paper is the following. After stating the notations below, we 

give our main theorems in Section 2. Section 3 proves the time decay of the solution 

to .Ci in the case of u+ = u- = C. For the case of u+ + u-, the stability of the 

stationary travelling wave of (1.1) and the exponential time decay rate are shown 

in Section 4. 

Notations. We first make some notations for simplicity. C always denotes some 

positive constant without confusion. H~ (k  2 0 integer) and wkJ' denote the usual 

Sobolev spaces with the norm 11 . I l k  and 11 IIWlr,p, respectively. L2 denotes the 

square integrable space with the norm 1 )  - 1 1 ,  and Lm is the essential bounded space 

with the norm 1 1  - 11,. Supposing that f (x) E L1 n L2(R), we define the Fourier 

transforms of f (x) as follows: 

L$ denotes the space of measurable functions on R which satisfy w ( x ) ~ / ~  f E L2, 

w(x) > 0 is the weight function, with the norm 
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336 MING ME1 

also the weighted Sobolev's spaces H: with the norm 

We set (x) = JiT2 and 

Let T and B be a positive constant and a Banach space, respectively. Ck (0, T; 

B) (k 2 0) denotes the space of B-valued k-times continuously differentiable func- 

tions on [0, TI, and L2 (0, T; B) denotes the space of B-valued L2-functions on [0, T ] .  

The corresponding spaces of B-valued function on [0, co) are dehed  similarly. 

2. Main Theorems 

2.1. Case: u+ = u- = t i  

We firstly state the results on the decay of the solution for (1.1) and (1.2) in the 

case of u+ = u- = ti. Suppose that 

We denote a new unknown function as follows 

namely, 

u(x, t )  = vz(x, t) + ti, 
and let 

then the equation (1.1) can be reduced to the "integrated" equation 
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ROSENAU-BURGERS EQUATION 337 

with the initial data 

vIt=0 = vo(x), 

where F (v,) = 4 ( O  + v,) - $(G) - 4' (Qv, satisfying I F(v, ) 1 5 Clv, 1 2 .  One of the 

main theorems is stated as follows. 

Theorem 2.1(u+ = u- = O).  Suppose that (2. I )  and vo(x) E W391 hold, then 

there exists a positive constant € 1  such that when llvoll w3,1 < e l ,  then (1.1) and 

(1.2) has a unique global solution u (x ,  t )  satisfiding 

and the asymptotic decay rutes 

Remark. In [6], when C = 0 and I$'(u)l 5 CIUIP-', we get the decay rates as 

Ilu(t)ll I C(1+ t)-'I4 for p > 712 and Ilu(t)lloo < C(1+ t)-l12 for p > 2. However, 

note (2.2)l or (2.2)2, our new results in (2.5) and (2.6) for G = 0 give us that 

Ilu(t)ll 5 C(l + t)-3/4 and J J u ( ~ ) J J ~  5 C ( l  + t)-l for any 4 E C2. Therefore, we 

here get much stronger decay rates with much weaker conditions than those in the 

former work [6]. 

2.2. Case: u+ # u- 

Secondly, we consider the asymptotic stability of the stationary travelling wave 

of (1.1) in the case of u+ # u-. We first recall what the stationary travelling 

wave solution means, and state its existence. U ( x )  is called a stationary travelling 

wave solution of (1.1), and this means that it is a solution of (1.1) of the form 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f A
lb

er
ta

] A
t: 

04
:5

9 
25

 J
ul

y 
20

07
 

338 MING ME1 

u(x - st) = U(x), U f co) = u*, with the zero speed s = 0, exactly, which is the 

solution of the following ordinary differential equation: 

{ 
- a u x x  + pux + +(U)X = 0 

U ( f  co) = u*. 

The speed of propagation s = 0 and the state constants u* satisfy the Rankine 

and the Oleinik's entropy condition 

Such an entropy condition (2.9) implies that 

The condition (2.10) is the well-known Lax's shock condition, we call it the non- 

degenerate shock wndition, or the noncontact shock wndition. For each case in 

(2.10)2, we call it the degenerate shock wndition, or the contact shock condition. 

Integrating (2.7) over ( f  co, x) yields 

Thanks to Kawashima and Matsumura [3], see also Matsumura and Nishihara 151, 

we have the existence of travelling wave solutions from the sdlicient &nd necessary 

conditions (2.8) and (2.9). In the degenerate cases (2.10)2, we neb ki = n if 

f '(u*) = . . . = f ("1 (u*) = 0 and f ("+')(u*) # 0. Due to the dll-known arguments 

in [3,5], we state the existence of the stationary travelling wave without proof as 

follows. 
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ROSENAU-BURGERS EQUATION 339 

Claim. There ezists a stationary travelling wave solution U(x) of (1.1)  with U(f oo) 

= u*, unique up to a shift, if and only if the Rankine-Hugoniot condition (2.8) and 

Oleinik's condition (2.9) hold. 

Momver, such a stationary travelling wave U(x) satisfies 

and is such that, as x -t f CQ, 

Without loss generality, we focus on 

which implies f (U) < 0 for U E (u+, u-) from (2.12). Defhbg the weight functions, 

cf [5,91 

we know that wi(U) > 0 and in C2 (i = 1,2) due to u+ < U < u- and f (U) < 0, 
and that 

wl(U) N C for $J'(u+) < -P < &(u-), (2.16) 

for +'(u+) = -/3 < qY(u_), or #(u+) < -,B = #(u-), or #(u+) = -0 = #(u-), 

and also 

eC1l51, for x > 0 
wz(U) for q5'(u+) < -0 < $'(u-), (2.18) 

ec21zl, for x 5 0 
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340 MING ME1 

with some positive constants cl and c2. 

Suppose that 
r00 

and defhe 

Then the othertwo main theorems on the stability of the stationary travelling wave 

are stated as follows. 

Theorem 2.2(u+ # u-: Stability of Travelling Wave). Suppose that (2. a), (2.9) 

and (2.19) hold. U ( x )  is the stationary travelling wave solution of (1.1) connecting 

u*. 

(i) When $'(u+) < -P < qY(u-), assume $o(x) E H4, then there exists a positive 

constant ~2 such that when 11$0114+1u+ -u- I < €2,  then (1.1) and (1.2) has a unique 

global solution u (x ,  t )  satisfying 

u (x ,  t )  - U ( x )  E C(0,co; H3(R))  n L2(0, co; H ~ ( R ) )  

and the asymptotic stability holds such that 

sup p:u(x, t )  - @u(x)l  + 0, 1 = o,1,2, as t -, co, (2.21) 
xER 

where g u  = &/dxl. 

(ii) When $'(u+) = -P < $'(u-), or 4'(u+) < -P = # ( u - )  or 4'(u+) = 

-P = c,fl(u-), assume $o(x) + %$o E HZ,, where wl (U)  N (x)+, or ( x )  - or (5) 

corresponding to the above shock conditions. Then them exists a positive constant 

~3 mch that when + + Iu+ - u- I < €3, then (1.1) and (1.2) has a unique 

global solution u (x ,  t )  satisfying 

U ( X ,  t )  - U(x)  E L2(0, co; H i 1 ) .  

Moreover, the asymptotic stability (2.21) holds. 
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ROSENAU-BURGERS EQUATION 341 

Theorem 2.3(u+ # u-: Decay rate). Suppose that (2.8), (2.9) and (2.19) hold. 

U ( x )  is the stationary tmvelling wave solution of (1.1) connecting u*. When 

4'(u+) < -P < +I(u-), assume $o + e+o E Hi, ,  then there exist the positive 

constants €4 and 19 such that when ($0 + @+hla,w, + Iu+ - u- < € 4 ,  then ( I .  1) and 

(1.2) has a unique global solution u ( x ,  t )  satisfiing 

and the time decay rate 

sup ((u - U + %U - % ~ ) ( t )  ( 5 ~ e - ' ~  
zER 

holds for d l  t > 0. 

3. The Case: u+ = u- = E 

In this section, when u+ = u- = E,  we are going to prove that the Cauchy problem 

(1.1) and (1.2) has a unique global solution, which asymptotically converges to the 

trivial constant solution E in the form ~ ( t - ~ / ~ )  of L2-sense and 0(tW1) of Loo-sense 

as t -+ oo. 

We take the Fourier transform to (2.3) to obtain 

which means that 
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342 MING ME1 

Taking the inverse Fourier transform of (3.2) yields 

Differentiating (3.4) with respect to x, we obtain 

For a positive constant 6, define a Banach space as follows 

with the distance 

M(v,v,) = sup ((1 + t ) 1 / 4 ~ ~ v ( t ) ~ ~  + (1 +t>3'41bx(t)ll 
O<t<" 

Rewriting (3.4) as the form v = Sv, we want to prove that there exists the positive 

constant 61, such that the operator S maps X6, into itself and has a unique fixed 

point in X6, , namely, such a fixed point v(x, t) is the solution of (3.4). To this end, 

we need several preliminary results. 

Lemma 3.1. Suppose that a > 0 and b > 0, and max(a, b) > 1, then 

For the proof of Lemma 3.1 we refer to Segal [12] and Matsumura [4]. 
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ROSENAU-BURGERS EQUATION 

Lemma 3.2. The following results hold 

for dl t  2 0. 

Lemma 3.3. The following m l t s  hold 

for d l  t 2 0 .  

Lemmas 3.2 and 3.3 have been proved in our previous work [6]. 

Lemma 3.4. Suppose that v(x, t )  E X6, then 
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344 MING ME1 

hold for all t 2 s 2 0. 

Proof. By the Parsevd's equality and (3.7) in Lemma 3.2, we have 

According to the definitions of ~ 7 % )  and Xa, and noting IF1 I Clv,12, we have 

00 

5Lw 
IF(vz)l& I CIIvz(s)l12 I Cb2(1 + s)-i .  (3.19) 

Therefore, substituting (3.19) into (3.18) yields (3.14). 

Similarly, using the Parseval's equality and (3.9),(3. lg), we can prove (3.15). 

The details are omitted. 

To prove (3.16), note (3.7) and (3.19), then we have 
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ROSENAU-BURGERS EQUATION 

which implies (3.16). 

By the same approach, using (3.8) and (3.19), we can easily prove (3.17). The 

details are also omited here. 0 

Proof of Theorem 2.1. We are going to prove that there exists a positive constant 

61 such that the operator S is a contraction mapping from into Xg, . 
Step 1. S : X6 -+ Xg. For any q ( x ,  t) E Xa, and denote v = Svl, we now want 

to prove that v = Sv1 E Xg. Indeed, using (3.10) in Lemma 3.3, (3.14) in Lemma 

3.4, and (3.6) in Lemma 3.1, we have 

Similarly, in the same way, we have due to (3.11), (3.15) and (3.6) 
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MING ME1 

In the same fashion, we can prove that 

IISvl(t)ll, I Cllvollw3,1(1 + t)-4 + Cb2(1 + t ) -4 (3.23) 

from (3.12),(3.16) and (3.6), as well as 

Il&Svi(t)ll, I Cllvollw3,l ( 1  + t)-' + Cb2(1 + t)-' (3.24) 

from (3.13),(3.17) and (3.6). Thus, (3.21) - (3.24) imply that 

M ( v ,  V Z )  < ~3(1bJollw3J + b2) (3.25) 

for some positive constant c3 independent of Ilv0ll~3.1 and 6. 

Thus, there exists some small constant d3 > 0, and letting Ilvollw3.1 < 63/2~3,  

and 6 I min{b3, 1/2c3), we have proved M ( v ,  v,) < 6 for some small 6, namely, 

S : X6 -+ Xg for some small 6. 

Step 2. S is contraction in  X6. Suppose that vl (x, t ) ,  v2 (x, t )  E X6, and noting 

the fact that 
h 

sup I F G Z )  - F(v2z) 1 
€ER 
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ROSENAU-BURGERS EQUATION 

then we have by the Parsed's  equality and Lemma 3.1 

We also have by the same way in (3.27) 

for some positive constant c4 independent of 6 and M(v1 - VZ, ~ 1 ,  - ~ 2 ~ ) .  

Let us choose 6 5 J4 < 1 1 ~ 4 ,  we have proved 

i. e. S : X6 + Xg is contraction for some small 6. 

Thanks to Steps 1 and 2, let 61 < rnin{&, d4), we have proved that the operator 

S is contraction from X6, to X6,. By the Banach's fixed point theorem, we see that 

S has a unique fixed point v(x, t) in Xa,. This means the integral equation (3.4) 
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348 MING ME1 

has a unique global solution v(x, t), which' satisfies (2.5) and (2.6). Thus, we have 

completed the proof of Theorem 2.1. 0 

4. The Case: u+ # u- 

This section proves the asymptotic stability of the stationary travelling wave and 

the exponential time decay rate for the small initial perturbation with spatial ex- 

ponential decay. 

Let U(X) be the stationary travelling wave solution of (1.1). Without loss of 

generality, we assume u+ < u-. So, aU, = f (U) < 0 and u+ < U < u- by the 

Claim in Section 2. Set 

$z(x, t) = 42 ,  t )  - W ) ,  (4.1) 

then the initial problem (1.1) and (1.2) is reduced to a "integrated" equation 

where G = -d(U + &) + 4(U) + dl(U)$, satisfies IG( < CI& 12. 
We define the solution spaces of (4.2) and (4.3) for any T E [0, m] as follows 

and set 

Then (4.2) and (4.3) can solved globally in time as follows. 
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ROSENAU-BURGERS EQUATION 349 

Theorem 4.1. Under the assumptions in Theorem 2.2. 

(i). When +'(u+) < -,B < #(u-), then there exists b5 > 0 such that if 11+0114 + 
1u+ - U - 1  < 45, then (4.2) and (4.3) has a unique global solution + E Yl(O, co) 

satisjiding the following estimate for all t 2 0 

(ii). When +'(u+) = -P < +'(u-), or +'(u+) < -P = dl(u-) or @(u+) = -,6 = 

#(u-), then there exists 66 > 0 such that if + @)olz,wl + Iu+ - 11-1 < 66, then 

(4.2) and (4.3) has a unique global solution $ E Y2(0, co) satisfying the following 

estimate for all t 2 0 

(iii). When +'(u+) < -,B < +'(u-), then there exists S7 > 0 such that if + 
@,b012,w2 + )u+ - u-I < 6,) then (4.2) and (4.3) has a unique global solution + E 
Y3(0, co) satisfying the following estimates for all t 2 0 

Since Theorem 4.1 implies Theorems 2.2 and 2.3, the proof of Theorem 4.1 is 

our main purpose in the remainds of this paper. Theorem 4.1 can be proved by the 

weighted energy method, together the local existence with the a priori estimates. 

Proposition 4.2 (Local existence). Suppose the conditions in Theorem 3.1 hold. 

Then, for any given 60 > 0, there is a positive constant To depending on 60 such 

that the pmblem (4.2),(4.3) has a unique solution $(t,t) E Y,(O,To) (i = 1,2,3) 

corresponding to ll+0ll4 or I+o + %+012,~, or I& + % + 0 1 2 , ~ ~  < 60. 

Proposition 4.3 (A priori estimate). Let T be a positive constant, and +(t, c$) be 

a solution of the problem (4.2)) (4.3). 
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(i). When #(u+) < -P < #(u-), then thew exists 68 > 0 such that if Il+oll.i < 
68, the solution + E Yl(0, T) satisfies (4.4). 

(ii). When #(u+) = -p < I$'(u-), or #(a+) < -P = #(L) or #(u+) = -P = 

+'(u-), then there exists SQ > 0 such that if + @$o12,wl < 69, then the solution 

.11, E Y2(0, T) satisfies (4.5). 

(iii). When +'(u+) < -P < #(u-), then them exists b10 > 0 such that if 

I+o + l?3)012,W2 < bI0, then the solution + E Y3(0, T) satisfies (4.6) and (4.7). 

Since Proposition 4.2 can be proved in the standard way, we omit its proof. 

Once Proposition 4.3 is proved, using the continuation arguments based on Propo- 

sitions 4.2 and 4.3, we can show Theorem 4.1. We are going to prove Proposition 

4.3. 

Multiplying (4.2) by 2w (U) (+ + %+), and using aUz = f (U), we have 

where 
{' ' 'Iz = { 2 a ~ + + ~  - awzqj2 - f1w+2 

+ 2aw$zz+zzz - - 2f'w+z+zzz 

+ f1w+:, + 2f'wz+z+zz - f'~zz.11,: )z 

which will disappear after integration with respect to x over (-m, m). Since aU, = 

f (U) < 0, we k i t  see from (2.15) 

for all shock conditions, and that 
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ROSENAU-BURGERS EQUATION 35 1 

for #(u+)  < -0 < qhl(u-), where cs = (u- - ~ + ) ~ / ( 4 a ~ ~ ) ,  cti = max w ~ ( u ) ~  > 0. 
[u+,u-I 

To see this, since If(U)I N IU - ukI as U -+ u*, and w2(U) N IU - u*l-1/2 for 

+I(u+) < -P < #(u - ) ,  we compute it directly from (2.15) 

Secondly, we can also check that 

for i = 1,2. For the proof of (4.9), by using laU,I = If(U)I 5 Clu+ - u-12, 

I fM(U)l 5 C and I f l(U)l = I f l (U)  - fl(u*)l 5 Clu+ - u- 1 ,  where u ,  denotes the 

point in (u+, u- )  such that f l(u*) = 0, a h  by (2.15)-(2.18), then we prove the 

following result for all shock conditions 

I Clu+ - u-1, for lu+ - u-I << 1. (4.11) 

Similar to (4.11), by simple but trivial calculations, we can easily prove (4.9) for 

i = 1, i.e., wl(U) ,  as well as (4.10) for i = 1,2, i.e., wl(U)  and w2(U). Here we 

omit the proofs. Integrating (4.8) over [ O , t ]  x R, and using (4.9) and (4.10), we 

have proved the following basic energy estimates. 
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Lemma 4.4. Let +(x, t) be the solution of (4.2) and (4.9). 

(9. When #(u+) < -P < dl(u-) and .11, E Yl(O,T), then + satisfies 

(ii). When @(u+) = --P < #(u-), or qY(u+) < -P = $I(u-) or #(u+) = -P = 

r#~'(u-), and + E Y2(0, T), then we have 

(iii). When #(u+) < -P < @(u-), then there exists Cl > 0 such that the 

solution + lr Y3(0, T) satisfying 

The Proof of  (i) in Proposition 4.3. Differentiating (4.2) on x and multiplying 

it by +,, to yield 

noting 

due to the Cauchy's inequality and I fl(U)I 5 Clu+ - u- 1 and IU, I 5 Clu+ - -u- h 
we then integrate the above resultant equitity over [0, t] x R and make use of (4.12) 

in Lemma 4.4 to get 
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Similarly, multiplying (4.2) by e+ and integrating it over [0, t] x R, and then using 

t 

5 CIWOII: + w l ( t )  + ~ u +  - u-I) J I I + ~ ( s ) I I : ~ ~ .  
0 

Thus, combining (4.12), (4.15) and (4.16) yields 

for Nl(t) < 1 and lu+ - u- I < 1. 

Furthermore, taking rrn Oi(4.2) x +,,a!xdr and noting (4.17) yield 

for Nl(t) < 1 and Iu+ - u- I < 1. 

Thus, combining (4.17) and (4.18) impies (4.4). The proof is complete. 

The Proof of (ii) in Proposition 4.3. We here give an outline of the proof, since 

it is similar to the proof of (i) in Proposition 4.3. We first differentiate (4.2) with 

respect to x and multiply it by W ~ ( U ) ( + ~  + @+), after integrating the resulting 

equality and using (4.13), we have 

for N2(t) < 1 and lu+ - u-I < 1. 

(4.19), we can prove 

for N2(t) < 1 and lu+ - u- I < 1. The proof is complete. 0 
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The Proof of (iii) in Proposition 4.3. By the same procedure mantioned 

above, firstly, taking ai(4.2) x w2(U)(+, + a:+) and integrating it over [0, t]  x R, 

in particular, and noting the positivity of the coe5cient Cl > 0 of the second term 

in the lefbhand side of (4.14), we can prove that 

for some constant 81 > 0. Here the conditions N3(t) << 1 and lu+ - u-1 < 1 are 

also necessary. 

Secondly we focus 8; (4.2) x wz (U) (&, + a:+), and integrate it over [0, t] x R, 

noting (4.14) and (4.21), then there exists a constant O2 > 0, such that 

for N3(t) << 1 and Iu+ - u- I << 1, which gives us (4.6). 

Moreover, since 

I+(t)I:,w2 L CI(+ + a:+)(t)I?,,, , 

there exists a positive constant 8 = rnin{&,82), we can o b t m  from (4.22) such 

that 

provided N3(t) << 1 and lu+ - u-I < 1. 

Using Gronwall's inequality in (4.23), we have 

for t E [0, TI. We have completed the proof of (iii) in Proposition 4.3. 
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