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Abstract. The hydrodynamic model for semiconductors in one dimension is consid-
ered. For perturbated Riemann data, global subsonic (weak) entropy solutions, piecewise
continuous and piecewise smooth solutions with shock discontinuities are constructed
and their asymptotic behavior is analyzed. In subsonic domains, the solution is smooth
and, exponentially as t —> oo, tends to the corresponding stationary solution due to the
influence of Poisson coupling. Along the shock discontinuity, the shock strength and
the difference of derivatives of solutions decay exponentially affected by the relaxation
mechanism.

1. Introduction. Since its introduction by Bl0tekjasr [3], the hydrodynamic model
for semiconductors has recently attracted much attention because of its ability to model
hot electron effects which are not described by the classical drift-diffusion model. For
further discussion on these models in physics and engineering, and their derivation from
the kinetic transport equation, we refer to [30, 34, 22, 35, 36] for details.
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After an appropriate scaling, the one-dimensional time-dependent system in the case
of one carrier type, i.e., electrons, reads

Pt + {pu)x = 0,

(pu)t + (pu2 +p(p))x = P4>x - —, (1.1)
T

4>xx = p ^(**0)
where p > 0 and u denote the electron density and velocity, respectively, j = pu is
called the current density, E = (f>x is the electrostatic potential, and p = p{p) is the
pressure-density relation which satisfies

p2p'(p) is strictly monotonically increasing from (0, oo) into (0, oo). (1.2)

In the present paper, we assume that

p(p) = p7, 7 > 1. (1.3)

Also, r = r(p, pu) > 0 is the momentum relaxation time, which is assumed to equal 1
for convenience. The device domain is the real line, and the function C = C(x) > 0 is the
doping profile, which stands for the given background density of changed ions.

Noticing that j = pu and E = 4>x, Eq. (1.1) can be written as

Pt+jx = 0,

3t + +p(p))x = pE- J~, ^

Ex = p C(x),

u = j/p.

In the present paper, we consider the following initial value problems (IVP) for the
hydrodynamic model (1.1) (or (1.4)), with initial data given by

(p, u)(x, 0) = (p0, uo)(x), (1.5)

where

lim (p0,u0)(x) = (V±,U±), V+U+=VM.. (1.6)
x—►±oo

The goal here is to discuss the influence of the relaxation mechanism and the Poisson
coupling on the existence and asymptotic behavior of (weak) entropy solutions.

For the hydrodynamic model for semiconductors, the existence problem has been
considered by many authors. For the steady-state system on a strip domain, Degond and
Markowich [6, 7] first proved the existence and uniqueness of subsonic solutions in one
dimension, and, for irrational flow, in three dimensions, respectively; the existence and
uniqueness of subsonic solutions in two dimensions was discussed by Markowich [31]. The
corresponding investigations on transonic solutions in one dimension were done in [2, 33,
9]. For the time-dependent system, Marcati and Natalini [28, 29] discussed the existence
of weak solutions on the real line and proved the zero relaxation limit to the drift-diffusion
model for 1 < 7 < |. Zhang [42, 43] discussed the existence of weak solutions and the
relaxation limits for 7 > |. Gasser and Natalini [11] discussed the relaxation limit for
the non-isentropic hydrodynamic model. On the strip domain, the existence of weak
solutions was obtained by Zhang [40] and by Fang and Ito [8], respectively. Hsiao and
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K. Zhang [20, 21] discussed the relaxation limit and verified the boundary conditions
for weak solutions in the sense of trace. Chen and Wang [5] investigated the existence
of weak solutions on compact domains with geometric symmetry. Under assumption of
zero-current density at boundaries, Hsiao and Yang [19] discussed the time-asymptotic
convergence of the smooth solutions of the hydrodynamic model and those of the drift-
diffusion model to the unique steady-state solution. For density and potential boundary
conditions, Li, Markowich, and Mei [24] reproved the existence and uniqueness of a
subsonic steady-state solution of the hydrodynamic model and established its stability for
small perturbations. Regarding other topics on smooth solutions for the time-dependent
hydrodynamic models for semiconductor devices, such as time-asymptotic convergence
to the stationary solution of the drift-diffusion equation, the stability and instability of
the steady-state solutions, initial boundary value problems, and numerical analysis, we
refer the reader to [26, 13, 12, 27, 41, 4, 23] and references therein.

However, in the weak solution case, few results are known on the asymptotic behavior
of weak solutions. Our interest in the present paper is to investigate the large time
behavior of (weak) entropy solutions. As a first step, we consider the asymptotic behavior
of piecewise smooth solutions with discontinuities in the subsonic cases. For simplicity,
we consider the perturbated Riemann problems, i.e.,

( \( \ x < 0,
(p0,u0)(x) = < , ... n (1-7)

\{pr,ur)(x), x>0,

and

(Q-,u_) = lim (pi,ut)(x) ^ lim (pr,ur)(x) =: (g+,u+). (1.8)
x—>0— x—>0+

This problem is of importance in the study of existence and asymptotic behavior of
solutions for general initial-value problems. It works as the building block to construct a
weak solution [28, 29, 37], and is the first step to investigate the interactions of elementary
waves. Unfortunately, due to global effects of the relaxation damping and Poisson terms,
the investigation of the Riemann problems for (1.1) causes difficulties. The loss of a
self-similar solution also makes it complicated to construct globally-defined solutions.

The corresponding steady-state system for (1.4) reads

j = const.,

>± + m)=PE-l (]9)
Ex = p — C(x),

u = j/p.

It was proved by Macarti and Mei [27] that there is a unique smooth steady-state
solution (p,u, E) (up to a shift) of system (1.9) satisfying pE{+oo) = pE(-oo) — j.
Therein [27], the restriction of zero current used in [26] was also removed; namely, the
current density j may take a nonzero constant value.

In the present paper, we show that the piecewise continuous and piecewise smooth
subsonic solution (p,u,E) to the IVP (1.4) and (1.7) exists globally and tends to the
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solution (p, u, E) of the steady-state system (1.9) as time t tends to infinity. For simplic-
ity, we first consider the case that the two states and (g+,u+) are connected
by two shock curves. More precisely, in phase space there is a state (gc,uc) such that
(Q-,u_) and (QciUc) are connected by a backward shock curve, and (gc,uc) and (g+,u+)
are connected by a forward shock curve. The methods used in the present paper can be
applied to deal with other kinds of connections between (£_,«_) and (g+,M+). In fact,
the main result (see Theorem 3.1) shows that if the initial jump is sufficiently small and
the initial value is a small perturbation of (p,u,E) with V+U+ — j, then the piecewise
continuous and piecewise smooth solution (p,u,E) to the IVP (1.4) and (1.7) (or IVP
(1.1) and (1.7)) exists globally. The discontinuities consist of two shock curves—a back-
ward one and a forward one. These shock curves never disappear in finite time, but the
shock strengths decay exponentially. As time t tends to infinity, the solutions (p, u, E)
converge to (p, u, E) exponentially.

The present paper is organized as follows. Under the restriction conditions on the
doping profile (2.1) and (2.4), we first state the existence results in [27] on the solution
to the steady-state system (1.9) in Sec. 2, where related properties about the solution are
also given. In Sec. 3, some preliminaries on the Riemann problem for the Euler equation
are introduced first, and the main result is given. The result is proved in Sec. 4. We first
construct the solution locally under the a priori assumptions that |(p—p, u—u, E—E)| 1
(Sees. 4.1-4.2). In Sec. 4.3 the globally-defined solution and its asymptotic behavior are
obtained.

Notation. Let L2(D) be the usual space of square integrable functions on domain
D C R, and let Hm(D) (m > 1) be the usual space of functions f on D satisfying
dlxf € L2(D), i = 1,2,3,..., m. In the present paper, for convenience, C denotes a
generic positive constant, and the Cj and with i integral denote positive constants.

2. Steady-state system. In this section, we state the existence and uniqueness of
stationary solutions for system (1.4), as well as the properties of these solutions. All of
these are shown by Marcati and Mei in [27].

In this paper, we assume that the doping profile satisfies

C{x) G C2{R), C\x) e L\R)C\Hl(R),
lim C(x) — C± > 0, C* = supC(ai) >0, C* = inf C(x) > 0,

x->±oo xeR x€ R
(2.1)

from which one can verify C'(x) E Wl'A{R).
Dividing (1.9)2 by p, then differentiating it with respect to x, one obtains in terms of

(1.1)3 that

^r(p,j)px^j +jQ) ~P=-C{x), (2.2)

where

j2 , ufz\ P'(P)F{P,J) = ^2 + hW> =
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To make Eq. (2.2) uniformly elliptic, we need

dF - 1 I2
= -p'(p) - -3

ap p p6-%=■ (pJ) = -P'(/5) — ̂ 3 > 0 ^ p p'(p) > j . (2.3)

We conclude from (1.3) and (2.3) that there exists a unique pm = pm(j) — 0 such that

p'(p) - 4 > 0
P

for p > pm.
Note that, by (2.3), the minimal point pm of p —> F(p,j) is a strictly increasing

function of j, and pm(j = 0) = 0. One can make sure that Eq. (2.2) is uniformly elliptic
for p > pm. By (2.3) and j = pu, this condition implies |u| < c(p), where c(p) = y/p'{p)
is the speed of sound.

One can prove ([27]) that if

inf C(x) = C* > pm(j), (2.4)
x£R

then there is a regular solution up to a shift to (1.9) with pE(±oc) = j.
We remark that if |j| is so large or C* is so small that

C* < PmG), (2-5)

then the flow may at least be partly supersonic and the occurrence of shocks cannot be
excluded.

We expect to prove that for a stationary solution it follows that \(px, Ex)(x)\ —» 0 as
|a:| —i> +00. The second equation of (1.9) is equal to

f
P-

P'(P) -J-=2)f>x = pEx- j. (2.6)

Thus, setting x —► ±00, thanks to (2.6), (1.9)3, and (2.3), which implies p'(C±) — > 0,
we get

C±E± = j, (2.7)

with E — (j)x, and E± and j have the same sign, where E_ = E{—00). Without loss of
generality, we assume j > 0, i.e., E± > 0. Note that, if j = 0, then E+ = E- = 0 and
the potential E+ — E- = 0, which is a trivial case.

We now state the existence result and the properties of the stationary solutions as
follows.
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Theorem 2.1 ([27]). Under the assumptions (1.3), (2.1), and (2.4), there exists a unique
(up to a shift) smooth solution (p, j, E)(x) of problem (1.9), such that

C* < p{x) <C", x € R, (2.8)

\p{x) — C±| = 0(e~c±'x') as x —> ±oo, (2.9)

\\p-C\\l<Ciai, (2.10)
sup(|/5'(x)|2 + \p"{x)\2) < C2a2, (2.11)
x(zR

sup |£(x)|2 < C3a3, (2.12)
xER

where Ci (i = 1,2,3) are positive constants only depending on C*,C*,C_, and C+, but
not on a,i (i = 1,2,3). The positive constants c+ and a, (i = 1,2,3) are given as

c± = ^ ~ > 0,
P'(C±) - El

al = I l°gC+ - log C_ | + HC'lUl + IIC'llflTl + ||C'|||,4
+ (I logC+ - logC-1 + HC'lUl + ||C'||2L2)3, (2'13)

a2 = a\ + ||C'||l°o + (o-i + II^'Hl00)2;

. a3 = [a! + p2mp\pm)}/Cl.

3. Hydrodynamic model and main result. Consider the following Euler equa-
tions:

[pt + {pu)x = 0, ^ ^

\(pu)t + {pu2 +p(p))x = 0,

where the pressure p is given by (1.3). Equations (3.1) can be written as

vt + /(v)x = 0, (3.2)

where v = (p, j)T with j = pu, /(v) = (j, ^ + p(p))T. The Jacobi matrix of / is

1
-S +p'(p)V/= I . (3.3)

The eigenvalues of (3.3) are

Ai = 3- ~ V7P(7"1)/2, A2 = I + V7P(t"1)/2, (3.4)

or

Ai = u - V7/>(7~1)/2, A2 = u + V7P(7_1)/2, (3-5)

and the Riemann invariants are

!»=«+*). (36)Ir = u — ̂ (/o),
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where ip is defined by

[lnp, 7=1.

Via Riemann invariants, the solution (p, u) can be represented as

u=i(s + r), p = H(r,s), (3.7)

where

H(r,s) = i ^
e2(s_r); 7=1.

An j-shock wave, i = 1,2, for (3.2), is characterized by the Rankine-Hugoniot condition
and Lax entropy condition. Namely, along the discontinuity x = Xi(t), it follows that

x\{t) = -y/[pu2 +p(p)\i/[p\i,

[Hi = VV"2 +p(p)\i/\p)i ■ [p\1, (3-8)
Ai(xi(t) - 0,t)> ±i(t) > Xi(xi(t) + 0,t),

or

±2 (t) = V[pu2 + p(p)\2/[p}2,

[pu\2 = -yj[pu2 +p(p)h/[p]2 ■ [p]2, (3-9)
A2(x2(£) - 0, t) > ±2(t) > A2(x2(t) + o, t).\

Here and afterward, we denote

[F]i = F(xi(t) + 0, <) - F(xi(t) - 0, t), i = 1,2.

In this section, we consider the IVP (1.1)—(1.5) in the case that the two states (£>_, u_)
and (£>+,M+) are connected by two shock curves in phase space; i.e., there is a state
(qc,uc) such that

u_ > uc > u+,

(qcuc - e-u-)2 = (gcul - g-ui + p(qc) - p{e-)){ec - £>-), e- < £>o (3-10)

(Q+U+ - QCUC)2 = (e+U2+ - Qcul+p(g+) -p{qc))(q+ - Qc), Q+ < Qc.

Set

Denote

£o(x) = {/ +J } (^o(2/) - p{y))dy, £1 (x) = p0u0(x) - j.

So — \Qc ~ 0+1 + IQ- ~ Qc\, rjo — a\ + a<i + ^3?
Mo ~ 11 o 5 £ox i £ Oxx 5 £-0xxx) H +||(£i,£ix,£iz* )#<+00, (3.11)

2

Mi = ^sup{|^(po(a:) - p(ar))| + |d*(u0(a;) - u(z))l} < +00, (3.12)
i=0 x^°

M2 = sup{|a£(po(a:) - p{x))| + |^(w0(rc) - u(a;))|} < +00, (3.13)
x^O
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where
/ r0— roo

ll/lt= J J I f{x)\2dx + J^ \}{x)\2dx, (3.14)

u{x) = j/p{x), and a\, are given by (2.13).
We have the following main result.

Theorem 3.1. Let (po,uo) G C3(R - {0}), e0 G L2(R - {0}), and (e0,£i) G H3(R -
{0}) x H2(R— {0}). Let (3.10) and (3.11)—(3.13) hold. Then there exists a (3q > 0 such
that if So + fio + hi + r/o < /3o, then the global weak entropy solution (p, u, E) of the IVP
(1.1) and (1.5) uniquely exists. It is piecewise continuous and piecewise smooth with
two shock discontinuities—a forward shock curve x = x-i (t) and a backward shock curve
x = x\(t) satisfying 2i(0) = £2(0) = 0 and £i(i) < X2 (i) for t > 0. Away from the
discontinuities, (p,u, Ex)(-,t) G C3. In addition, as t tends to infinity,

2
+ \[di(p,u)}21) ~ 0(l)e-^ - 0, (3.15)

i=0

and
2

2 It di(p -p,pu-j,E - E)(; t)|| - 0(l)e-^ - 0, (3.16)
i—0

with two positive constants K\ and K2, where

= f(y,t)2dy

and
f+00 f /-xi(t)-0 rx2(t)-0 r+00 ^

f f(y,t)2dy=< + + \f(y,t)2dy.
J — OO \ 00 Jxi(t)-\-0 Jx2(t)+0 J

Remark 3.2. 1) A similar result is true for general pressure p[y) with p'(v) < 0 <
p"(v).

2) For other kinds of connections of (g_,u_) and (q+,u+) in phase space, such as
a rarefaction wave and a shock wave, or two rarefaction waves, similar results can be
proved by using the same approach as the present paper.

4. Proof of main result. In this section, we construct the global weak entropy
solutions for the IBVP (1.1), (1.5), and (3.10), and investigate their asymptotic behavior.

4.1. Shock waves and geometric structure. Define

f D— = dt + Ai<9x,
\d+ = dt + ^dx-

Then the system (1.1) (or (1.4)) can be written, via Riemann invariants, as

(D_r=-i (r + s) + E,

[D+s = -\(r + s) + E,
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and the corresponding initial value is

r \r r w \ J(n,si)(a;), x < 0,(r,s)(x,0) = (r0,s0)(x) = < (4.2)
[(rr,sr)(x), x > 0,

where

(rj, S() = (ui - tp{pi),ui + i>{pi)), (4.3)

(rr, sr) = (ur - i>(pr),ur + t[>(pr)), (4.4)

and

(r_,s_)= lim (rt,si)(x) ^ lim (rr,sr)(x) =: (r+,s+). (4.5)
x—>0— £—►()+

By the argument used by Li and Yu in [25] to establish the local existence theorem,
one can prove that the discontinuous initial value problem (4.1)-(4.5) admits a unique
discontinuous solution (r,s) for 0 < to -C 1 in the class of piecewise continuous and
piecewise smooth functions. This solution contains a forward shock x = x^it) and a
backward shock x = x\(t), both passing through (0,0). It is known, due to the entropy
condition, that x — X2 {t) must be located on the right side of x = x+(t), given by

x+{t) = A2(x+, (t),t), x+(0) = 0,

and x = x\ (t) must be located on the left side of x = x_(i), given by

x-(t) — Ai(x_, {t),t), x_(0) = 0.

Moreover, it can be shown that s — r > 0 is bounded, Kr^, sx)| <C 1 for x ^ Xj(t) and
|[p]i| Cl(i = 1,2), provided that p0{x) > 0 and |(p0,uq)x\c° + <*>0 < 1-

For any T > to > 0, denote

{T) = {(x, f^X^f) < X < X2(f),0 < t < T},

fi_(T) = {(x,i)|x < xi(t),0 < t < T},

H+(T) = {(x,t)\x2{t) < x,0 < t < T}.

Without loss of generality, we assume that the piecewise continuous and piecewise smooth
solution exists on

ns{T) =: n+{T) U n_(T) U fi0(T),
and assume that on domain QS(T) it follows that

|(p(x,t) - p,pu-j)| + \px{x,t)\ + \ux(x,t)\ < ri < 1, (4.6)

and along x = Xi(t) (i = 1,2) it follows that

|[p]i|«l, * = 1,2. (4.7)

Prom (4.6) and Theorem 2.1, one can verify that the subsonic condition holds for the
solution (p,u,E) on QS(T); i.e.,

max \u\p~^(x,t) < yfy, (4.8)
xens(T) v

and there are two constants p* and p* such that

0 < p* <p<p*. (4.9)
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In this subsection, we investigate the qualitative behaviors of the piecewise smooth so-
lution (r,s)(x,t) with shock discontinuity to (1.1) (or (1.4)), under the assumptions

(4.6)—(4.7).
Define, for i = 1,2,

A"(t) = (^t) (I)
AtiM = (^r—(®i(*)>*)»

AUt)={fcS) (I) * (I2(t)'1)'
A~2^) = ^ (x2{t),t),

V 1,2 J

and set

(x\ — At, )2
Ki(t) = t—1—(x1(t),t),

Xi

(x2 — A72)2
K2{t) = :—1—(x2 (t),t)

X2

M^(t) = ^=(pf)^(A^1 - Af1)(A±1 + -2±i)(a;i(i),i),
X1V '

M±2{t) = V(A±2 - Af2)(A^2 + A^2 - 2x2)(x2(t),t),

M2,i(t) = (/9^)V(i1 -A2i1)(A+1 -t-A^j -2x!)(xi(t),t),
xi\l

M2)2(t) = T-^04)^^2 - i2)(A+2 + Aj~2 - 2x2){x2{t),t),
x2^p

where and from now on

*£i = *j(zi(t)±0,t), ff = f(xi(t) ±0,t), i = l,2, j — 1,2.

Differentiating (3.9)2 and (3.8)2 with respect to £, respectively, and using (3.6), we
have, after tedious calculations, the following lemma (cf. [15, 17, 18]).

Lemma 4.1. Let (p,u,E) be a piecewise smooth subsonic solution of the IVP (1.4) and
(1.5) with shock discontinuity x = Xi(t) (i = 1,2) on ns(T). Then, along x = x2(t), it
follows that

(r2 = -^t,2(r2 )x — J^2,2{s^~)x + ^2,2(S2 Bo(t) (4.10)
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and

-K *Dtl,,h=2r '»»2,A

+ lM^^[p\r{s~)x + ^M2,2^7(r+)x' (4-n)

where Df =: dt + x2 (t)dx and

aV7(P2)^ (. W]2^ . r 1Bo(t) = 4 112' I2l"l2;

and along x = xi(i), it follows that

(sf)x = ^(sDx + A^^r]1"^ -^1(r{")a: + Bi(t) (4.12)

and

-K^Drlp] i = -2Wi " rr1)+ kiTr1!'*)-Hi / 2 Mi
iM»^RT1(^)'-5M«!H7(s+)x' (413)

where Dt =: dt + X\{t)dx and

*l(t) =
^ ±i[p]i-(A^i-ii)3V [Hi

Then, the exponential decay of shock strength follows from Lemma 4.1.

Lemma 4.2. Let (p,u,E) be a piecewise smooth subsonic solution of the IVP (1.4) and
(1.5) with shock discontinuity x = Xi(t) (i = 1,2) on fls(T). Then, along x — X2(£), it
follows for t G [0, T] that

-J-D+([p]2)e[Pi,P2], (4.14)
[P\2

<5oe-/32< < p(x2(t) + 0, t) - p(x2(t) - 0, t) < <50e-/3lt, (4.15)

and along x = x\ (t), it follows for t G [0, T] that

e [^1^2], (4-16)

6oe~P2t < p{xi(t) + 0,t) - p{xi{t) - 0,t) < S0e~l3lt, (4-17)

with constants & > 0 (i = 1,2), provided that (4.6)-(4.7) hold.
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Proof. We only prove (4.14)-(4.15). By (3.9)i, one can verify that along x = x2(t), it
follows that

W +Mh = Mia + ±0(1)Ma, (4.19)
V M2 [pu]2 + y^y(p2 ) 2

[A!]2 = 0(l)[p]2, (4.20)

provided that [p] 2 <C 1.
Then, it follows from the entropy condition and (4.18) that

0 < c*i =: C~l ^(p*)^ < K2< =: a2, (4.21)

0 < 0:3 =: C 1 p* < \M±2\ + 1^/2,2! < Cp* =: 04, (4.22)

where a, > 0 (i = 1,2,3,4) is constant, provided that (4.6) holds. Substituting (4.19)-
(4.22) into (4.11) yields (4.14)-(4.15) for two constants /3\ and f32> provided that (4.6)-
(4.7) hold.

Similarly, one can prove (4.16)-(4.17). Then, the proof of Lemma 4.2 is completed. □
4.2. The a priori estimates. In this subsection, we obtain the a priori estimates in

order to extend the solution, more precisely, to obtain the bounds of (rxx, sxx)(x, t) and
(rrai, sxxx)(x, t) by solving initial value problems on fl±(T) and solving initial boundary
value problems on f2o(T), and to estimate the decay rates of [rxx\i, and [sxx]i
under the a priori assumptions (4.6)-(4.7).

Define

a(p) = |(7 + 1)P(3"7)/4, d(p) = p^'\ (4.23)

( 2 O^-3)/4 -Y ̂  3

i-i <424)
and set

Yi = d(p)sx + h(p), Zx = d(p)rx + h(p), (4.25)

Y2 = (Yi)x, Z2 = (Zi)x. (4.26)

It follows from (4.1) that for (x,t) G £ls(T),

D+Yi = -a(p)Yf - £>i(a;,i)}/i + fi{x,t) + d(p)(p - C{x)), (4.27)
D-Zi = -a(p)Zl - b2(x, t)Z\ + f2(x,t) + d(p)(p-C(x)), (4.28)

where

and that

bi(x,t) = b2(x,t) = \- 2 a{p)h(p), (4.29)

fi(x,t) = f2(x,t) = h(p)(\ -a(p)h(p)), (4.30)

D+Y2 = -b3{x,t)Y2 + f3(x,t) + (d(p - C(x)))x(x,t), (4.31)
D-Z2 = -b4(x,t)Z2 + U(x,t) + (d{p - C(x)))x(x,t), (4.32)
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where

h{x,t) = \ + 1(7 + 3)^ + -ytjj'px, (4.33)
b4(x,t) = \ + i(7 + 3)wx +jip'px, (4.34)

h{x,t) = — [a'(p)(d(p)sx + h{p)f + b[{p){d(p)sx + h(p)) - f[(p)\px, (4.35)
U{x,t) = — [a'(p)(d(p)rx + h(p)f + b[{p)(d(p)rx + h{p)) - f[(p)\px. (4.36)

The next step is to obtain the relation for Y2 and Z2 along x = Xi{t) (i = 1,2).
Differentiating (4.10) with respect to t, one obtains that along x — X2(t),

(r~\ — A+ /^1-2 (r+) - A+ ^2'2 ^2(s+)\i 2 )xx ~ 1,2 >- . v 2 )xx ^2,2 • l62 )xx
^1,2 — X2 ^1,2 — X2

Ao 9 Xo
+ ^2,2 7^ ~(s2 )xx + E>2(t), (4-37)

•^1,2 ~ x2

where

B2 (t) = 1 . {-(Ar,2)x(r2~)x - 5(^2 + r2)x ~ B0{t)
ai,2 -X'i

+ A^2({^1,2) x(r2 ) x + |(s2~ + r2~)x) ~ At,2(r2~)x

~ ^2,2^.^2,2)x{,s2 )x ~~ 2^S2 r2 )x) "I" A-2 2)x

"t" ^-2,2((^2,2)x{s2 )x + 2 (^2 r2 )®) — ^2,2(S2 )x

+ {(t>2 )xx ~~ ̂ 2(^)11 + ^2,2(^2 )« — ^2,2(^2 )xx}■ (4.38)

It follows from (4.37) that

Z~ (x2(t) - 0,t) = B+2Z+ (x2(t) + 0, t) - B+2Y+ (x2(t) + 0, t)

+ B2,2Y2~ (x2(t) - 0, t) + B3(t), (4.39)

where

and

Bait) — (h2 )x + (d2 )x{r2 )x B^2((h2)x + (d2)x(r2)x)

+ BU{hi)x + (d+)x(s+)x)

~ B2,2((h2 )x + (d2 )x(s2 )x) + d2 B2{t). (4.40)
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Differentiating (4.12) with respect to t, we have that along x = x\(t)

. A2 1 X\ . ^12 1 1
(51 )xx = ^2,1 T+ ~ ^xx ^1.1 7 + ~ )xx

A2 ^ «£l A2 ^

— An-f ~{r2 )xx + (4-41)
A2,l - X1

where

B4(t)-+ -{"(A2+1)x(4)- " + rt)x - B\(t)
A2 1 X\

+ A2ji((A2ji)x(s1 )x + 5(^1 + T\ )x) ~ j42j1(s1 )x

+ <1((A+1)x(r+)x + i(s+ + r+)x) - A+ M)x

~~ Aiii((A11)x(r1 )x + ^(^i + r1 )x) + A1;1(sr )x

"t" ~~ A2 i(</)i )xx ~ A^i {<fi^)xx "f~ )xx}■ (4.42)

It follows from (4.41) that

Y^(xi(t) + 0,t) = B^Y2-(Xl(t) - 0, t) + B+1Z+(x1(t) + 0,t)

~ B11Z2 {x\{t) - 0,t) + B5(t), (4.43)

where

(xi{t),t),

P2

and

B5{t) = (hf)x + (d+)x(s+)x - B21{(h1 )x + (dx )x(sl )x)

-B+1((h+)x + (d+)x(r+)x)

+ Bi,i(Ch )x + (dy )x(ri )x) + dx B^{t). (4.44)

Lemma 4.3. Under the assumption (4.6)-(4.7), it follows that

1^2 - 1| + \B+2 - 1| + \A±2\ + \B±2\ = 0(l)[p]2,

l^,i - II + |fl2"i - II + \Aftl\ + 1^11 = 0(l)[p]1;

\B2(t)\ + |S3(t)| < C\[p}2\ + max (\px{x,t)\ + \ux(x,t)\),
(x,t)ens{T)

\B4(t)\ + \B5(t)\<C\[p]i\+ max (\px(x,t)\ + \ux{x,t)\).
(x,t)ens(T)

(4.45)

(4.46)
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Proof. By (4.18)-(4.19) and the following,

|Bo(t)| + |Bo(t)|<CM2|, ISiWI + lBiWI^CIbhl, (4.47)
I ̂£21 + I-^21 + 1-^2,21 + 1-^2,11 + l^tll + 1^1,ll - (4.48)

one can prove (4.45)-(4.46). □

Lemma 4.4. Assume that the piecewise smooth solution of the IVP (1.1) and (1.5) exists
on Cls(T). Then, under the assumptions of Theorem 3.1, it follows that on QS(T),

|«xx| + Vxx\ < C ( mo + Mi + <^o + Vo + , max (|px| + |ux|) ) ,V (x,t)€il,(T) J

|^XXx| |^xxx| ^ C?

provided that (4.6)-(4.7) hold.

(4.49)

Proof. We can estimate the terms on the left-hand side of (4.49) on fi±(T) by solv-
ing initial value problems due to the entropy conditions. On f2o(T), the bounds of
lsxx|> kxxli lsxxx|, and \rxxx\ can be obtained by solving the corresponding boundary
value problems for them. In fact, on fl±(T), the systems (4.31) and (4.32) are linear
for (Z2,Y2). Integrating (4.31) and (4.32) along 1-characteristics and 2-characteristics
respectively on [0, t], noticing, due to (4.6), that

h (z,t)>£, h(x,t)>^, (i,t)6fi±(r), (4.50)

and

l/3(x,t)| + \U(x,t)\ + \{d(p - C{x)))x\ <C[r]o+ max \px(x,t)\ , (4.51)V (x,t)en±(r)

we can show, for any (x,t) £ fl±(T), that

\Y2(x,t)\ + \Z2(x,t)\<C [pi+po + Vo+ max \px(x,t)\). (4.52)
\ (x,t)ef2±(T)

Then, by (3.6), we gain, for any (x, t) € Cl±(T), that

\sXx\ + \rxx\ < C [ pi + po + VO + max |/?s(x,t)| . (4.53)V (x,t)en±(T) J

Similarly, we can yield the corresponding IVP for {Y2)x and (Z2)x on 0±(T) and then
obtain, for any (x,t) € f2±(T), that

|^xxx| l^xxxl ^ C I p2 ~t~ Pi ~t~ Po ~t~ Vo max |px(x,£)|V (x,t)en±{T)

Now we estimate them on fio(T')- By (3.10), (3.8)-(3.9), (4.10), and (4.12), one can
show

lim(|(rx,sx)(xi(t) + 0,f)| + \{rx,sx)(x2(t) - 0, t)|) < C{px + p0 + <50). (4.54)

By (4.54) and the assumptions of Theorem 3.1, we find

lim \B7(t)\ < C(pi + po + (50). (4.55)
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Thus, we conclude, in terms of (4.54), (4.39), (4.43), (4.55), and (4.45), that

lim(|(Z2,i^)(0,f)|) < C(pi + no + <5o)- (4.56)

On r2o(T), solving the boundary value problems (4.31), (4.32), (4.39), and (4.43) for
(>2, Z2), we obtain, in view of Lemmas 4.2-4.3, (4.56) and (4.26), that

I + I Txx | ^ c [ Hi + H0 +S0 + V0+ max (\Px(x,t)\ + \ux(x,t)\) , (4.57)
V (x,t)ens(T) J

for any (x,t) G Qo(T) with t > 0, provided that (4.6) and (4.7) hold. Similarly, we can
obtain, for (x,t) G flo(T) with t > 0, that

\sXxx\ + Vxxxl < c (H2 + Hi + Mo + <5o + Vo + max (\px(x,t)\ + \ux(x,t)\) .
\ (x,t)efis(T) J

Thus, the proof is completed. □

Lemma 4.5. Assume that the piecewise smooth solution of the IVP (1.1) and (1.5) exists
on ns(T). Then, it follows that along x = Xi(t) (z = 1,2),

|[s*]»| + IK]»| + Ihczjil + IKx]i| < C50e_/33t, 0 < t < T, (4.58)
\[Px\i\ + |[ui]»| + |[Pxx]iI + |[wXx]i| < C8$e ^3t, 0 < t < T, (4.59)

provided that (4.6)-(4.7) hold.

Proof. We first estimate [sx]2- Due to Lemma 4.2 and

|[»x]a| < C(\[Yi]2\ + |H2|),

we only need to estimate [Yi]2- By (4.27) it follows, along x = x2(t), that

D~t\Yi]2 = —bz(t)\Yx\2 + h{t), (4.60)

where

b5(t) = \ - a{p%)[h{p)\2 + a(pt)d(p2){s2)x + a(p^)d(p^){s^)x, (4.61)

hit) = (x2 - A^2)(yi+)x + (A^2 - x2)(Yf)x

~ )2 - [&i (p)]2Vi_ + [/i]2 + [d{p){p - C{x))]. (4.62)

By (4.23), (4.24), (4.18), Lemma 4.2, and Lemma 4.4, we have

hit) > I (4.63)
and

\lhip)h\ + IK^)]2| + IM/Ohl + |[/i(p)]2|
+ 1^2 - A^2| + I[dip)ip - C(x))]21 < C5oe-0lt, (4.64)

provided that (4.6)-(4.7) hold.
Then, it follows from (4.64) and Lemma 4.4 that

1/7(01 < CSoe~0lt. (4.65)
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Multiplying (4.60) by eh b^(T)dT and integrating it over [0, t], we have, in terms of (4.63)
and (4.65), that

mh\ < CSoe-**, (4.66)

where

if Bx >
fo =<0i, if -Bi < |,

I j, otherwise.

Similarly, we can estimate the other terms on the left-hand side of (4.58) in view of
Lemmas 4.2-4.4, (4.28)-(4.32). The estimate (4.59) follows from (4.58) and (3.7). □

4.3. Energy estimates. In this subsection, we need to estimate the bounds of p,px,
and ux on Os(T). In fact, what we do is to obtain the following energy estimates.

Lemma 4.6. Under the assumptions of Theorem 3.1, it follows that

!/[ (e,£x,£t){t) ||2+ [ ft {£,£x,£t){r)\\2 dr <C(/j,0+Hi + 5O + Vo)e~04t, (4.67)
Jo

l/f {£x,£xx,£xt){t) ||2+ / i/f (£x,£xx,£xt)(T)\\2 dr < C{p0 + Pi + 50 + rjo)e~05t, (4.68)
Jo

&XXX1 exxt)(t) ||2 + / U &XX1 &XXX-)£xxt){T)\\2 dr < C(no + Mi + <5o + Vo)e 06t,
Jo

(4.69)

provided that (4.6)-(4.7) hold.

Proof. From (l.l)i and (1.9)i, one has

{p ~ P)t + (pu - j)x = 0. (4.70)

Define

e(x,t)=f (p(y,t) - p(y))dy. (4.71)
J — OO

Then from (4.70), (4.71), and (1.1)3, one obtains on fls(T) that

£xt. + {pu - j)x = 0, (4.72)

ex = p(x,t) - p(x), £t = ~U(x,t) - j), e = E-E. (4.73)

Integrating (4.72) with respect to x over (—00, a;) together with the shock properties
(3.8) and (3.9) leads to

et + {pu - j) = 0, (4.74)

for {x, t) 6 f2s(T).
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Applying the relations (4.73) and (4.74), the IVP (1.1)—(1.5) can be reformulated, via
(1.9), into

£tt + £t ~ ( ( p'(p) ~ + (~r£t ) + pe + Esxj t ~\ _
P'J ~JX \P

— 9ix 92x ££xi (4.75)

(e,£t)|t=o = (eo,£i)(®) =: f / (po ~ p){y) dy,-(p0u0 - j)(x)) ,

for (x,t) e QS(T), where

= (Izlif _ I + Met + |!£i, (4.76)
P + £x p p pz

92=p(p + ex)-p{p)-p'{p)£x. (4.77)

Proof of (4.67). Multiplying (4.75) by (|e + et), we have

{Ci(e, £x,£t)}t + Gi(e, ex, £t) — {Gi (e, £x, £t)}x = {g\x + g2X — ££x)(§£ + £t), (4-78)

where

Gi(£,£x,£t) = (- + ^)e2 + -££« + -£t + - (p'(p) ~ jp^ £x, (4-79)

^(e,£x>£t) = 2^2 2^66x (^2 ~ ~~ /s)

+ | (V(p) - 4. (4-8°)

G3(s,£x,£t) — 2 ^p'(p) ~ ^2! ££x + + (p'(p) ~ £t£x + r£2- (4-81)

Integrating (4.78) over i?, one has

^ /"+oo ^+00

— ^ Gi{£,£x,£t)dx+j= G2(£,£x,£t)dx + X2[Gi(£,£x,£t)}2

+ [^(e, £x, £t)]2 + Xi[Gi(£, £x,£t)]l + [^(e, £x, £j)]i
/»+oo

= £ (six + 32x - ££x) Qe + £i^ dx. (4.82)

For a\ + Pm/P* •C 1, one can verify that

C4(£2 + £2 + £t) < Gi(£, £x, £f) < C4(£2 + £2 + £4), (4.83)

C5(£2 + £x + e«) — G2(£, £x, £t) < Cg(s2 + £2 + £t), (4.84)
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where

0 < c4 = ^ min { pt, -, P* }•, 0 < C4 = ^ max |/>* + 1, ,

P* = max{p'(p) - |^}, P* = min ip'{p) - ^ j .
xER pi xeR [ p J

It follows from (4.83)-(4.84) that

—Gi(£,£x,£t) < C2(e,£t). (4.85)
c4

By Theorem 2.1, Lemma 4.5, (4.73), (3.8)3, and (3.9)3, one has

\x2\G i{e,ex,et)]2\ + |ii[Gi(e,£i,ei)]i|

+ \{G3{£,Ex,£t)\2\ + | [C?3 (e, Sa;, £f)] 11

< C{\[{p,px,U,Ux)\i \ + \[{p,px,U,Ux)\2\)

< C5oe~03i. (4.86)

From (4.76)-(4.77), a straightforward calculation yields

\dx9i\ = 0(\)(\£xx\ + \£xt\ + |Px|)(kt| + kxl), (4-87)
\dx92\ = 0(l)\£xx£x\. (4.88)

Thus, the right-hand side of (4.82) can be estimated as

l/_r+oo

T (gix +92X - ££x)(\e + St) dx

r+00

<Ct?4 (e2+ 4+£Tt)(a;,t)dx
J — OO

/»+oo

< Ct]=L G2(£,£x,£t)dx. (4.89)
OO

Substituting (4.89), (4.86), and (4.85) into (4.82) and integrating it over [0, t], one
obtains (4.67) in terms of Lemma 4.2.

Proof of (4.68). Differentiating (4.75) with respect to x, we have

£xtt ~f~ £xt ^ ip) ^2^ E-xx^J ~t~ p£x ~t~ Esxx

9s ~f~ 9\xx + 92xx + 93x + 54, (4.90)
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where

(4-9i)

94= (p'(p) - ) £x j + Px£ + Ex£x - (eex)x. (4.92)

Multiplying (4.90) by (|ex + ext) and integrating with respect to x over R, we have

+ 00 p + OG

^xx ? ̂ xt) dx ~h ^ ^-*2 (^xi &xx ? ̂ xt) dx "j~ &2 1 ( &XX •) £xt )]2
dtj_oo J-

+ [Gs(ex, exx, £st)]2 + ii[G!i( £xt)]l + [G3 (Ex, ^IX ) ext)]l

= ^ 9a i^2£x d% ^ (dix ~t~ 92x 9s)x i^2£x £xt^ dx. (4.93)

Similarly, in terms of Theorem 2.1, Lemma 4.5, (4.73), (3.8)3, and (3.9)3, one can verify
that

|a;2[Gi(ex, eXxi £xt)]2| + |ii[Gi( ^X) £-XX) £xt)\i|

+ |[g3( £xi &xx5 £xt)h\ + I [Gr3( &X1 E-XXl Ext)] 1 I

— ^Pxi Pxxi ^XT ̂ xx)\l \ |[(P> Pxi PxX)'U">rU'X)'U'Xx)\2I)

< C6oe~03t. (4.94)

The right-hand side terms of (4.93) can be estimated as follows:

I f\J —oo

+ °o

9a ( 2£x + £xt ) dx|

/ + OO
G2{£x,£xx,£xt) dx + C(||(e0,e0x,£i)||2 + S)e~'34t, (4.95)

-OO

1 f+°°^ T (<?ix "1" ff2x + 9'i)x£x dx
^ J—oo

— 2 IK^lx + 52x + 53)x£x]l| + 2 I [(plac + <?2x + 53)x£x]2|

|1 /,+0°
+ k f (ffls + 52x + QSj^xx dx

I J — OO
/•+oo

<Cl]f G2(£ XI£xxi Ext) dx
J —oo

+ CdK^Oj^OxjEi)!!2 + 8)e ^4t + C(Si + 62)e@st, (4.96)
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r+oo

I 93x&xt dx
J—oo

r+°° (2 ]px x
■ y1 ( ~2 ^xt J &xt dx

f \(2jp \<C(V + 60)j= G2{&X ■) &XX 5 &xt) dx I ^ ^2 &xtj &xt + 2j^ext I sxt

2jP.x 2
p2 xt

l
+ 2 2jPx 2

L P2

/-+oo

< C(??o + <5o) 4 G,2(£x,£xx)£xt)^ + C(5oe/33t, (4-97)
J — OO

r + OO

ir 92xx^xt dx
J — oo

r+oo y+oo

<Crtf G2(Exi&XX1 &xt) dx + y1 ((p (p ~h £#) P {p))^xx)x^xt dx
J— oo «/—oo

/»+oo

< Cry + Ga( Est) dx
OO

+ |[(p'(p + £x) -p'(p))£xx£xt]l| + |[(p'(p + £x) -?,/(p))£a;x£xt]2|

+ 2 I[p"(^ + £*)£xt£L]il + g lb"(P + e«)£a!t£x«]a|

~cs/ (p'^ + £®)

/>+oo

<Crjf G2{ex,£xx, £xt) dx + C(5i + <52)e_/33t
OO

J /-+oo

~JtJ ^ + £x^ ~ dx' (4-98)
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fJ — (
9ixx^xt dx

r+OO ,+00 /2 2j \

— (~^V J ^2 £#i) dx -f~ + I ~£;r ~l~ ~^o^x I ^xxt^xt dx
J—oo J—oo V P P J

/>+0° ~ / 1 1 1 \
t 2(j £t) I "i ~ H~ ) ^xxt^xt dx
J-oo VP^x p P2 J

^ ( ~n£t£xx ~f~ {j &t) ( / ~ \o ~o ) ) &xt dxI 1 ~o -I'-XX < \j ~~i) \ / ~ \o ~o
J-oo VP \{p-exy p1

c~\-oo
/-too

G2 {£x i &xx 5 £;rt)
-oo

1
+ 2 _22 2j .

^£x + p2Sx ) £xt
2,2j > _2

+ p2£x I °xt

{] ~ £t) ( 1 r + 4^ )
> p ~ Ex P P2 '

G-et) ( + ) £*<
p-ex p pz 1

+ IK-?' 6t) ^(p-ex)2 ^2 ^xx&xt +
$ ^ ( (p-£x)2 p2 ) £^£**

L0 et)2((p-£,)2 p2)e-^^

/>+oo

^ y1 G2^X'> ^xxi &xt) dx ~h | [(/?, pxi Ux)] 11 ~f" | [(/?, pxi U") Ux)\2 \
J — (

("9)

Then,i, integrating (4.93) over [0, t], one obtains (4.68) in terms of (4.95)-(4.99), (4.83)-
(4.84), and (4.67).

Similarly, one can get the estimate (4.69). Thus, the proof of Lemma 4.6 is completed.
□

Proof of Theorem 3.1. With the help of Lemma 4.2 and Lemma 4.6, we can prove that
(4.6) on fis(T) and (4.7) really hold if we choose the initial-boundary data and the initial
jump small enough such that C(pi + po + $o + Vo) < Jq71- Therefore, by the standard
continuity argument, we can prove the existence of piecewise smooth subsonic solutions
for the discontinuous IVP (1.1)—(1.5) on f2S(T) with any T > 0. The asymptotic behavior
of solutions on a smooth domain and the decays along shock discontinuities then follow.
In fact, we have the following theorem.
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Theorem 4.7. Let T > 0. Under the assumptions of Theorem 3.1, it follows that for
0 <t<T,

i/[ (p-p,u,E - E)(-,t)\\l+ f jf (p-p,u,E - E)x(-,t)\\2dT
Jo

< C(pi + po + <5o + Vo)e

I [(P: Pxi Pxxi ^xx)\ 11 ~1~ i [(P) Pxi Pxxi ^xx)]21 — C50e , (4.100)

and for x ^ x(t),

\pxx\ + \uxx\ < C(pi + po + 5o + %)> \Pxxx\ + I | < C. (4.101)

Theorem 3.1 follows from Theorem 4.7.

Acknowledgments. The first author thanks Professor Ling Hsiao, his supervisor,
for her kind help and suggestions.

[i]

[2]

[3:

[4

[5

[6

[7

[8

[9

[10

[11

[12

[13

[14
[15

[16

[17

References
R. Courant and K. O. Friedrichs, Supersonic flow and shock waves, Applied Mathematical Sciences
Vol. 21, Springer-Verlag, New York, 1948
U. Ascher, P. A. Markowich, and C. Schmeiser, A phase plane analysis of transonic solutions for
the hydrodynamic semiconductor model, Math. Models Meth. Appl. Sci. 1, 347-376 (1991)
K. Blatekjaer, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron
Devices ED-17, 38-47 (1970)
G. Chen, J. Jerome, and B. Zhang, Particle hydrodynamic moment models in biology and micro-
electronics: Singular relaxation limits, preprint
G. Chen and D. Wang, Convergence of shock schemes for the compressible Euler-Poisson equations,
Comm. Math. Phys. 179, 333-364 (1996)
P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model, Appl.
Math. Lett. 3, 25-29 (1990)
P. Degond and P. A. Markowich, A steady-state potential flow model for semiconductors, Ann.
Math. Pure Appl. IV, 87—98 (1993)
W. Fang and K. Ito, Steady-state solutions of a one-dimensional hydrodynamic model for semicon-
ductors, J. Differential Equations 133, 224-244 (1997)
I. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semicon-
ductor Comm. Partial Differential Equations 17 (3 & 4), 553-577 (1992)
I. Gamba and C. S. Morawetz, A viscous approximation for a 2 — D steady semiconductor or
transonic gas dynamic flow: Existence theorem for potential flow, Comm. Pure Appl. Math. 49,
999-1049 (1996)
I. Gasser and R. Natalini, The energy transport and the drift diffusion equations as relaxation limits
of the hydrodynamic model for semiconductors, Quart. Appl. Math. 57, 269-282 (1999)
H. Hattori, Stability and instability of steady-state solutions for a hydrodynamic model of semicon-
ductors, Proc. Roy. Soc. Edinburgh A 127, 781-796 (1997)
H. Hattori and C. Zhu, Asymptotic behavior of the solutions to a non-isentropic hydrodynamic
model of semiconductors, J. Differential Equations 144, 353-389 (1998)
L. Hsiao, Quasilinear hyperbolic systems and dissipative mechanisms, World Scientific, 1998
L. Hsiao and Hailiang Li, Shock reflection for the damped p-system, Quart. Appl. Math. 60, 437-460
(2002)
L. Hsiao and T. Luo, Nonlinear diffusive phenomena of entropy weak solutions for a system of
quasilinear hyperbolic conservation laws with damping, Quart. Appl. Math. 56, 173-198 (1998)
L. Hsiao and S. Q. Tang, Construction and qualitative behavior of solutions for a system of nonlinear
hyperbolic conservation laws with damping, Quart. Appl. Math. 53, 487-505 (1995)



796 HAILIANG LI, PETER MARKOWICH, and MING MEI

[18] L. Hsiao and S. Q. Tang, Construction and qualitative behavior of solutions of perturbed Riemann
problem for the system of one-dimensional isentropic flow with damping, J. Differential Equations
123, 480-503 (1995)

[19] L. Hsiao and T. Yang, Asymptotic of initial boundary value problems for hydrodynamic and drift
diffusion models for semiconductors, J. Differential Equations, 170, 472-493 (2001)

[20] L. Hsiao and K. Zhang, The relaxation of the hydrodynamic model for semiconductors to drift
diffusion equations

[21] L. Hsiao and K. Zhang, The global weak solution and relaxation limits of the initial boundary value
problem to the bipolar hydrodynamic model for semiconductors, Math. Models Methods Appl. Sci.
10, 1333-1361 (2000)

[22] J. Jerome, Analysis of charge transport: A mathematical study of semiconductor devices, Springer-
Verlag, Heidelberg, 1996

[23] J. Jerome and C. Shu, Energy models for one-carrier transport in semiconductor devices, preprint
[24] H. Li, P. Markowich, and M. Mei, Asymptotic behavior of solutions of the hydrodynamic model of

semiconductors, Proc. Royal Soc. Edinburgh, A: 132, 359-378 (2002)
[25] T. Li and W. C. Yu, Boundary value problem for quasilinear hyperbolic systems, Duke Univ. Math.

Ser. V, 1985
[26] T. Luo, R. Natalini, and Z. Xin, Large time behavior of the solutions to a hydrodynamic model for

semiconductors, SIAM J. Math. Anal. 59, 810-830 (1998)
[27] P. Marcati and M. Mei, Asymptotic convergence to steady-state solutions of the initial boundary

value problem to a hydrodynamic model for semiconductors, preprint
[28] P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors: The

Cauchy problem, Proc. Royal Soc. Edinburgh A:125, 115-131 (1995)
[29] P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and

relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal. 129, 129—145 (1995)
[30] P. A. Markowich, The Stationary Semiconductor Device Equations, Springer, Vienna, New York,

1986
[31] P. A. Markowich, On steady-state Euler-Poisson model for semiconductors, Z. Angew. Math. Phys.

62, 389-407 (1991)
[32] P. A. Markowich and C. Schmeiser, The drift-diffusion limit for electron-phonon interaction in

semiconductors, Math. Models Methods Appl. Sci. 7, 707—729 (1997)
[33] P. A. Markowich and P. Pietra, A non-isentropic Euler-Poisson model for a collisionless plasma,

Math. Methods Appl. Sci. 16, 409-442 (1993)
[34] P. A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations, Springer, Vienna,

New York, 1989
[35] F. Poupaud, On a system of nonlinear Boltzmann equations of semiconductor physics, SIAM J.

Appl. Math. 50, 1593-1606 (1990)
[36] F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation: Analysis

of boundary layer, Asymptotic analysis 4, 293-317 (1991)
[37] F. Poupaud, M. Rascle, and J.-P. Vila, Global solutions to the isothermal Euler-Poisson system

with arbitrarily large data, J. Differential Equations 123, 93-121 (1995)
[38] S. Selberherr, Analysis and Simulation of Semiconductor Device Equations, Springer, Vienna, New

York, 1984
[39] L. Yeh, Subsonic solutions of hydrodynamic model for semiconductors, Math. Methods Appl. Sci.

20, 1389-1410 (1997)
[40] B. Zhang, Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic

model for semiconductor devices, Comm. Math. Phys. 157, 1-22 (1993)
[41] B. Zhang, On a local existence theorem for a simplified one-dimensional hydrodynamic model for

semiconductor devices, SIAM J. Math. Anal. 25, 941—947 (1994)
[42] K. Zhang, Global weak solutions of the Cauchy problem to a hydrodynamic model for semiconduc-

tors, J. Partial Differential Equations 12, 369-383 (1999)
[43] K. Zhang, Zero relaxation limit of global weak solutions of the Cauchy problem to a hydrodynamic

model for semiconductors, preprint


