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HIGHER-ORDER LINEARIZED MULTISTEP FINITE

DIFFERENCE METHODS FOR NON-FICKIAN DELAY

REACTION-DIFFUSION EQUATIONS

QIFENG ZHANG, MING MEI∗, AND CHENGJIAN ZHANG

Abstract. In this paper, two types of higher-order linearized multistep finite difference schemes
are proposed to solve non-Fickian delay reaction-diffusion equations. For the first scheme, the
equations are discretized based on the backward differentiation formulas in time and compact finite
difference approximations in space. The global convergence of the scheme is proved rigorously with
convergence order O(τ2 + h4) in the maximum norm. Next, a linearized noncompact multistep
finite difference scheme is presented and the corresponding error estimate is established. Finally,
extensive numerical examples are carried out to demonstrate the accuracy and efficiency of the
schemes, and some comparisons with the implicit Euler scheme in the literature are presented to
show the effectiveness of our schemes.

Key words. Non-Fickian delay reaction-diffusion equation, linearized compact/noncompact,
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1. Introduction

Nonlinear delay partial differential equations (NDPDEs) are widely used in de-
scription of natural phenomena and social behaviors in biology, medicine, control
theory, epidemiology, climate models, and many others [6, 16, 20, 39, 45]. These
equations have been paid a lot of attention because they provide a powerful tool to
reflect the essential characteristics of processes with delayed effects. However, the
analytical solutions of most of the delay partial differential equations (DPDEs) can
not be explicitly expressed and the theoretical analysis of DPDEs is also difficultly
carried out because of the delayed terms. Hence, developing efficient and higher-
order numerical methods for DPDEs especial NDPDEs has become an important
issue and a hot topic [9, 19, 42, 43].

In this paper, we are dedicated to developing the higher-order numerical ap-
proximation to the solution of non-Fickian delay reaction-diffusion equation of the
form

(1)
∂u
∂t = D1

∂2u
∂x2 + D2

δ

∫ t

0
e−

t−w
δ

∂2u
∂x2 (x,w)dw + f(u(x, t), u(x, t− s), x, t),

where (x, t) ∈ [a, b]× [0, T ], D1, D2 and δ are positive constants, and s > 0 is the
delay parameter. The initial condition associated with (1) is given by

(2) u(x, t) = ϕ(x, t), x ∈ [a, b], t ∈ [−s, 0]

and the boundary conditions are specified by

(3) u(a, t) = ua(t), u(b, t) = ub(t), t > 0.

Equation (1) is called non-Fickian delay reaction-diffusion equation due to certain
memory effects taken into account [6, 20]. In the case of D2 = 0, it reduces to a
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regular delayed reaction-diffusion equation, which we frequently encounter in a vast
array of fields. For example, if we take

f(u(x, t), u(x, t− s), x, t) = −au(x, t) +
bu(x, t− s)

1 + um(x, t− s)
,

then, we reduce the equation (1) to the diffusive Mackey-Glass equation [19, 20],
and if we take

f(u(x, t), u(x, t− s), x, t) = −au(x, t) + bu(x, t− s)e−um(x,t−s),

then, we obtain the diffusive Nicholson’s blowflies equation [10,21,22,25–29,32,33].
As a typical partial integro-differential equation, the equation (1) has been paid

more attention and extensively studied [1–4,6–8,11–15,18,20,23,24,30,35,38,40,41].
In 1986, Sloan et al [34] numerically studied it by the backward Euler and Crank-
Nicolson methods. In [13], Fedotov presented an asymptotic method for the analysis
of traveling waves in a one-dimensional reaction-diffusion system where the diffu-
sion has a finite velocity with Kolmogorov-Petrovskii-Piskunov kinetics. Araújo [5]
investigated the qualitative properties of numerical traveling wave solutions for
integro-differential equations. Recently, Khuri et al [18] concentrated on the fi-
nite difference method and the spline collocation method for the numerical so-
lution of a generalized Fisher integro-differential equation, and Branco et al [6]
studied the structure of the solution to the non-Fickian delay reaction-diffusion
equations from both the theoretical and numerical points of view. In [44], Zhang
et al constructed a second-order linearized finite difference scheme for the gener-
alized Fisher-Kolmogorov-Petrovskii-Piskunov equation by introducing a new vari-
able which transforms the integro-differential equation into an equivalent coupled
system of first-order differential equations. Late then, Kazem [17] considered a
meshless method on non-Fickian flows with mixing length growth in porous media
based on radial basis functions. Very recently, Li et al [20] discussed the long time
behavior of non-Fickian delay reaction-diffusion equations and Wang [38] analyzed
the finite element method for fully discrete semilinear evolution equations with
positive memory based on two-grid discretizations.

However, most of the numerical methods are no more than second-order accuracy,
while there are a large number of scenarios where higher-order accurate schemes are
a necessity due to the desired accuracy of the simulations. On the other hand, the
higher-order schemes allow one to approximate a solution with fewer grid points,
while maintaining the same accuracy as a low-order scheme. In certain circum-
stances, the desired grid point size is based on the ability to resolve the structure
of the solution, and not on the accuracy of computation. But, the higher-order
finite-difference schemes, typically achieved by computing derivatives with a wider
matrix stencil, cause some difficulties near the boundary, just as one must be able to
calculate the inner point near the boundary with the same accuracy as the internal
scheme, which should be complicated to implement. Based on such a reason, there
is a great interest in the higher-order finite difference schemes. Since the 1950s,
the compact finite difference schemes have been applied to solve partial differential
equations more and more frequently, and more recently, the compact finite differ-
ence schemes have been extended to DPDEs, for instance, see [43] by proposing a
compact multisplitting scheme for the nonlinear delay convection-reaction-diffusion
equations, and [36] by applying the compact difference scheme to delay reaction-
diffusion equations based on Crank-Nicolson scheme in temporal direction, and [42]
by employing the compact difference scheme combined with extrapolation tech-
niques to solve a class of neutral delay parabolic differential equations. The main
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advantage is that the compact finite difference schemes exhibit higher-order accu-
racy but still only rely on the closest neighboring points for computations. The
resulting algebraic systems are tridiagonal which can be inverted easily by Thomas
algorithm.

To the best of our knowledge, there are few works using the compact finite differ-
ence schemes to solve the non-Fickian delay reaction-diffusion equations. Here, the
main purpose in our paper is to construct two kinds of efficient numerical schemes
for the mentioned equations, where, both schemes are discretized using backward
differentiation formulas in the temporal direction, but in the spatial direction, one
is based on the fourth-order compact finite difference scheme and the other is based
on standard second-order central difference approximation. For simplicity, let us
call the former as the compact multistep scheme and the latter as the noncompact
multistep scheme, respectively.

Throughout the paper, we assume that the solution u(x, t) to (1)-(3) is suffi-
ciently smooth in the following sense

(4) u(x, t) ∈ C6,4([a, b]× [0, T ]);

and f(µ, ν, x, t) has the first-order continuous derivative with respect to the first and
second components in the ǫ0-neighborhood of the solution, where ǫ0 is a positive
constant, and we denote

(5) c1 = max
x∈(a,b),0<t<T,
|ǫ1|≤ǫ0,|ǫ2|≤ǫ0

|fµ(u(x, t) + ǫ1, u(x, t− s) + ǫ2, x, t)|,

(6) c2 = max
x∈(a,b),0<t<T,
|ǫ1|≤ǫ0,|ǫ2|≤ǫ0

|fν(u(x, t) + ǫ1, u(x, t− s) + ǫ2, x, t)|.

The paper is organized as follows. In Section 2, we derive the compact multistep
scheme and show the local truncation error. Then, in Section 3 we present the
matrix form of the compact multistep scheme and analyze its solvability. Next,
we further show the convergence of the compact multistep scheme in Section 4,
and propose the noncompact multistep scheme and show the corresponding local
truncation error, solvability and convergence in Section 5. Finally, we carry out
some numerical experiments to verify the proposed results in Sections 4 and Section
5.

2. Derivation of the compact multistep scheme

We firstly divide the region Ω× (0, T ], where Ω = (a, b). Take a positive number
M , and let h = b−a

M . Suppose the lag s is integral multiple of time step τ , τ = s
n .

Denote xi = a+ih, tk = kτ and define Ωhτ = Ωh×Ωτ , where Ωh = {xi|0 ≤ i ≤ M},
Ωτ = {tk| − n ≤ k ≤ N}, N = [Tτ ], Uk

i = u(xi, tk), 0 ≤ i ≤ M,−n ≤ k ≤ N .

Suppose W = {vki |0 ≤ i ≤ M,−n ≤ k ≤ N} is the grid function space defined on
Ωhτ . We denote by

v
k+ 1

2

i =
1

2
(vki + vk+1

i ), δtv
k+ 1

2

i =
1

τ
(vk+1

i − vki ),

δ+t v
k
i =

1

2
(3δtv

k+ 1
2

i − δtv
k− 1

2
i ),

δxv
k
i+ 1

2
=

1

h
(vki+1 − vki ), δ2xv

k
i =

1

h
(δxv

k
i+ 1

2
− δxv

k
i− 1

2
),

Avki =
1

12
(vki+1 + 10vki + vki−1).
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Let z(x, t) =
∫ t

0
g(x, t, w)dw, where g(x, t, w) = σ(t, w)∂

2u
∂x2 (x,w) with σ(t, w) =

e−
t−w

δ . It easily turns out that

(7)
∂u

∂t
(x, t) = D1

∂2u

∂x2
(x, t) +

D2

δ
z(x, t) + f(u(x, t), u(x, t− s), x, t).

Now let us introduce an interesting lemma.

Lemma 2.1 ( [43]). Suppose p(x) ∈ C6[xi−1, xi+1], then

1

12
[p′′(xi−1) + 10p′′(xi) + p′′(xi+1)]−

1

h2
[p(xi−1)− 2p(xi) + p(xi+1)] =

h4

240
p(6)(ωi),

where ω ∈ (xi−1, xi+1).

Considering (7) at the point (xi, tk+1), we have

∂u

∂t
(xi, tk+1)(8)

= D1
∂2u

∂x2
(xi, tk+1) +

D2

δ
z(xi, tk+1) + f(u(xi, tk+1), u(xi, tk+1 − s), xi, tk+1),

which can be, by Taylor’s expansion, reduced to

(9)
∂u

∂t
(xi, tk+1) = δ+t U

k+1
i +

1

3
τ2

∂3u

∂t3
(xi, ξ

k+1
i ), ξk+1

i ∈ (tk−1, tk+1).

Again, by Taylor’s expansion at point (2Uk
i − Uk−1

i , Uk+1−n
i , xi, tk+1), we obtain

(10)

f(u(xi, tk+1), u(xi, tk+1 − s), xi, tk+1)

= f(2Uk
i − Uk−1

i , Uk+1−n
i , xi, tk+1)

+(u(xi, tk+1)− 2Uk
i + Uk−1

i )fµ(η
k
i , ζ

k
i , xi, tk+1)

+(u(xi, tk+1 − s)− Uk+1−n
i )fν(η

k
i , ζ

k
i , xi, tk+1)

= f(2Uk
i − Uk−1

i , Uk+1−n
i , xi, tk+1)

+τ2 ∂2u
∂t2 (xi, ρk)fµ(η

k
i , ζ

k
i , xi, tk+1),

where ρk, η
k
i and ξki are some numbers such that ρk ∈ (tk−1, tk+1), η

k
i is between

u(xi, tk+1) and 2Uk
i − Uk−1

i , ζki is between u(xi, tk+1 − s) and Uk+1−n
i . According

to the composite trapezoidal rule [31], we obtain

z(xi, tk+1) =
∫ tk+1

0 g(xi, tk+1, w)dw =
∑k

j=0

∫ tj+1

tj
g(xi, tk+1, w)dw

= τ
2

∑k
j=0 (g(xi, tk+1, tj) + g(xi, tk+1, tj+1)) + rk1 (g),

= τ
2

∑k
j=0

(
σ(tk+1, tj)

∂2u
∂x2 (xi, tj) + σ(tk+1, tj+1)

∂2u
∂x2 (xi, tj+1)

)

+rk1 (g),

(11)

where rk1 (g) = − τ3

12

k∑
j=0

∂g
∂w |(xi,tk+1,ηj), ηj ∈ (tj , tj+1). Performing operator A on

both sides of the equation (8), we obtain

(12)
A∂u

∂t (xi, tk+1) = D1A∂2u
∂x2 (xi, tk+1) +

D2

δ Az(xi, tk+1)

+Af(u(xi, tk+1), u(xi, tk+1 − s), xi, tk+1).
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Using Lemma 2.1, the spatial discretization can be carried out as follows

(13) A∂2u

∂x2
(xi, tk) = δ2xU

k
i +

h4

240

∂6u

∂x6
(θki , tk), θki ∈ (xi−1, xi+1).

Combining (11) and (13) and noting the linearity of the operator A, we have
(14)

Az(xi, tk+1) = A
∫ tk+1

0
g(xi, tk+1, w)dw

= τ
2

∑k
j=0 (Ag(xi, tk+1, tj) +Ag(xi, tk+1, tj+1)) +Ark1 (g)

= τ
2

∑k
j=0

(
σ(tk+1, tj)A∂2u

∂x2 (xi, tj) + σ(tk+1, tj+1)A∂2u
∂x2 (xi, tj+1)

)
+Ark1 (g)

= τ
2

∑k
j=0

(
σ(tk+1, tj)δ

2
xU

j
i + σ(tk+1, tj+1)δ

2
xU

j+1
i

)
+ rk2 (g)

where
(15)

rk2 (g) = Ark1 (g)+
τh4

480

k∑

j=0

(
σ(tk+1, tj)

∂6u

∂x6
(θji , tk+1).+ σ(tk+1, tj+1)

∂6u

∂x6
(θj+1

i , tk+1)

)
.

Substituting (9), (10) and (13)–(15) into (12), we obtain

(16)

Aδ+t U
k+1
i

= D1δ
2
xU

k+1
i + D2τ

2δ

∑k
j=0

(
σ(tk+1, tj)δ

2
xU

j
i + σ(tk+1, tj+1)δ

2
xU

j+1
i

)

+Af(2Uk
i − Uk−1

i , Uk+1−n
i , xi, tk+1) +Rk

i

where
(17)

Rk
i = − 1

3τ
2A∂3u

∂t3 (xi, ξ
k+1
i ) +D1

h4

240
∂6u
∂x6 (θ

k+1
i , tk+1)

+Aτ2 ∂2u
∂t2 (xi, ρk)fµ(η

k
i , ζ

k
i , xi, tk+1) +

D2

δ rk2 (g)

= τ2

(
− 1

3A∂3u
∂t3 (xi, ξ

k+1
i ) +A∂2u

∂t2 (xi, ρk)fµ −D2
τ

12δ

k∑
j=0

∂g
∂w |(xi,tk+1,ηj)

)

+ h4

240

(
D1

∂6u
∂x6 (θ

k+1
i , tk+1) +D2

τ
2δ

k∑
j=0

(σ(tk+1, tj)
∂6u
∂x6 (θ

j
i , tk+1)

+σ(tk+1, tj+1)
∂6u
∂x6 (θ

j+1
i , tk+1))

)
.

Noticing the initial and boundary conditions (2) and (3), we have

(18) Uk
0 = ua(tk), Uk

N = ub(tk), 1 ≤ k ≤ N,

(19) Uk
i = ϕ(xi, tk), 0 ≤ i ≤ M, −n ≤ k ≤ 0.

Combining the boundary and initial value conditions (18) and (19), omitting the
small term Rk

i , and replacing Uk
i by uk

i in (16), we can construct the compact
difference scheme as follows

(20)

Aδ+t u
k+1
i

= D1δ
2
xu

k+1
i + D2τ

2δ

∑k
j=0

(
σ(tk+1, tj)δ

2
xu

j
i + σ(tk+1, tj+1)δ

2
xu

j+1
i

)

+Af(2uk
i − uk−1

i , uk+1−n
i , xi, tk+1), 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1,

(21) uk
0 = ua(tk), uk

N = ub(tk), 1 ≤ k ≤ N,
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(22) uk
i = ϕ(xi, tk), −n ≤ k ≤ 0.

From the estimate of Rk
i , we can easily estimate the local truncation error.

Lemma 2.2. Under the assumption (4)-(6), the local truncation error of the scheme
(20)-(22) satisfies

|Rk
i | ≤ ĉ(τ2 + h4), 1 ≤ i ≤ M, 0 ≤ k ≤ N,

where ĉ is a positive constant independent of τ and h.

3. Matrix form of the compact multistep scheme

Multiplying (20) by 2τ and noting A = 1 + h2

12 δ
2
x, we have

(
3(1 +

h2

12
δ2x)− 2D1τδ

2
x − D2

δ
τ2δ2x

)
uk+1
i

=

(
1 +

h2

12
δ2x

)
(4uk

i − uk−1
i ) +

k∑

j=0

σj(u
j
i+1 − 2uj

i + uj
i−1)

+2τ
(
1 + h2

12 δ
2
x

)
f(2uk

i − uk−1
i , uk+1−n

i , xi, tk+1)

for 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1, where the parameters

σ0 =
D2τ

2

δh2
e−

(k+1)τ
δ , σj =

2D2τ
2

δh2
e−

(k+1−j)τ
δ , j ≥ 1.

Let

λ =
1

4δh2
(δh2 − 8D1δτ − 4D2τ

2)

and

fk+1
i = f(2uk

i − uk−1
i , uk+1−n

i , xi, tk+1).

The matrix form of the above scheme reads

(23) AUk+1 =
1

3
BU

k +
1

12
BU

k−1 +

k∑

j=0

σjCU
j + F

k+1,

where the tridiagonal matrices in R
(M−1)×(M−1) are given by

(24) A =




3− 2λ λ
λ 3− 2λ λ

. . .
. . .

. . .

λ 3− 2λ λ
λ 3− 2λ




,

(25) B =




10 1
1 10 1

. . .
. . .

. . .

1 10 1
1 10




, C =




−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2
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and the column vectors in R
M−1 are given by U = (u1, u2, · · · , uM−1)

T and
(26)

F
k+1 =




1
3u

k
0 +

1
12u

k−1
0 +

k∑
j=0

σju
j
0 − λuk+1

0 + τ
6 (f

k+1
0 + 10fk+1

1 + fk+1
2 )

τ
6 (f

k+1
1 + 10fk+1

2 + fk+1
3 )

...
τ
6 (f

k+1
M−3 + 10fk+1

M−2 + fk+1
M−1)

1
3u

k
M + 1

12u
k−1
M +

k∑
j=0

σju
j
M − λuk+1

M + τ
6 (f

k+1
M−2 + 10fk+1

M−1 + fk+1
M )




,

where k ≥ 1.
It easily knows that the coefficient matrix A of the multistep finite difference

scheme (23) is diagonally dominant. Thus, the matrix A is nonsingular and the
solution of the scheme (20)-(22) is determined uniquely. It can be written as follows.

Theorem 3.1. The difference scheme (20)-(22) has a unique solution.

4. Convergence analysis of the compact multistep scheme

First of all, let us introduce some useful notations and lemmas. Let V = {v|v =
(v0, v1, ..., vM ), v0 = vM = 0} be the grid function space defined on Ωh. For any
v, w ∈ V , we define the inner products and corresponding norms as follows.

(v, w) = h
M−1∑

i=1

viwi, ‖v‖ =
√
(v, v), |v|1 =

√
(δxv, δxv), ‖v‖∞ = max

0≤i≤M
|vi|.

Lemma 4.1 (Gronwall inequality). Let {Fk|k ≥ 0} be a non-negative sequence,
and satisfy

Fk+1 ≤ A+ Bτ
k∑

i=1

F l, k = 0, 1, · · · ,

where A and B are non-negative constants, then

Fk+1 ≤ A exp(Bkτ), k = 0, 1, 2, · · · .
Lemma 4.2 ( [37]). For any v ∈ V, we have

‖v‖∞ ≤
√
b− a

2
|v|1,(27)

‖v‖ ≤ b− a√
6

|v|1,(28)

2

3
‖v‖2 ≤ (Av, v) ≤ ‖v‖2.(29)

Now, we give the convergence theorem. Let eki = Uk
i − uk

i , 0 ≤ i ≤ M, 0 ≤ k ≤
N.

Theorem 4.3 (Convergence). Under the assumption (4)-(6), there exists a positive
number C such that

(30) ‖ek‖∞ ≤ C(τ2 + h4), 0 ≤ i ≤ M, 0 ≤ k ≤ N,

where

C =
ĉ

2

√
3T

2c3
(b − a) exp

(
5
√
6c21(b− a)T

2c3
+

3T

2
√
6c3

c22(b− a) +
kD2T

δc3

)
,
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with c3 = max
{
D1,

D2τ
2δ

}
.

Proof. Subtracting (20)–(22) from (16), (18), (19), respectively, and operating

hδte
k+ 1

2

i on both sides of these equations, and adding them for i from 1 to M − 1,
we obtain
(31)

(Aδ+t e
k, δte

k+ 1
2 )

= D1(δ
2
xe

k+1, δte
k+ 1

2 ) + (Rk, δte
k+ 1

2 )

+(A[f(2Uk − Uk−1, Uk+1−n, x, tk+1)− f(2uk − uk−1, uk+1−n, x, tk+1)], δte
k+ 1

2 )

+D2τ
2δ

k∑
j=0

(σ(tk+1, tj)(δ
2
xe

j , δte
k+ 1

2 ) + σ(tk+1, tj+1)(δ
2
xe

j+1, δte
k+ 1

2 )).

Namely,
(32)

(Aδ+t e
k, δte

k+ 1
2 )−D1(δ

2
xe

k+1, δte
k+ 1

2 )− D2τ
2δ (δ2xe

k+1, δte
k+ 1

2 )

= D2τ
δ

k∑
j=1

σ(tk+1, tj)(δ
2
xe

j , δte
k+ 1

2 ) + (Rk, δte
k+ 1

2 )

+(A[f(2Uk − Uk−1, Uk+1−n, x, tk+1)− f(2uk − uk−1, uk+1−n, x, tk+1)], δte
k+ 1

2 ).

The errors in the initial time-interval and at the space-boundary are

(33) eki = 0, 0 ≤ i ≤ M, −n ≤ k ≤ 0,

(34) eki = 0, i = 0,M, 1 ≤ k ≤ N.

In what follows, we adopt the mathematical induction method to prove the con-
vergence theorem. Obviously, ‖ek‖∞ = 0 in the case of −n ≤ k ≤ 0. Suppose that
(52) is valid for 0 < k ≤ l, we will prove that (52) is also true for k = l + 1.

The first term on the left hand side of (32) can be estimated as follows, by using
Hölder inequality and the definition of δ+t e

k
i ,

(35)

(Aδ+t e
k, δte

k+ 1
2 )

= (A(32δte
k+ 1

2 − 1
2δte

k− 1
2 ), δte

k+ 1
2 )

= 3
2 (Aδte

k+ 1
2 , δte

k+ 1
2 )− 1

2 (Aδte
k− 1

2 , δte
k+ 1

2 )

≥ (Aδte
k+ 1

2 , δte
k+ 1

2 ) + 1
4

[
(Aδte

k+ 1
2 , δte

k+ 1
2 )− (Aδte

k− 1
2 , δte

k− 1
2 )
]
.

Thanks to the discrete Green formula, we can estimate (δ2xe
k+1, δte

k+ 1
2 ) in the

second and third terms on the left hand side of (32) as follows

(36)

−(δ2xe
k+1, δte

k+ 1
2 )

= 1
τ (δxe

k+1, δx(e
k+1 − ek))

≥ 1
τ

[
(δxe

k+1, δxe
k+1)− 1

2 (δxe
k+1, δxe

k+1)− 1
2 (δxe

k, δxe
k)
]

= 1
2τ (|ek+1|21 − |ek|21).
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Again, by the discrete Green formula again, the first term in right-hand side of (32)
can be controlled by

(37)

D2τ
δ

k∑
j=1

σ(tk+1, tj)(δ
2
xe

j, δte
k+ 1

2 )

= D2

δ

k∑
j=1

σ(tk+1, tj)(δxe
j , δx(e

k − ek+1))

≤ D2

2δ

k∑
j=1

σ(tk+1, tj)(|ej |21 + 2|ek|21 + 2|ek+1|21)

≤ D2

δ (|ej0 |21 + |ek|21 + |ek+1|21)
k∑

j=1

σ(tk+1, tj)

≤ kD2

δ (|ej0 |21 + |ek|21 + |ek+1|21),
where |ej0 |1 = max{|e1|1, |e2|1, · · · , |ek|1} and

k∑

j=1

σ(tk+1, tj) =

k∑

j=1

e−
tk+1−tj

δ = e−
(k+1)τ

δ (e
τ
δ + e

2τ
δ + · · ·+ e

kτ
δ ) =

e−
kτ
δ − 1

1− e
τ
δ

< k

is employed. The second term can be estimated by using Hölder inequality as
follows

(38) (Rk, δte
k+ 1

2 ) ≤ 1

2ε
‖Rk‖2 + ε

2
‖δtek+

1
2 ‖2.

The right hand side of (31) can be estimated by
(39)

(A[f(2Uk − Uk−1, Uk+1−n, x, tk+1)− f(2uk − uk−1, uk+1−n, x, tk+1)], δte
k+ 1

2 )

≤ (A(c1|2ek − ek−1|) + c2|ek+1−n|, δtek+
1
2 )

≤ 1
2εh

M−1∑
i=1

(c1|2eki − ek−1
i |+ c2|ek+1−n

i )2 + ε
2‖δtek+

1
2 ‖2

≤ 1
2εh

M−1∑
i=1

(2c21|2eki − ek−1
i |2 + 2c22|ek+1−n

i |2) + ε
2‖δtek+

1
2 ‖2

≤ 1
εh

M−1∑
i=1

[c21(8(e
k
i )

2 + 2(ek−1
i )2) + c22(e

k+1−n
i )2] + ε

2‖δtek+
1
2 ‖2

≤ 2c21
ε (4‖ek‖2 + ‖ek−1‖2) + c22

ε ‖ek+1−n‖2 + ε
2‖δtek+

1
2 ‖2.

Let c3 = max{D1,
D2τ
2δ }. Plugging (35)–(39) into (32), we have

(40)

c3
2τ (|ek+1|21 − |ek|21) + (Aδte

k+ 1
2 , δte

k+ 1
2 )

+ 1
4

[
(Aδte

k+ 1
2 , δte

k+ 1
2 )− (Aδte

k− 1
2 , δte

k− 1
2 )
]

≤ 1
2ε‖Rk‖2 + ε

2‖δtek+
1
2 ‖2

+
2c21
ε (4‖ek‖2 + ‖ek−1‖2) + c22

ε ‖ek+1−n‖2 + ε
2‖δtek+

1
2 ‖2

+kD2

δ (|ej0 |21 + |ek|21 + |ek+1|21), 0 ≤ k ≤ l.

By Lemma 2.1, it is known that

(41) ‖Rk‖2 = h

M−1∑

i=1

(Rk
i )

2 ≤ (b− a)ĉ2(τ2 + h4)2.
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Employing Lemma 4.2, taking ε = 2
3 and using (41), we obtain

(42)

c3
2τ (|ek+1|21 − |ek|21) + 1

4

[
(Aδte

k+ 1
2 , δte

k+ 1
2 )− (Aδte

k− 1
2 , δte

k− 1
2 )
]

≤ 3ĉ2

4 (b− a)(τ2 + h4)2 + 3√
6
c21(b − a)(4|ek|21 + |ek−1|21)

+ 3
2
√
6
c22(b− a)|ek+1−n|21 + kD2

δ (|ej0 |21 + |ek|21 + |ek+1|21).

Multiplying the inequality above by 2τ
c3

on both sides of them and summing up for
k, we have

(43)
|ek+1|21 ≤

(
5
√
6c21(b−a)
c3

+ 3√
6c3

c22(b − a) + 2kD2

δc3

)
τ

k+1∑
m=1

|em|21

+ 3ĉ2

2c3
(b− a)T (τ2 + h4)2.

Utilizing Gronwall’s inequality in Lemma 4.1, then we get from (43) that
(44)

|ek+1|21 ≤ 3ĉ2

2c3
(b−a)T exp

(
5
√
6c21(b− a)T

c3
+

3T√
6c3

c22(b− a) +
2kD2T

δc3

)
(τ2+h4)2.

Using Lemma 4.2, we have

(45)

‖ek+1‖∞ ≤
√
b−a
2 |ek+1|1

≤ ĉ
2

√
3T
2c3

(b− a)(τ2 + h4)

× exp
(

5
√
6c21(b−a)T

2c3
+ 3T

2
√
6c3

c22(b− a) + kD2T
δc3

)
.

By the inductive principle, the desired result is obtained. �

5. Non-compact multistep scheme

The compact multistep scheme in (20)-(22) requires the solution u(x, t) ∈ C6,3
x,t (Ω

×[−s, T ]). In this section, another scheme, where the spatial derivative is approxi-
mated by standard central difference quotient, is presented. The scheme has second-
order accuracy in spatial direction when we assume u(x, t) ∈ C4,3

x,t (Ω× [−s, T ]). The
discretization in temporal direction is the same to the derivation of the compact
multistep scheme (20)-(22). We call the scheme as non-compact multistep scheme.
Throughout this paper, C always denotes a generic constant but independent of
the time step τ and the space step h.

5.1. Derivation of non-compact multistep scheme. Applying Taylor’s ex-
pansion, we have

(46)
∂2u

∂x2
(xi, tk) = δ2xU

k
i − h2

12

∂4u

∂x4
(ςki , tk),

where ςki ∈ (xi−1, xi+1). Plugging (46) into (8) (11), and combining it with (9) and
(10), we obtain
(47)

δ+t U
k+1
i = D1δ

2
xU

k+1
i + D2τ

2δ

∑k
j=0

(
σ(tk+1, tj)δ

2
xU

j
i + σ(tk+1, tj+1)δ

2
xU

j+1
i

)

+f(2Uk
i − Uk−1

i , Uk+1−n
i , xi, tk+1) + R̃k

i ,
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where

(48)

R̃k
i = τ2

(
− 1

3τ
2 ∂3u
∂t3 (xi, ξ

k+1
i ) + ∂2u

∂t2 (xi, ρk)fµ(η
k
i , ζ

k
i , xi, tk+1

)

−D2τ
12δ

k∑
j=0

∂g
∂w |(xi,tk+1,ηj))

−h2

12 (D1
∂4u
∂x4 (ς

k+1
i , tk+1) +

D2τ
2δ

k∑
j=0

(σ(tk+1, tj)
∂4u
∂x4 (ς

j
i , tk+1)

+σ(tk+1, tj+1)
∂4u
∂x4 (ς

j+1
i , tk+1))).

Omitting the small term R̃k
i , replacing the exact solution Uk

i with the numerical
approximation uk

i in (47), and combining with the boundary condition (18) and
initial value condition (19), we get the non-compact difference scheme as follows

(49)

δ+t u
k+1
i

= D1δ
2
xu

k+1
i + D2τ

2δ

∑k
j=0

(
σ(tk+1, tj)δ

2
xu

j
i + σ(tk+1, tj+1)δ

2
xu

j+1
i

)

+f(2uk
i − uk−1

i , uk+1−n
i , xi, tk+1), 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1,

(50) uk
0 = ua(tk), uk

N = ub(tk), 1 ≤ k ≤ N,

(51) uk
i = ϕ(xi, tk), −n ≤ k ≤ 0.

5.2. Local truncation error and convergence analysis. Now we can easily

estimate R̂k
i from (48) as follows.

Lemma 5.1. Under the assumption (4)-(6), the local truncation error of the scheme
(49)-(51) satisfies

|R̃k
i | ≤ c̃(τ2 + h2), 1 ≤ i ≤ M, 0 ≤ k ≤ N,

where c̃ is a certain positive constant.

Since the proof of the convergence is similar to Theorem 5.2, we omit it in detail.

Theorem 5.2 (Convergence). Under the assumption (4)–(6), there exists a positive
number C such that

(52) ‖ek‖∞ ≤ C(τ2 + h2), 0 ≤ i ≤ M, 0 ≤ k ≤ N.

6. Numerical examples

In this section, we carry out several numerical examples to check the performance
of the algorithms in our paper. For ease of comparison, the difference scheme
presented in [6] for the equations (1)-(3) is listed out as follows,
(53)

δtu
k+ 1

2

i = D1δ
2
xu

k+1
i + τ D2

δ

∑k+1
j=1 e

− tk+1−tj
δ δ2xu

j
i + f(uk+1

i , uk+1−n
i , xi, tk+1),

1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1,

(54) uk
i = ϕ(xi, tk), 0 ≤ i ≤ M, −n ≤ k ≤ 0,

(55) uk
0 = ua(tk), uk

M = ub(tk), 1 ≤ k ≤ N.

For the sake of brevity, we redescribe the algorithms as follows:

Scheme I : the scheme (53) − (55);
Scheme II : the scheme (49) − (51);
Scheme III : the scheme (20) − (22).
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Table 1. Errors in L∞-norm, the convergence rates and CPU
time (s) of Schemes I–III with (h/2, τ/2) for Example 6.1, where
D1 = 1, D2 = 10, T = 10, δ = 5, s = 1.

Scheme III Scheme II Scheme I

h τ E∞(h, τ) Ord1 CPU E∞(h, τ) Ord1 CPU E∞(h, τ) Ord1 CPU
1
20

1
20

3.43e-4 ∗ 6.2e-2 1.93e-2 ∗ 5.7e-2 5.96e-2 ∗ 6.1e-2
1
40

1
40

9.04e-5 1.92 2.7e-1 4.84e-3 2.00 2.3e-1 3.48e-2 0.78 2.3e-1
1
80

1
80

2.29e-5 1.98 1.1 1.21e-3 2.00 1.0 1.87e-2 0.90 1.0
1

160
1

160
5.75e-6 2.00 5.6 3.02e-4 2.00 5.1 9.64e-3 0.95 5.2

∗ Could not obtain datum from the second column, and likewise for others.

The maximum norm errors of the numerical solution are computed by

E∞(h, τ) = max
0≤n≤N

‖Un − un‖∞,

and numerical convergence rates of Schemes I-III are denoted by

Ord1 = log2

(
E∞(h,τ)

E∞(h/2,τ/2)

)
, Ord2 = log2

(
E∞(h,τ)

E∞(h/2,τ/4)

)
.

Example 6.1. To demonstrate the efficiency of the schemes in the article, firstly,
we consider equations (1)-(3) as follows

(56)





∂u
∂t = D1

∂2u
∂x2 + D2

δ

∫ t

0
e−

t−w
δ

∂2u
∂x2 (x,w)dw + f(u(x, t), u(x, t− s), x, t),

(x, t) ∈ [0, 1]× (0, T ],

u(0, t) = u(1, t) = 0, t > 0,

u(x, t) = exp( tδ ) sin(πx), (x, t) ∈ [0, 1]× [−s, 0],

where

f(u(x, t), u(x, t− s), x, t)

= −u(x, t)[1− u(x, t− s)]− π2D2

2
e−

t
δ sinπx

+

(
π2D1 +

π2D2

2
+

1

δ
+ 1

)
e

t
δ sinπx− e

2t−s
δ (sinπx)2.

The exact solution of the above problem is u(x, t) = e
t
δ sin(πx). In this example,

we investigate the global errors, CPU time and the convergence orders of Schemes
I, II and III, respectively.

Firstly, we set the parameters as D1 = 1, D2 = 10, T = 10, δ = 5, s = 1.
Table 1 demonstrates the errors in L∞-norm, convergence rates and CPU time of
the three kinds of schemes with τ = h. We observe that the global convergence rates
of Scheme II and Scheme III are second-order, while Scheme I is just first-order.
Obviously, Scheme III is better than the other two algorithms in terms of CPU
time and the accuracy. From Table 2, we see that the global convergence rates of
Scheme III is fourth-order while Scheme I and Scheme II are second-order when the
spatial step-size and the temporal step-size are reduced by a factor of 1/2 and 1/4,
respectively. In Fig. 1, (a) and (b), we see that Scheme III is the most efficient
method for the simulation of the non-Fickian diffusion equation compared with the
other two schemes.

In order to demonstrate the efficiency of Scheme III further, we take another set
of the parameters, D1 = 1, D2 = 1, T = 30, δ = 15, s = 2 to compute the example
again, and the similar results are observed in Tables 3, 4 and in Fig. 1, (c), (d).
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Table 2. Errors in L∞-norm, the convergence rates and CPU
time (s) of Schemes I–III with (h/2, τ/4) for Example 6.1, where
D1 = 1, D2 = 10, T = 10, δ = 5, s = 1.

Scheme III Scheme II Scheme I

h τ E∞(h, τ) Ord2 CPU E∞(h, τ) Ord2 CPU E∞(h, τ) Ord2 CPU
1
20

1
40

6.76e-5 ∗ 2.1e-1 1.97e-2 ∗ 2.0e-1 2.01e-2 ∗ 2.0e-1
1
40

1
160

4.23e-6 3.99 3.2 4.92e-3 2.00 3.1 5.03e-3 2.00 3.1
1
80

1
640

2.65e-7 4.00 59 1.23e-3 2.00 55 1.26e-3 2.00 55
1

160
1

2560
1.65e-8 4.00 1510 3.08e-4 2.00 1040 3.15e-4 2.00 1038

Table 3. Errors in L∞-norm, the convergence rates and CPU
time (s) of Schemes I–III with (h/2, τ/2) for Example 6.1, where
D1 = D2 = 1, T = 30, δ = 15, s = 2.

Scheme III Scheme II Scheme I

h τ E∞(h, τ) Ord1 CPU E∞(h, τ) Ord1 CPU E∞(h, τ) Ord1 CPU
1
20

1
20

5.91e-5 ∗ 4.5e-1 5.38e-2 2.01 4.5e-1 2.55e-3 ∗ 4.3e-2
1
40

1
40

2.72e-5 1.12 1.9 1.33e-2 2.00 1.9 9.40e-5 4.76 3.0e-1
1
80

1
80

7.56e-6 1.84 8.3 3.32e-3 2.00 8.1 2.48e-4 -1.40 2.0
1

160
1

160
1.94e-6 1.96 43 8.30e-4 2.00 40 1.98e-4 0.33 13

1
320

1
320

4.88e-7 1.99 277 2.07e-4 2.00 239 1.17e-4 0.75 89
1

640
1

640
1.22e-7 2.00 1832 5.19e-5 2.00 1562 6.33e-5 0.89 715

Table 4. Errors in L∞-norm, the convergence rates and CPU
time (s) of Schemes I–III with (h/2, τ/4) for Example 6.1, where
D1 = D2 = 1, T = 30, δ = 15, s = 2.

Scheme III Scheme II Scheme I

h τ E∞(h, τ) Ord2 CPU E∞(h, τ) Ord2 CPU E∞(h, τ) Ord2 CPU
1
20

1
40

3.45e-5 ∗ 1.7 5.39e-2 ∗ 1.7 3.64e-3 ∗ 1.9e-1
1
40

1
160

2.15e-6 4.00 28 1.33e-2 2.01 28 9.09e-4 2.00 3.1
1
80

1
640

1.34e-7 4.00 499 3.33e-3 2.00 505 2.27e-4 2.00 54
1

160
1

2560
8.39e-9 4.00 11464 8.32e-4 2.00 9380 5.68e-5 2.00 1002
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Figure 1. Numerical solutions and corresponding error curves at
time t = 10 with h = τ = 1/10, D1 = 1, D2 = 10, δ = 5 (a)-(b)
and at time t = 30 with h = τ = 1/20, D1 = D2 = 1, δ = 15
(c)-(d), respectively in Example 6.1.
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Table 5. Errors in L∞-norm, the convergence rates and CPU
time (s) of Schemes I–III with (h/2, τ/2) for Example 6.2.

Scheme III Scheme II Scheme I

h τ E∞(h, τ) Ord1 CPU E∞(h, τ) Ord1 CPU E∞(h, τ) Ord1 CPU
1
20

1
20

6.04e-2 ∗ 2.0e-2 9.43e-2 ∗ 1.8e-2 8.14e-1 ∗ 1.6e-2
1
40

1
40

1.74e-2 1.80 8.4e-2 2.60e-2 1.86 7.4e-2 5.18e-1 6.50e-1 6.6e-2
1
80

1
80

4.57e-3 1.92 3.6e-1 6.73e-3 1.95 3.2e-1 2.93e-1 8.24e-1 3.0e-1
1

160
1

160
1.16e-3 1.98 1.9 1.70e-3 1.98 1.6 1.55e-1 9.18e-1 1.5

Table 6. Errors in L∞-norm, the convergence rates and CPU
time (s) of Schemes I–III with (h/2, τ/4) for Example 6.2.

Scheme III Scheme II Scheme I

h τ E∞(h, τ) Ord2 CPU E∞(h, τ) Ord2 CPU E∞(h, τ) Ord2 CPU
1
20

1
40

1.71e-2 ∗ 6.1e-2 1.66e-1 ∗ 5.8e-2 4.24e-1 ∗ 5.5e-2
1
40

1
160

1.15e-3 3.90 8.7e-1 4.56e-2 1.87 8.4e-1 1.16e-1 1.87 8.1e-1
1
80

1
640

7.20e-5 3.99 14 1.15e-2 1.99 14 2.92e-2 1.99 14
1

160
1

2560
4.50e-6 4.00 289 2.87e-3 2.00 267 7.31e-3 2.00 258

Example 6.2. In this example, we consider the initial boundary problem with
nonzero boundary condition as follows

(57)





∂u
∂t = D1

∂2u
∂x2 + D2

δ

∫ t

0 +u2(x, t)e−
t−w
δ

∂2u
∂x2 (x,w)dw

+u(x, t− 0.1) + f(x, t), (x, t) ∈ [−1, 1]× [−0.1, 5],

u(−1, t) = −1, u(1, t) = −1, t > 0,

u(x, t) = t2 cosπx, (x, t) ∈ [−1, 1]× [−0.1, 0],

with D1 = D2 = δ = 1 and

f(x, t) = [π2D1t
2 + 2t− (t− 0.1)2] cos(πx)− t4 cos2(πx)

+D2π
2(t2 − 2tδ + 2δ2 − 2δ2e−

t
δ ) cosπx,

such that the above problem has an exact solution u(x, t) = t2 cosπx.
Tables 5 presents the maximum errors, CPU time and convergence orders of

the three kinds of schemes with different step-sizes. We observe that Scheme III
and Scheme II are second-order accurate while Scheme I is just first-order when
temporal step-size and the temporal step-size are both reduced by a half. From Table
6, we know that Scheme III is fourth-order while Scheme I and Scheme II are just
second-order when temporal step-size and the temporal step-size are both reduced by
the factor of 1/2 and 1/4, respectively. We can also see that the numerical results
are consistent with the theoretical results in Theorems 4.3 and 5.2. From these
tables and figures, we conclude that Scheme III is, obviously, the most efficient
among the three schemes when the solution of the equations is smooth enough.

Example 6.3. In this example, we apply our schemes to the non-Fickian Mackey-
Glass equation (c.f., [20])

(58)





∂u
∂t = D1

∂2u
∂x2 + D2

δ

∫ t

0 e−
t−w
δ

∂2u
∂x2 (x,w)dw − αu(x, t)

+ βu(x,t−s)
1+um(x,t−s) , (x, t) ∈ [a, b]× [−s, 0],

u(a, t) = u(b, t) = 0, t > 0,

u(x, t) = (2 + cos t)x(1 − x), (x, t) ∈ [a, b]× [−s, 0],
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Figure 2. Numerical simulations for the equation (58) with h =
1/10, τ = 1/100 at time t = 20 for (a), t = 40 for (b), t = 100 for
(c) and t = 200 for (d) in Example 6.3.
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Figure 3. Numerical simulations for the equation (59) with h =
τ = 1/100, at time t = 30 for (a) , t = 60 for (b), t = 100 for (c)
and t = 200 for (d) in Example 6.4.
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with D1 = D2 = δ = s = 1, m = 2, a = 0, b = 1, α = 100, β = 120. The numerical
surfaces are displayed in Fig. 2 with h = 1/10, τ = 1/100 at time t = 20 for (a),
40 for (b), 100 for (c), and 200 for (d). We observe that Fig. 2 (a) is coincided
with the paper [20] if the same angle of view is used.

Example 6.4. In the last example, the non-Fickian Nicholson’s type equation is
considered (c.f., [20])

(59)





∂u
∂t = D1

∂2u
∂x2 + D2

δ

∫ t

0 e−
t−w

δ
∂2u
∂x2 (x,w)dw − αu(x, t)

+βu(x, t− s)e−um(x,t−s), (x, t) ∈ [a, b]× [−s, 0],

u(a, t) = u(b, t) = 0, t > 0,

u(x, t) = (2 + sin t) sin(πx), (x, t) ∈ [a, b]× [−s, 0],

with D1 = D2 = δ = s = 1, m = 2, a = 0, b = 1, α = 2, and β = 16. We see
that Fig. 3 (a) with t = 30 is the same to the numerical surface in paper [20].
To understand the evolving surface of the solution further, we solve the problem at
t = 60, 100, 200, respectively, which are plotted in Fig. 3 (b)-(d).

7. Concluding remarks

We have formulated two kinds of effective numerical schemes for non-Fickian
delay reaction-diffusion equations. Both of the schemes are based on the backward
differentiation formulas in temporal direction. The spatial direction is discretized
by the fourth-order compact difference scheme and second-order central difference
approximation, respectively. The error estimates of the schemes are established
rigorously. Numerical simulations have shown that both the schemes display the
desired accuracies and the higher order compact multistep scheme is the most effi-
cient.

The schemes in our paper are also available to solve the evolution equations with
general positive-type memory term as follows

(60) ∂u
∂t = D1

∂2u
∂x2 + D2

δ

∫ t

0 β(t − s)Bu(x,w)dw + f(u(x, t), u(x, t− s), x, t),

where β is the positive-definite kernel without singularity and B is a second-order
self-adjoint positive-definite linear elliptic differential operator. In addition, the
extension of the results in our work to the higher dimensional case on a rectangular
domain is also available. Some alternate direction technique is necessary. We leave
them as our future work.
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