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Abstract. This note is concerned with the nonlinear sta-
bility of viscous shock profile for a one-dimensional scalar vis- -
cous conservation law. For the general nonconvex flux function
in C2, when the initial perturbation is small, with integral zero
and some exponentially spatial decay orders, by the weighted
energy method in [6,9,10], we introduce a new weight function,
which plays a key role to handle the case of many inflection
pionts of the flux function, we then prove the stability of non-
degenerate viscous shock profile. In particular, just due to such
a weight function, we obtain a new time decay rate in the expo-
nential form, which is a supplement result to the previous works
[6,9,10,12].

1. Introduction. The purpoée of this note is to supplement the
previous works [6,9,10,12] on the asymptotic stability of shock profiles for

general nonconvex scalar viscous conservation laws of the fprm
(1.1) up + f(W)g = pize, € RL,T>0,

with the initial date

(1.2) | w(0,z) = ug(z), =€ R',

where p > 0 is a viscous constant, f(u) € C? is a general nonconvex flux
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function, means that f(u) may have many inflection points, and uo(z) tends
toward the given constant states vy as z — *oo.

We call a viscous shock profile U(z — st), or a traveling wave solution,
of (1.1) connecting u4 if and only if u(xz,t) = U(x — st) is a smooth solution
of (1.1) satisfying U(£00) = u4, and call s a wave speed. Here, uy and s

satisfy the Rankine-Hugoniot condition

(1.3) —s(ug —u_)+ flug) - fu_) =0
and the generalized shock condition, or say the Oleinik’s shock condition

(1.4) h(uw) == —s(u —ux) + f(u) — f(ux)$0, fup SuSu_,

which implies

flluy) < s < fl(u-).

If the Laxian shock condition

(1.5) flluy) <s < f'(u)

is satisfied, we say the viscous shock profile U(z — st) is nondegenerate. The
corresponding degenerate viscous shock profile means that such a shock
profile satisfies one of the following degenerate shock conditions: f/(uy) =
5 < f'(u), or f(ug) < 5= f/(u), or s = f/(us).

The stability of viscous shock profile for one-dimensional viscous scalar
conservation laws has been studied in [1-15], see also the references therein.
The first work is due to I1’in and Oleinik {3] who shown the stability of shock
profile in the convex case f" > 0 depended on the method of the maximumn
principle. A same result was also obtained by Sattinger [14] based on the
spectral analysis method. Especially, when f(u) = »?/2, which is well
known as the Burgers equation, the polynomially and exponentially asymp-
totic stability was well studied by Nishihara [11] by using an explicit formula
of solution. A new different approach based on an energy method which can

be also applied to systems was introduced independently by Matsumura and
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Nishihara [8] and by Goodman [2], respectively. Since then, the stability the-
ory has been rapidly developed by many persons. Among them, Kawashima
and Matsumura [5] got polynomial time decay rate for the general convex
case. Recently, for the nonconvex case, when f(u) has one flection point, the
stability of viscous shock profile was studied by Kawashima and Matsumura
[6], Mei [10]. In particular, the author in [10] succeeded in the degenerate
shock case at the first time, and also proved the polynomial and exponen-
tial decay rates. While the general nonconvex case, namely, f(u) may have
many inflection points, was investigated by Jones and Gardner and Kapitula
[4], Matsumura and Nishihara [9]. But those works do not deal with the ex-
ponential decay. We also note that, the work [4] is only concerned with the
nondegenerate shock case, and their polynomial decay rate is less sufficient
than those in [6,9,10]. Very recently, the optimal polynomial decay rate cor-
‘responding to [11] was improved by Nishikawa [12]. For the L!-stability , we
refer to [13,1]. It should be pointed out that, Freistuhler and Serre [1] shown
the L!-stability but without decay rate for any large initial perturbation by
the operatoral semigroup method. However, for the general nonconvexity of
flux function, i.e., f(u) may have a lot of inflection points, the exponential
time decay rate of asymptotics is unknown yet. Therefore, it seems signif-
icant for us to study such a problem. To attack this problem, we adopt
the weighted energy method introduced by Kawashima and Matsumura [6]
and developed by Mei [10], Matsumura and Nishihara [9]. Roughly saying,
by introducing a new weight function, which plays a key role to treat with
the case of many inflection points of the flux function f(u) and to lead an
exponential time decay rate, we are going to show that the nondegenerate
viscous shock profile is stable in some exponential time decay rate, when the
initial perturbation decays in the exponential form. Here we supplement the
previous stability results in [6,9,10,12].

In what follows, L? and H!(I > 0) denote the usual Sobolev spaces
with the norms || - || and || - ||; respectively. We denote also L2 the space of

measurable functions on R which satisfy w!/2f € L2, with the norm
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I = ( [wEls@re) "

where w(z) > 0 is a weight function, and denote H! (! > 0) the weighted
Sobolev space of L2 -functions f on R whose derivatives 8; fi=1,...,1

are also L2 -functions, with the norm

! _ 1/2
1l = (Z na;flli)
=0

When f(z) = O(1)g(z) in an interval, we represent it by f(z) ~ g(z). We

denote some constants by ¢; or C without confusion.

2. Preliminaries. This section is to summarize properties of viscous
shock profile of (1.1). As above mentioned, a viscous shock profile of (1.1) is

a traveling wave solution U(£)({ = z — st) satisfying the ordinary differential

equatidn

—sU'+ f(U) = pU", U(Foo) = ux,
where ' = di&, s is the speed of wave. Integrating it yields
(2.1) pUe = —su+ f(u) — a =: h(U),

where a = —suy + f(u4) is an integral constant implying the Rankine-
Hugoniot condition (1.3).

‘Throughout this paper, we focus on the case of nondegenerate shock,
i.e., the Laxian shock condition (1.5) holds. The exsitence of viscous shock
profile U(x — st) for (1.1) is given in [9], that is, equation (2.1) admits a
smooth solution if and only if (1.3) and (1.4) hold. We state it as follows.

Proposition 2.1 [9]. (i). If (1.1) admits a traveling wave solution
with shock profile U(z — st) connecting uy, then uy and s must satisfy the
Rankine-Hugoniot condition (1.3) and the generalized shock condition (1.4).

(i1). Conwversely, suppose that (1.3) and (1.4) hold, then there exists a

viscous shock profile U(x — st) of (1.1) which connects (vt,u+). The viscous
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shock profile U(£)(€ = x — st) is unique up to a shift in & and is a monotone
function of &, i.e.,

(2.2) UsSO for upSu_.

In particular, under the Laxian shock condition (1.5), then it follows
(2.3) [R(U)| ~ U —us| ~ e—;il“, as & — oo,

where cx = |f'(us) — s|/p.

Without loss of generality, we assume that uy < u_. So, h(U) = pUs <

0 (see (2.2)). Now we define some functions as follows

(u = u)t = (u_ —u)'™*

—h(u)

(2.4)  we(u):= ,0<a<l, uy <u<u_,

(2.5) ga(u) = 1—a)a(u-—us)?+2(1-20)(u—uys)(u_ —u)], 0 < a <1,

_ h(w)(wah)"(u)

(2.6) balu) = == s

, 0<axl,

in which, we(u) > 0 is called a weight function, and will play a key role in

the proof of exponential decay rate.

Lemma 2.2. Let U(§) be the nondegenerate viscous shock wave, then

(2.7) Wa(U) ~ U — ug|™® ~ >l a5 ¢ — +oo,
(2.8) we(U) > ¢, for ¢ € (—o0,00),

2
(2.9) ca MU) < c3, for £ € (—00,00),

<
= 20U —u)?(u_ D)2
hold for some positive constants c1, cz and cs.

Proof. From (2.3) and (2.4), we immediately have (2.7) and (2.9) for

some positive constants ¢y and c3. Since wo(U) ~ e>c£l¢l for all £ € R by

(2.7), we can get (2.8) for some positive constant c;.
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By substituting (2.4) into (2.6) and noting (2.5), a staightforward com-
putation yields
B (( — u ) (u — w)i)”
2p(u — uy )7 (uo — )l

_ h(u)®

20y — uq)?(ue — u)?
(2.10)  x (1 - a)[a(u- —u)® +2(1 — a)(u — us)(u- — u) + a(u — uy)?]

_ hw)ga(w) |

2p(u — ug)? (v —w)?

On the other hand,

ko(u) =

go(u) =2(1 - a)(1 — 20)(u— + uy — 2u).

When 0 < o < -;—, we have

. Uy +u-
go(u)S0  for u§——§—,
which means that g,(u) is increase on [ut, 25%=] and decrease on

[L:+%= 4_]. Thus, we obtain

. 1
(2.11) min  go(u) = galus) =a(l —a)(u- —uy)? as0<a < =
upSuu_ 2 -

When % < a < 1, we similarly get

g@$0 for wsIs,

that is, go(u) is decrease on [uy., “+3*=] and increase on [%:F*= u_]. Thus,

we obtain

U++U_ 1-«

(2.12) min  go(u) = go 5

1
2

- - < .
. Do (u— —uy)® as ;S <1

Therefore, (2.11) and (2.12) yield

ol-a)(u- —uy)?, asO0<a<i

: _J1 2 _1

(2.13) o Din galu) = f(u— —uy)?, asa=j
2 (ue — ugq)?, asi<a<l

We mark thhe constant 8, as follows
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(2.14)
ca(l —a)(u- —uy)?, as0<a<i
O := Co 1;11121 go(u) = { F(u- — uy)?, asa =3
uy <u<lu_
szQfﬂ(u_ —uy)?, as 3 <a<l.
Since min g.(u) for a € (0,1) has a maximumn value
upLulu—
. _v . _ _ 2
Jmax { ., i g (w)} = LB g (w) = (u- ) /4,

then 6, has also a maximumn value

—f. — UTERY
(2.15) Jmax O =01 = ca(u— —uq)*/4
By (2.10), (2.9) and (2.14), we prove the following lemma.

Lemma 2.3. Let U(£) be the nondegenerate viscous shock wave, then

(2.16) ko(U) >0, for &€ RN

3. Main theorem and reformulation of problem. Let U(x — st)

be a nondegenerate viscous shock profile connecting u., and assume

+co
(3.1) /_ (uo(z) — U())dz = 0.
Defining
(3.2) so@) = [ (uola) ~ UGNy,

our main theorem is as follows.

Theorem 3.1. (Ezponential Decay Rate). Suppose that (3.1) and (1.3)-
(1.5) hold. If ¢o € Hﬁ,a(U(z» for 0 < @ < 1, then there exists a positive
constant &, such that if ||oll2.w. < 61, then the Cauchy problem (1.1) and
(1.2) has a unigue global solution u(t,) satisfying

u—U € C%0,00;H,,_) N L*(0,00; HZ ).
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Moreover, the solution verifies the following decay rate estimate
(3.3) sup |u(t, z) = Uz — st)| < Ce™=*||¢o|l2,wa,

z€
where 0, is defined in (2.14).

Remark. 1. We see that if the initial perturbation ¢q(z) has a ex-
ponentially spatial decay order e~ =1l due to ¢o € HZ,_, then |u(t,z) —
U(z — st)] = O(e™%*) as t — +o0o. When « is closed to 0 but not equal to
0, the decay of ¢o(x) is much slower than those in [3,10,11,13], in this case,
we still get the exponential time-decay rate. '

2. In our view point, when ¢¢(x) has a stronger decay rate, we cannot
always have a better time decay rate (see the case of % <a<l. In
fact, when a = %, the time decay rate exp(—6 1 t) is the best by the present
analysis (2.15). This is quite different from the polynomial decay case shown
in [4,5,9,10,11,12], i.e., if |¢o(z)| = O(|z|™*), then |u(t,z) — U(z — st)| =
O(t™*) as t — +oo. ‘

3. We have no the assumption of weak shock |uy — u_| < 1, namely,

the stability theory holds for all viscous shock (weak or strong).

In order to prove Theorem 3.1, like the previous works, we make refor-

mulation of our problem in the form
(3-4) w(t,z) =U(§) + ¢e(t,€), £ =z — st.
Then the problem (1.1), (1.2) is reduced to

(3.5) bt + B (U)de — poee = F(U, ¢¢),

(3.6) : $(0,€) = ¢o(),
where F' = —{f(U + ¢¢) — f’(U) — f{(U)¢e} satisfying
3.7) |F| = O(1)|¢%]-

The problem (3.5), (3.6) can be solved globally in time as follows.
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Theorem 3.2. Under the conditions in Theorem 3.1. Then there exists
a positive constant 63 such that if ||¢oll2,w, < 62, then the Cauchy problem
(3.5) and (3.6) has a unique global solution ¢(t,€) satisfying

(3.8) ¢ € C°(0,00; H2 ) N E*(0,00; HS ),

and the decay estimate

t
(39) gD, + / e ()30 dr < Cl b0l

fort>0.

Since we can easily prove Theorem 3.1 from Theorem 3.2, it is sufficient
to prove Theorem 3.2 for our purpose. To do that, we will use the local

existence result together with the a priori estimates as follows.

Proposition 3.3 (Local Existence). Suppose that ¢g € H? and the
other conditions in Theorem 3.1 hold. Then there is a positive constant Ty
such that the problem (3.5) and (3.6) has a unique solution ¢(t,€) satisfy-

ing ¢ € C°0,To; H?), ¢ € L?(0,T,; H?), and s[up ]||¢(t)||2 < 2||doll2-
tel0,Tp

Moreover, if ¢g € H?Ua for some 0 < a < 1, then ¢ € CO(O,TO;H,%Q) N

L*(0,To; H,,), and  sup [|¢(®)l2,w. < 2ll¢oll2w.-
tG[O,To]

Proposition 3.4 (A Priori Estimate). Let T be a positive con-
stant, and ¢(t,£) be a solution of the problem (3.5) and (3.6) satisfying
¢ € C°0,T; Hﬁ,a) N L%(0,T; H3 ). Then there ezist positive constants 63
and C which are independent of T such that if sup ||¢(¢)||l2,w, < 63, then
the estimate (3.9) holds for ¢t € [0,T). hsr

Since Proposition 3.3 can be proved in the standard way, we omit its
proof. Once Proposition 3.4 is proved, using the continuation arguments
based on Propositions 3.3 and 3.4, we can show Theorem 3.2, cf. [5,6,9,10].
To prove Proposition 3.4 is our main goal, which will be showed in the

following section.
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4. The proof of a priori estimate. We now define the solution
space of (3.5) an d(3.6)

X(0,T) = {¢ € C°(0, T; Hy, ) N L*(0, T Hy, )}
- with 0 < T < 400, and put
N(t) = sup [[¢(7)ll2,wa;
0<r<t
we first prove the basic energy estimate as follows.

Lemma 4.1 (Basic Energy Estimate). Let ¢(t,£) € X(0,T) be a
solution of (3.5) and (3.6) for a constant T > 0. Then it holds

(4.1) | g(t)]l2,. + /0 t 7| ge(T)|I3, dr < Cligoll.,
for suitably small N(T).
Proof. Multiplying (3.5) by e*®«tw, (U)¢(t,£), we have
{%ew"twaqbz}t — 0. e20tw,p? + ezeat{%wah'qbz — pwadde } ¢
(42 - (k) + puaet ]+ (Buageetg?)
— Lwagee"¢” = ¥ty (U)4F.
Using pUe = h(U) < 0 (see (2.1) and (2.2)), we have
— %(wah' )ee?¥atp? — %wa&ezo“td)z
(42) = ~S (Wb + wahUee™=4 — L (wah)ee™'g?
= —%(w;h’ + wah")Uge?®=*¢” — %(wgh + wyh')Uge?®=t ¢?
= 5 (wah)"(U)Uge™4? = kal(U Y (U)e™*2,
‘Where ko (U) is defined in (2.6). Substituting (4.3) into (4.2) yields
{le”“twa(ﬁz}t + 629“t{lwah'¢2 — UWedde — Ewa£¢2}
(4.4) 2 2 2 3
+uwae? =t ¢ + (Ka(U) — Oa)wae®='¢? = €2ty (U)$F.
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Integrating (4.4) over [0,¢] X R gives
t +o0
L, +2 [ [ kal) ~ 00w (0) e
0 . —00
(4.5) +2 /0 &7 g (1|2, dr
t +o00
= 2 12 WoT o (U)pFdtdr.
ol +2 [ [ ererua)srasar

Since |F| < C¢? (see (3.7)), and sup |¢(r,£)| < CN(¢) for 0 < 7 < ¢t due to
£ER

the Sobolev inequality, we have

t +oco t
(4.6) /0 /_ 20T, (U)|$F|dédr < CN (1) /0 202 g (7|2, .

Noting (4.6) and (2.16), we have by (4.5)

4.7) =" l)II%,, + (21 — 20N (2)) /O %7 pe (1)I2. dr < ligo(7)II3..-

Tet N (t) be suitably small, say N(t) < p/C, we then complete the proof of

Lemma 4.1.

Based on the basic energy estimate (4.1), we can derive the following

energy estimates for the higher order derivatives of ¢(t,&).

Lemma 4.2. There hold
48 I+ [ IR dr < Ol
and
(4.9)  egee@3, + /ot e?7 || bege (TI% d7 < Cligoll3 .-
for éuitabl’y small N(T).

Proof. Differentiating equation (3.5) with respect to &, we have

(4.10) pee + B (U)dee — pdeee = —h" (U)Uede + F(U, d¢ e

Multiplying (4.10) by e?’tw,(U)¢, and integrating it over [0,¢] X R yield
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t +o0
et e (D% +2 / / (ka(U) — 0)e>Twa(U) g2, &) de dr
0 —oo
| +2u / €20 | e ()13, dr
(4.11) A
— 2 _2 h”UU 20T aU 2dd
ol //w (U) Ve wo (V)¢ dadr
_ t +o0
+2 / / 20T wo (U) e Fedédr.
0 —00

Thanks to |h"(U)Ug| < C and (4.1), we obtain
t 400
(4.12) / / |R"(U)U¢|e*®="wo(U)¢Zdadr < Clldoll2,, -
0 —00

Using |F¢| < C(|¢e|* +¢elidee]) < C(Idel?+deel®) and ?g}gkﬁ(ﬂ ol sup |6
(r,8)] < CN(t) for 0 < 7 < ¢t and (4.1), we then can get the estimate for

the nonlinear term
t ‘oo
/0 /_ 7w, (U)\ e Fededr
t +o00
(4.13) <c / / 227w, (U)| e (¢ |? + e ) dadr
0 —00
< CN(Y) / e ([l ge (TI% + I dec (112, )dr
. 2
< cN<t>(n¢o||3,,, + e”a*nqsgg(f)uzadr).

Substituting (4.12) and (4.13) into (4.11), we have

t
e*Tlge (D, + (26 — 2CN (1)) /0 =" ||gee(1)ll2, 47 < Cligolll v,

which implies (4.8) for N(T) < 1.
The estimate (4.9) can be proved by a similar manner as above. After

differentiating equation (3.5) twice with respect to £, multiplying the resul-

tant equality by e*)=*w,(U)¢e and integrating it over [0,#] x R, we can

prove (4.9) by (4.1) and (4.8). We here omit the details.
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Proof of proposition 3.4. Combining (4.1), (4.8) and (4.9), one (;;in have

t .
e ()13 0. +/0 e%"||ge(r)I13, 0. @7 < Cligoll3 w.,
for t € [0,T] and N(T) < 1. This completes the proof of Proposition 3.4.

Acknowledgements. The author thanks Professor Akitaka Matsumura
for his discussion and the referee for his comments. The research was partly
supported by the JSPS Research Fellowship for Young Scientists and the
Grant-in-Aid for JSPS No. PD-96169 from the Ministry of Education, Cul-

ture and Science of Japan.

References

1. H. Freistuhler and D. Serre, L!-stability of shock waves in viscous conservation
laws, Comm. Pure Appl. Math. 51 (1998), 291-301.

2. J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conser-
vation laws, Arch. Rat. Mech. Anal. 95 (1986), 325-344.

3. A. M. Iin and O. A. Oleinik, Asymptotic behavior of solutions of the Cauchy
problem for certain quasilinear equations for large time (Russian), Mat. Sbor. 51 (1960),
191-216.

4. C. Jones, R. Gardner and T. Kapitula, Stabiliity of traveling waves for non-convez
scalar viscous conservation law, Commun Pure Appl. Math. 46 (1993), 505-526.

5. S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solu-
tions of system for one-dimensional gas motion, Commun. Math. Phys. 101 (1985),
97-127.

6. S. Kawashima and A. Matsumura, Stability of shock profiles in viscoelasticity
with nonconvex constitutive relations, Commun. Pure Appl. Math. 47 (1994), 1547-1569.

7. T. P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem.
Amer. Math. Soc. 56 (1985), 328.

8. A. Matsumura and K. Nishihara, On the stability of traveling wave solutions of
a one-demensional model system for compressible viscous gas, Japan J. Appl. Math. 2
(1985), 17-25.

9. A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves for sca-
lar viscous conservation laws with non-conver nonlinearity, Commun. Math. Phys. 165
(1994), 83-96.

10. M. Mei, Stability of shock profiles for nonconvex scalar viscous conservation laws,
Math. Models Methods Appl. Sci. 5 (1995), 279-296.

11. K. Nishihara, Anote on the stability of traveling waves solutions of Burgers equa-
tion, Japan J. Appl. Math. 2 (1985), 27-35. )

12. M. Nishikawa, Convergence rate to the traveling wave for viscous conservation
laws, Funkcial. Ekvac. 41 (1998), 107-132.

13. S. Osher and J. Ralston, L!-stability of traveling waves with application to con-
rective porous media flow, Commun. Pure Appl. Math. 35 (1982), 735-751.

14. D. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. in
Math. 22 (1976), 312-355.



226 MING MEI [September

15. H. F. Wenberger, Long-time behavior for a regularized scalar conservation law in
the absence of genuine nonlinearity, Ann. Inst. Henri Poincare 7 (1990), 407-425.

Department of Computational Science, Faculty of Science, Kanazawa University, Ka-
kuma-machi, Kanazawa 920-1192, Japan
E-mail: mei@kappa.s.kanazawa-u.ac.jp



