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Analysis on the critical speed of traveling waves
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Abstract

The note is concerned with a time-delayed reaction–diffusion equation with nonlocality for the population dynamics of single
species. For the critical speed of traveling waves, we give a detailed analysis on its location and asymptotic behavior with respect
to the parameters of the diffusion rate and mature age, respectively.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The growth dynamics of single-species population with age structure and diffusion, for example, Nicholson’s
blowflies population dynamics, has been a hot research topic and widely studied; see [1–10] and the references therein.
In this note, we consider the initial value problem for a nonlocal time-delayed reaction–diffusion equation as follows:

∂v

∂t
− Dm

∂2v

∂x2 + dmv = ε

∫
∞

−∞

b(v(t − r, x − y)) fα(y)dy, t ∈ [0, ∞), x ∈ R, (1.1)

where v(t, x) denotes the total population of mature species after the mature age r > 0 at time t and location x ,
Dm > 0 is the diffusion rate of the mature species, dm > 0 is the death rate of the mature species, ε > 0 is an impact
factor of the death rate of the immature species, and α > 0 denotes the total amount of diffusion for the immature
species. The parameters α, r and Dm satisfy

α ≤ r Dm

as shown in [2,5,8], namely, the immature diffusion is always less than that of the adult species. fα(y) =
1

√
4πα

e−
y2

4α

is the heat kernel satisfying the normalized condition
∫

∞

−∞
fα(y)dy = 1. b(v) is the birth rate, which is related only
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to the mature species. In particular, we choose the birth rate b(v) as Nicholson’s blowflies rate (cf. [1,4,8,9])

b(v) = pve−av, (1.2)

where p > 0 and a > 0 are constants. Eq. (1.1) can be derived from Metz and Diekmann’s dynamical population
model [6]

∂u

∂t
+

∂u

∂a
− D(a)

∂2u

∂x2 + d(a)u = 0

by setting

v(t, x) =

∫
∞

r
u(t, a, x)da,

where a denotes the age of the species and u(t, a, x) represents the density of the species with age a at location x at
time t . For the detailed derivation of Eq. (1.1), we refer the reader to [2,5,8].

Note that Eq. (1.1) has two constant equilibria obtained by solving the equation

dmv = εp
∫

∞

−∞

ve−av fα(y)dy,

which are

v− = 0 and v+ =
1
a

ln
εp

dm
. (1.3)

If εp
dm

> 1, then v− < v+.
In [8], So, Wu and Zou proved that for Eq. (1.1) there exists a wavefront φ(x + ct) with the speed c > c∗, where

c∗ > 0 is the critical speed. Then Liang and Wu [2] further extended the result on the existence of traveling waves to
the generalized case of birth rate

b(v) = pve−avq
, q ≥ 1.

Later, Mei and So [5] showed that, if the wave speed c is suitably large that

c > 2
√

Dm(3εp − 2dm), (1.4)

then the wavefront is time-asymptotically stable in a weighted Sobolev space. However, since the critical speed c∗

was not specified in [8], we do not know how far the wave speed c in (1.4) is from c∗, and what the stability is for the
wave with any speed c close to c∗. In this note, we are going to answer the first question, which is necessary for the
second question, and the second question will be discussed later in [3].

By a detailed computation, as shown below, we give the exact bounds of c∗, and show its asymptotic behavior
as the diffusion rate of mature species Dm → 0+, and Dm → +∞, and the mature age r → 0+ and r → +∞,
respectively.

2. Critical speed of traveling waves

A traveling wave of Eq. (1.1) with the birth rate (1.2) connected with two constant states v± is the special solution
of Eq. (1.1) in the form of φ(x + ct) (c > 0 is the wave speed) which satisfies a nonlocal delayed ordinary differential
equation as follows:cφ′(ξ) − Dmφ′′(ξ) + dmφ(ξ) = εp

∫
∞

−∞

φ(ξ − cr − y)e−aφ(ξ−cr−y) fα(y)dy,

φ(±∞) = v±,

(2.1)

where ξ = x + ct and ′
=

d
dξ

. Using the upper–lower solution method, So et al. [8] proved the existence of monotone
wavefronts φ(ξ) with φ′(ξ) > 0; see also [7].
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Lemma 2.1 (So–Wu–Zou [8]). If 1 <
εp
dm

≤ e, then there exists a critical number c∗ ≥ 0 such that for every c > c∗,
Eq. (2.1) has a traveling wavefront solution φ(ξ) connecting v±, with φ′(ξ) > 0 and v− < φ(ξ) < v+ for all
ξ ∈ (−∞, ∞). Here, the critical speed c∗ is the unique solution of

∆c∗
(λ∗) = 0,

∂

∂λ
∆c∗

(λ)

∣∣∣∣
λ=λ∗

= 0, (2.2)

where ∆c(λ) is defined as

∆c(λ) = εpeαλ2
−λcr

− [cλ + dm − Dmλ2
]. (2.3)

Now we are going to specify the critical speed c∗. Our main theorem is

Theorem 2.2. Let 1 <
εp
dm

≤ e. Then the critical wave speed c∗ satisfies:

1. Upper and lower bounds of c∗:
If α = r Dm , then

0 ≤ c∗ ≤ min

{
2
√

Dm(εp − dm), 2

√
Dm

r
ln

εp

dm

}
. (2.4)

If α < r Dm , then

0 ≤ c∗ ≤ min

2
√

Dm(εp − dm),

√
D2

m

r Dm − α
ln

εp

dm

 . (2.5)

2. Asymptotic behavior of c∗ with respect to the diffusion coefficient Dm:
Let Dm be free, and the other parameters ε, p, dm , α and r be fixed; then

c∗ → 0 as Dm → 0+, (2.6)

c∗ = O(
√

Dm) → +∞ as Dm → +∞. (2.7)

3. Asymptotic behavior of c∗ with respect to the mature age r:
Let r be free, and the other parameters ε, p, dm , Dm and α be fixed; then

c∗ → 2
√

Dm(εp − dm) as r → 0+, (2.8)

c∗ = O(r−
1
2 ) → 0 as r → +∞. (2.9)

To confirm our theoretical results on the asymptotic behavior of the critical speed c∗, we show two numerical
results in Fig. 2.1. In the first graph of Fig. 2.1, for fixed parameters dm , ε, p, α and r , we show a curve of c∗ with
respect to Dm , which indicates the asymptotic behaviors c∗ in (2.6) and (2.7). In the second graph of Fig. 2.1, for fixed
parameters dm , ε, p, α and Dm , we show a curve of c∗ with respect to r , which indicates the asymptotic behaviors c∗

in (2.8) and (2.9).

3. Proof of the main theorem

As we mentioned before, the diffusion rate of the immature species is always less than that of the adult species,
i.e., α ≤ r Dm ; now we are going to prove Theorem 2.2 for the following two cases: α = r Dm and α < r Dm ,
respectively.
Case 1: α = r Dm .

Let

Fc(λ) := εpeαλ2
−crλ, Gc(λ) := cλ + dm − Dmλ2.

So, 1c(λ) = Fc(λ) − Gc(λ). For given c, the corresponding critical points of Fc(λ) and Gc(λ) are λ1 =
cr
2α

and

λ2 =
c

2Dm
, respectively, i.e., F ′

c(λ1) = 0 and G ′
c(λ2) = 0, so then Fc(λ) reaches the minimum Fc := εpe−

c2r2
4α , and
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Fig. 2.1. Asymptotic behavior of the critical speed c∗ with respect to Dm and r , respectively.

Gc(λ) arrives at the maximum Gc :=
c2

4Dm
+ dm . Since α = Dmr , it can be verified that λ1 = λ2; namely, at the same

point both Fc(λ) and Gc(λ) have extreme values. Now we denote this critical point as

λ∗ :=
cr

2α
=

c

2Dm
. (3.1)

Note that F ′
c(λ∗) = G ′

c(λ∗) = 0; it automatically holds that

∂

∂λ
1c(λ)

∣∣∣∣
λ=λ∗

= F ′
c(λ∗) − G ′

c(λ∗) = 0. (3.2)

Therefore, once for some c it is satisfied that the minimum of Fc(λ) is exactly the same as the maximum of Gc(λ),
i.e., Fc(λ∗) = Gc(λ∗), then such a speed c is just the critical speed c∗ satisfying (2.2). Therefore, from Fc = Gc we
get

εpe−
c2r2
4α =

c2

4Dm
+ dm . (3.3)

Again, by use of α = Dmr , the above equation is reduced to

c2
∗ = 4Dm

(
εpe−

c2
∗r

4Dm − dm

)
. (3.4)

From (3.4), we immediately have the upper bound for c∗

c2
∗ ≤ 4Dm(εp − dm), i.e., c∗ ≤ 2

√
Dm(εp − dm). (3.5)

Furthermore, (3.4) and c2
∗ ≥ 0 give also

εpe−
c2
∗r

4Dm − dm ≥ 0,

which implies

c∗ ≤ 2

√
Dm

r
ln

εp

dm
. (3.6)
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Thus, (3.5) and (3.6) leads to (2.4), i.e.,

0 ≤ c∗ ≤ min

{√
Dm(εp − dm), 2

√
Dm

r
ln

εp

dm

}
.

Obviously,

c2
∗ = 4Dm

(
εpe−

c2
∗r

4Dm − dm

)
≤ 4Dm (εp − dm) → 0, as Dm → 0+,

which implies (2.6): c∗ → 0, as Dm → 0+.
For the proof of (2.7), we set

z =
c2
∗r

4Dm
, (3.7)

and Eq. (3.4) is equivalent to

z = rεpe−z
− rdm . (3.8)

It is easily seen that Eq. (3.8) has a unique solution z∗ > 0, where z∗, satisfying 0 < z∗ < ln εp
dm

, is an absolute
constant and is independent of Dm . In fact, the decreasing curve w1(z) := rεpe−z

− rdm intersects the straight line

w2(z) := z at a unique point z∗ between 0 and ln εp
dm

. Thus, from (3.7), we have c2
∗r

4Dm
= z∗, which implies

c∗ =

√
4Dm z∗

r
→ +∞, as Dm → +∞. (3.9)

This proves (2.7).
When r → 0+, since c∗ is bounded (see (3.4))

0 < c∗ ≤ 2
√

Dm(εp − dm),

and then limr→0+ c∗ is also bounded, which implies that limr→0+ e−
c2
∗r

4Dm = e0
= 1. Now, letting r → 0+, from

Eq. (3.4), we have

lim
r→0+

c2
∗ = 4Dm

(
εp lim

r→0+
e−

c2
∗r

4Dm − dm

)
= 4Dm(εp − dm),

namely,

lim
r→0+

c∗ = 2
√

Dm(εp − dm).

This proves (2.8).
When r → +∞, from (3.4), i.e.,

e
c2
∗r

4Dm =
4Dmεp

c2
∗ + 4Dmdm

, (3.10)

we must have

lim
r→+∞

c∗ = 0. (3.11)

In fact, if limr→+∞ c∗ > 0, then

lim
r→∞

e
c2
∗r

4Dm = ∞, and lim
r→∞

4Dmεp

c2
∗ + 4Dmdm

< ∞,

which leads to a contradiction when we take the limits in (3.10). Therefore, limr→+∞ c∗ = 0.
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Now we are going to estimate its decay rate. Since (3.10) can be reduced to

c∗ = 2

√
Dm

r
ln

4Dmεp

c2
∗ + 4Dmdm

,

we obtain

c∗ ∼ 2

√
Dm

r
ln

εp

dm
→ 0, as r → ∞.

This proves (2.9).
Case 2: α < r Dm .

Let (c
∗
, λ∗) and (c∗, λ∗) be the pairs of the critical speed and the critical λ for the cases α = r Dm and α < r Dm ,

respectively. For α < r Dm , it can be easily verified that λ1 =
c∗r
2α

> c∗

2Dm
= λ2, where λ1 and λ2 are the critical points

of Fc(λ) and Gc(λ), and that λ1 > λ∗ > λ2, as well as that Fc∗
(λ1) < Fc∗

(λ∗) = Gc∗
(λ∗) < Gc∗

(λ2) < εp, i.e.,

εpe−
c2
∗r2

4α < dm +
c2
∗

4Dm
< εp. (3.12)

From the second inequality of (3.12), we immediately prove the boundedness of c∗:

0 < c∗ < 2
√

Dm(εp − dm). (3.13)

On the other hand, for given λ, the graph of Fc(λ) is always above the graph of Gc(λ), except for the unique tangent

point at λ = λ∗. So when λ =
c∗

Dm
, we have Fc∗

( c∗

Dm
) > Gc∗

( c∗

Dm
). Notice that Fc∗

( c∗

Dm
) = εpe

c2
∗

D2
m

(α−Dmr)
and

Gc∗
( c∗

Dm
) = dm ; by a straightforward calculation, we then obtain

0 < c∗ <

√
D2

m

Dmr − α
ln

εp

dm
. (3.14)

Thus, (3.13) and (3.14) imply (2.5), i.e.,

0 ≤ c∗ ≤ min

2
√

Dm(εp − dm),

√
D2

m

r Dm − α
ln

εp

dm

 .

Comparing the first inequality of (3.12) for c∗ (i.e., e−
c2
∗r2

4α < dm +
c2
∗

4Dm
) with the equality for c

∗
(see (3.3),

i.e., e−
c2
∗r2

4α = dm +
c2
∗

4Dm
), it is verified that

0 < c
∗

< c∗ < 2
√

Dm(εp − dm). (3.15)

Letting Dm → 0+ in (3.13), we obtain c∗ → 0, which proves (2.6). On the other hand, letting Dm → ∞ in (3.15),
and noting c

∗
= O(

√
Dm) → ∞ (see (3.9)), we then have

c∗ = O(
√

Dm) → ∞, as Dm → +∞.

This proves (2.7).
Similarly, taking r → 0+ in (3.15) and noting limr→0+ c

∗
= 2

√
Dm(εp − dm), we obtain

lim
r→0+

c∗ = 2
√

Dm(εp − dm),

which proves (2.8).
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Finally, we are going to prove (2.9). Taking r → +∞ in (3.14), we then obtain

c∗ = O(r−
1
2 ) → 0, as r → +∞.

The proof is complete.
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