Exponentially many perfect matchings in cubic graphs

Louis Esperet G-SCOP, Grenoble Andrew King

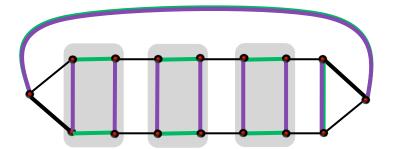
Columbia University

František Kardoš

P.J. Safarik University, Košice

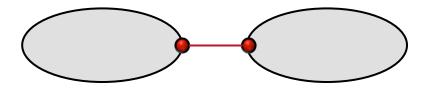
Daniel Kráľ Charles University, Prague

and Sergey Norin Princeton University



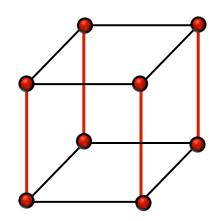
Perfect matchings in bridgeless cubic graphs

<u>A bridge</u> : an edge whose deletion disconnects the graph



Cubic graph: Every vertex is incident to exactly 3 edges

Perfect matching: A set of edges that covers all vertices exactly once.



Perfect matchings in bridgeless cubic graphs

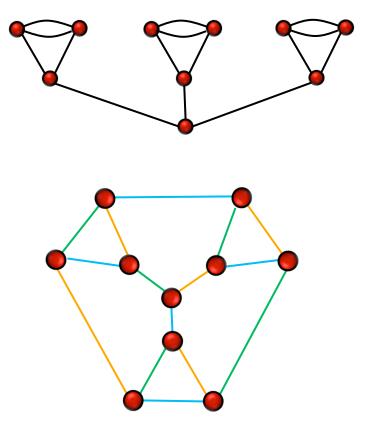
<u>Theorem(Petersen, 1891)</u>: Every bridgeless cubic graph has a perfect matching.

Observation(Tait, 1880): The Four Color Theorem is equivalent to the following:

The edge set of every planar cubic bridgeless graph is the union of three perfect matchings.

Conjecture(Berge, Fulkerson, 1971):

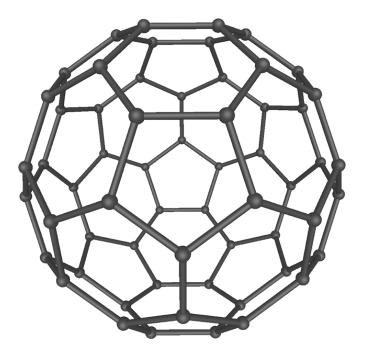
In every bridgeless cubic graph there exists a collection of perfect matchings covering every edge exactly twice.



The number of perfect matchings

m(G): The number of perfect matchings in a graph G

- m(G) is hard to compute (Valiant, 1979)
- m(G) is equal to the permanent of the graph biadjacency matrix when G is bipartite
- *m*(*G*) is related to meaningful chemical and physical properties of molecules represented by *G*



Perfect matchings in bridgeless cubic graphs

m(G): The number of perfect matchings in a graph G

<u>Theorem</u>: There exists a constant $\varepsilon > 0$ such that $m(G) \ge 2^{\varepsilon |V(G)|}$ in every cubic bridgeless graph *G*. ($\varepsilon = 1/3656$.)

Conjectured by Lovász and Plummer (1970's).

Perfect matchings in bridgeless cubic graphs

m(G): The number of perfect matchings in a graph G

<u>Theorem</u>: There exists a constant $\varepsilon > 0$ such that $m(G) \ge 2^{\varepsilon |V(G)|}$ in every cubic bridgeless graph *G*. ($\varepsilon = 1/3656$.)

Conjectured by Lovász and Plummer (1970's).

Previous results:

- Voorhoeve (1979) :
- Chudnovsky, Seymour (2008):
- Edmonds, Lovász, Pulleyblank(1982):
- Král', Sereni, Stiebitz (2008):

Esperet, Kráľ, Škoda, Škrekovski (2009): $m(G) \ge 3n/4 - 10$

Esperet, Kardoš, Kráľ (2010):

m(G) is superlinear.

$$m(G) \ge \left(\frac{4}{3}\right)^{|V(G)|/2} \text{ for bipartite } G.$$

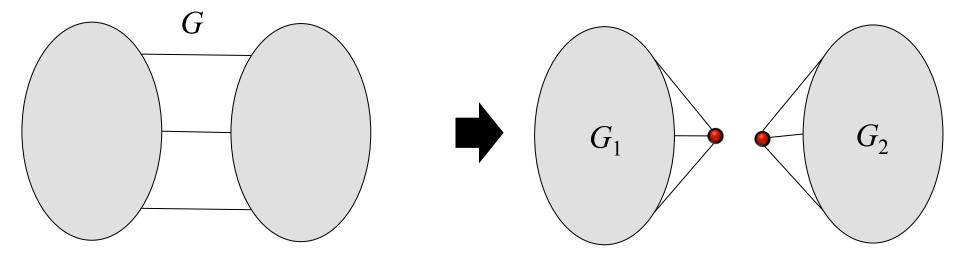
$$m(G) \ge 2^{\varepsilon |V(G)|} \text{ for planar } G. \ (\varepsilon = 1/655978752.)$$

$$m(G) \ge n/4 + 2(|V(G)| = n)$$
$$m(G) \ge n/2$$

$$m^*(G)$$

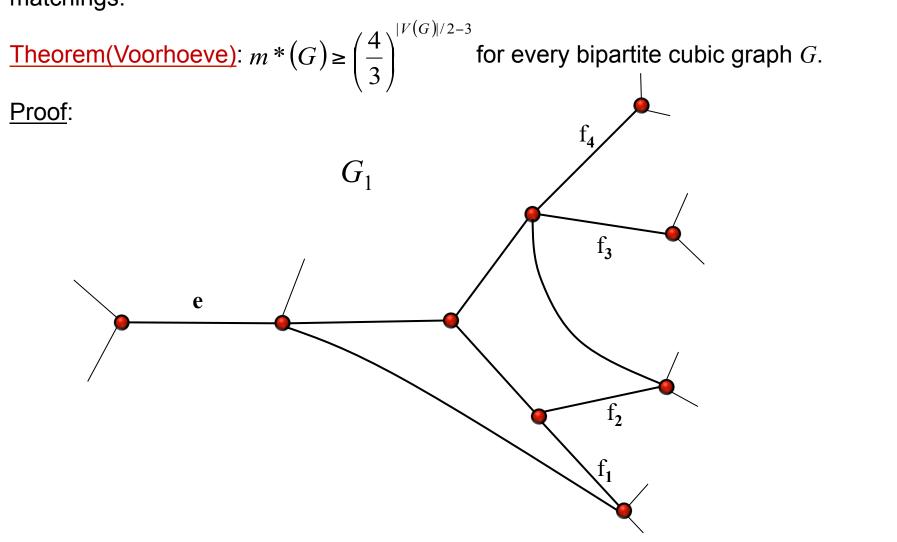
 $m^*(G)$

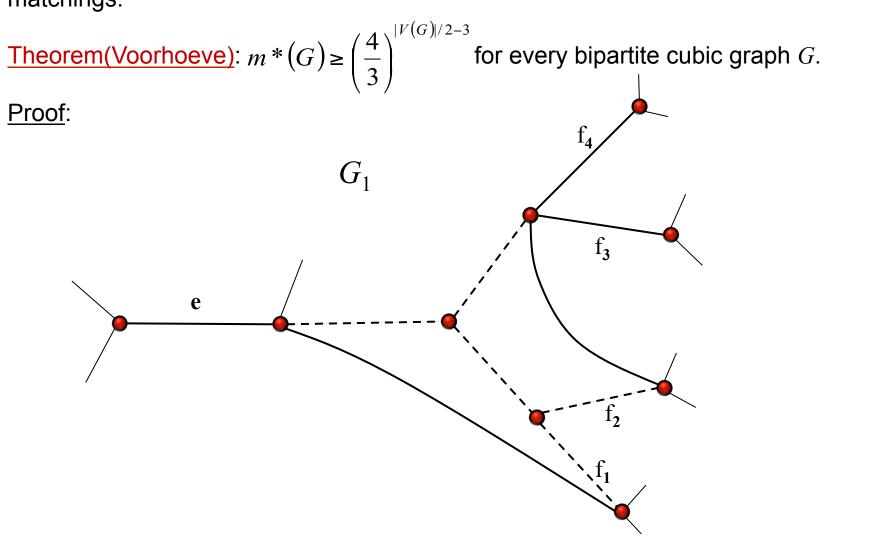
 $m^*(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.

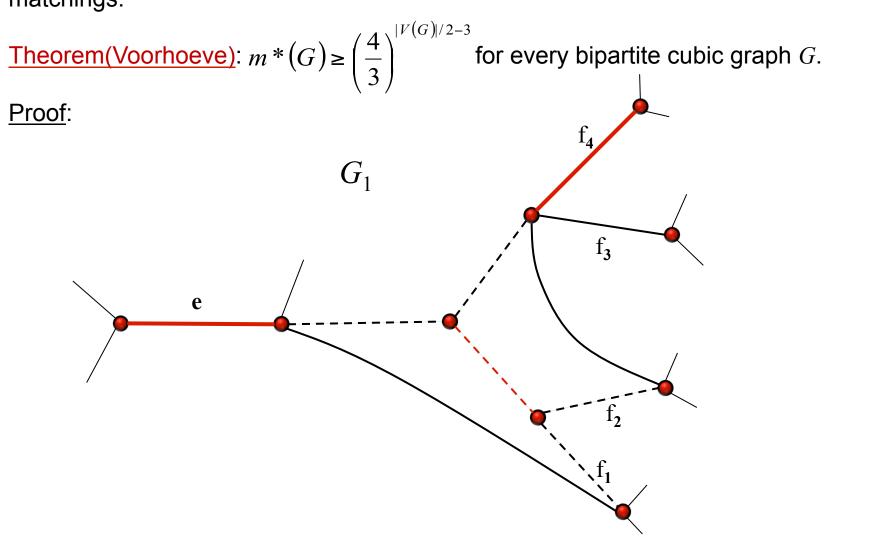


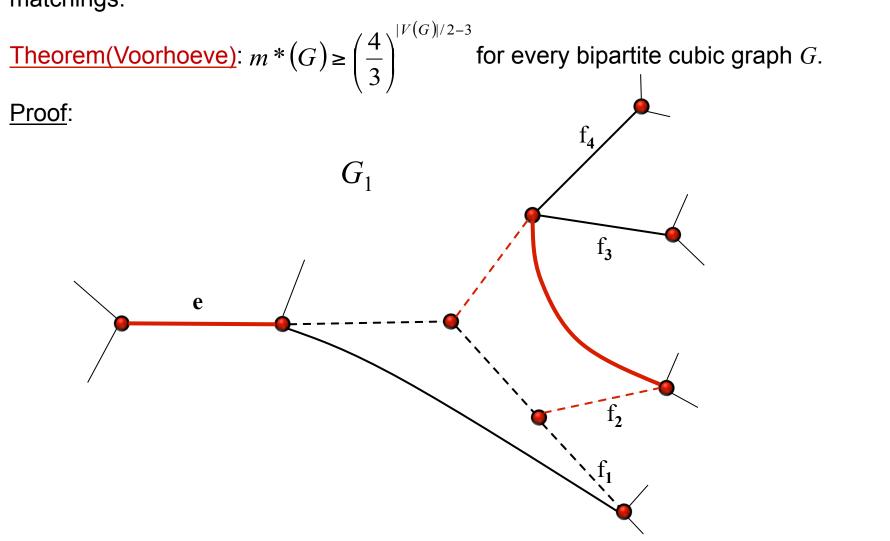
 $m^*(G) \ge m^*(G_1)m^*(G_2),$

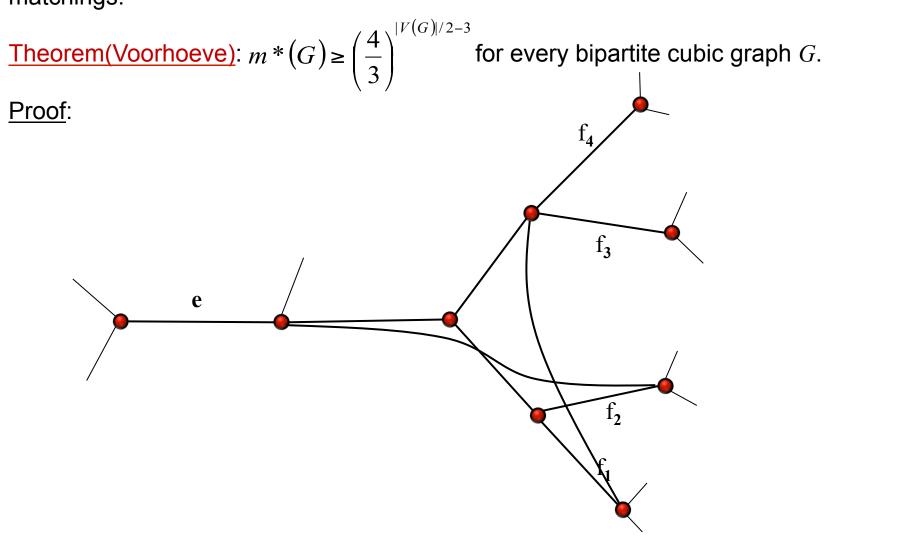
We can not say the same for m(G).

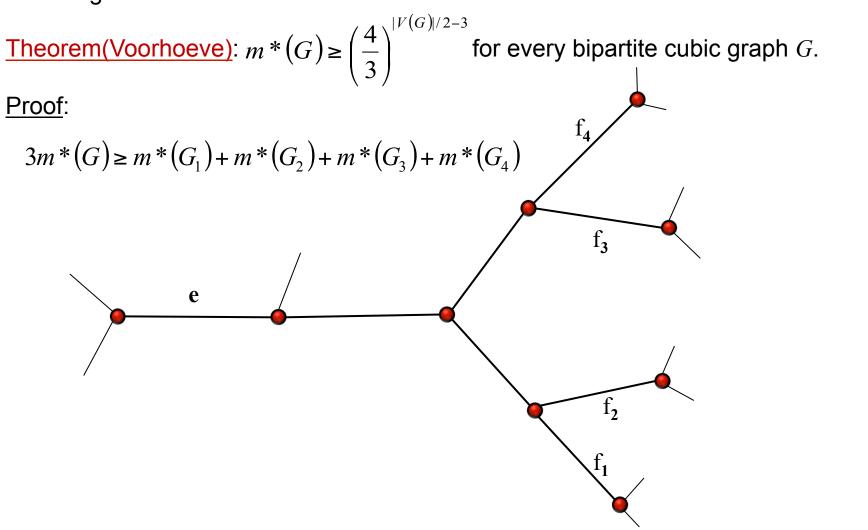


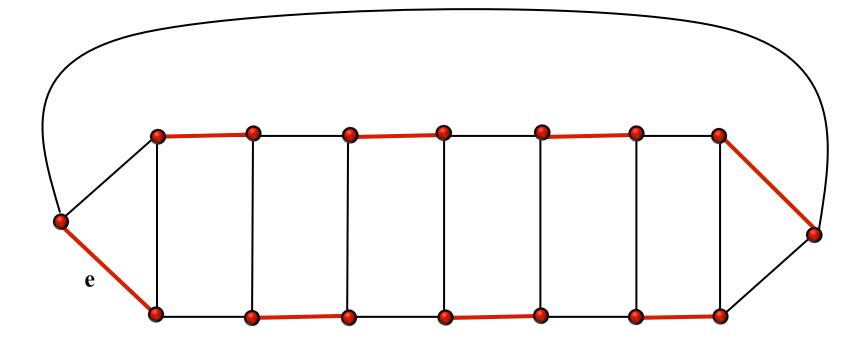


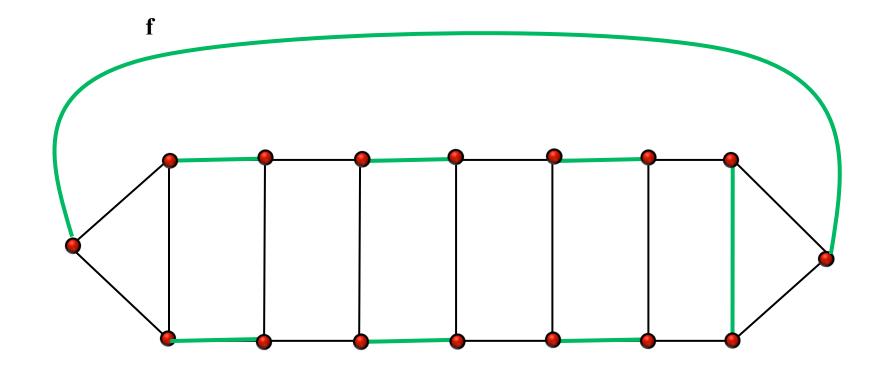


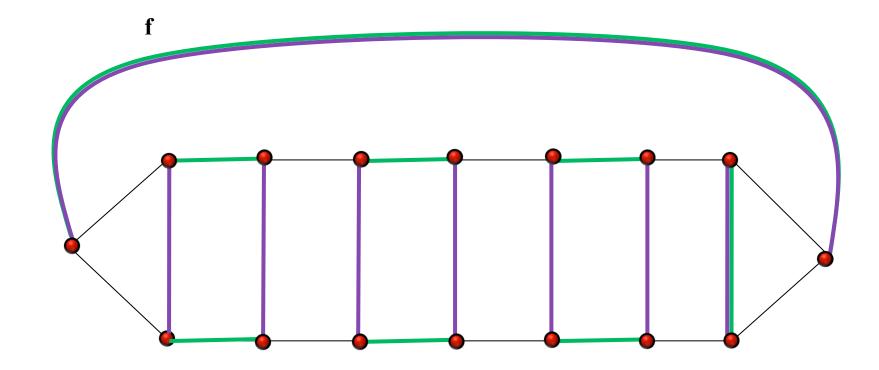


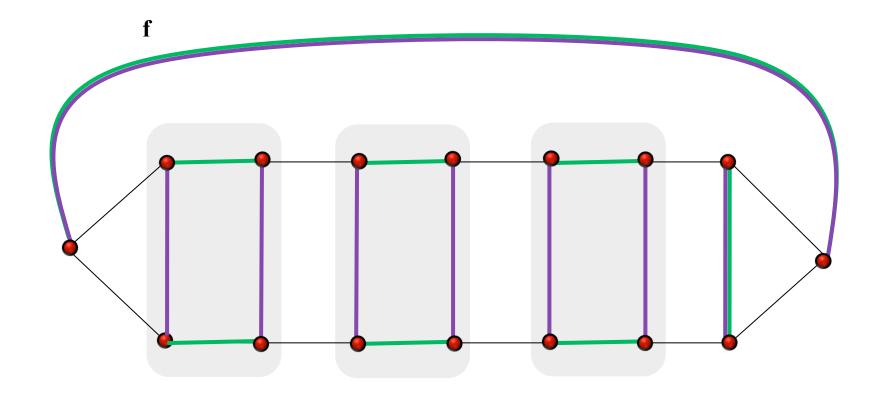




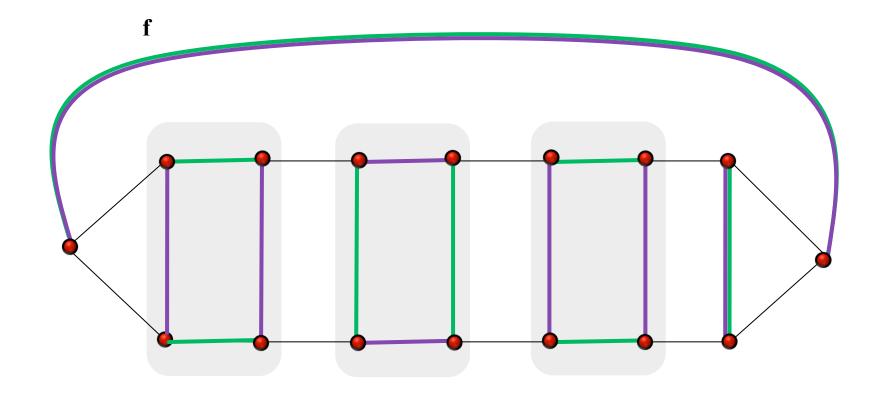








Two perfect matchings M_1 and M_2 such that $M_1 [M_2$ contains at least $\varepsilon |V(G)|$ disjoint cycles.



Two perfect matchings M_1 and M_2 such that $M_1 [M_2$ contains at least $\varepsilon |V(G)|$ disjoint cycles.

A strengthening

<u>Theorem</u>: There exists a constant $\varepsilon > 0$ such that for every cubic bridgeless graph *G* either

$$\circ m^*(G) \ge 2^{\varepsilon |V(G)|}$$
 or

◦ for some two perfect matchings M_1 and M_2 in *G* the edge set M_1 [M_2 contains at least $\varepsilon |V(G)|$ disjoint cycles.

With a perfect matching *M* we associate a vector $\chi_M \in R^{E(G)} : \chi_M(e) = \begin{cases} 1, \ e \in M \\ 0, \ e \notin M \end{cases}$

The perfect matching polytope PMP(G) is the convex hull of characteristic vectors of perfect matchings of G.

Let $\delta(X)$ denote the set of edges in the cut separating *X* from *V*(*G*)-*X*.

```
Theorem(Edmonds): We have w \in PMP(G) if and only if

\circ 0 \le w(e) \le 1 for every e \in E(G),

\circ w(\delta(v)) = 1 for every v \in V(G),

\circ w(\delta(X)) \ge 1 for every odd X \subseteq V(G).
```

A vector $w \in PMP(G)$ corresponds to a probabilistic distribution on the set of perfect matchings of G such that

$$\Pr[e \in M_w] = w(e).$$

If G is cubic and bridgeless then $w \equiv 1/3 \in PMP(G)$.

A set $X \subseteq V(G)$ is *M*-alternating for a perfect matching *M* of *G* if there exists another perfect matching *M*' such that *M* only differs from *M*' on *X*.

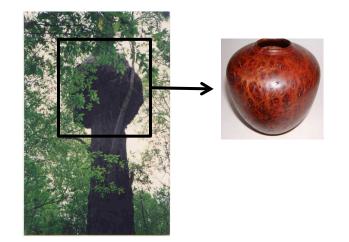
A set $X \subseteq V(G)$ is a burl if for every probabilistic distribution M_w such that

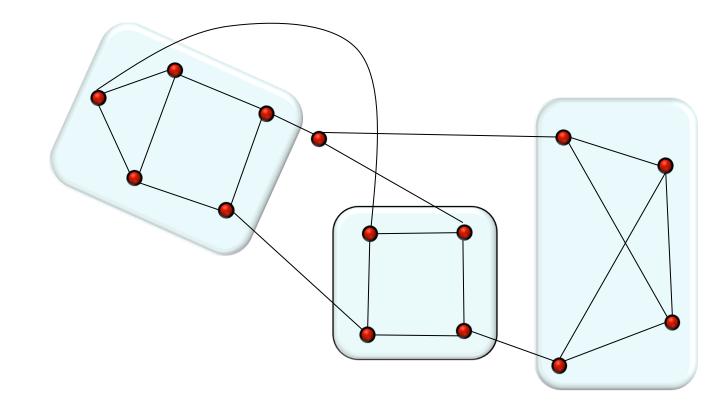
 $\Pr[e \in M_w] = 1/3,$

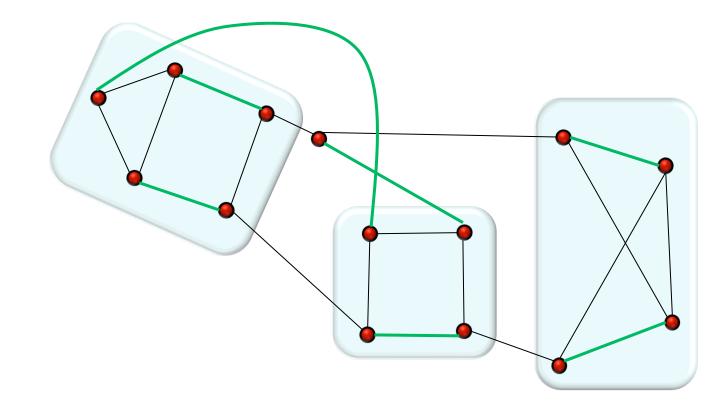
we have

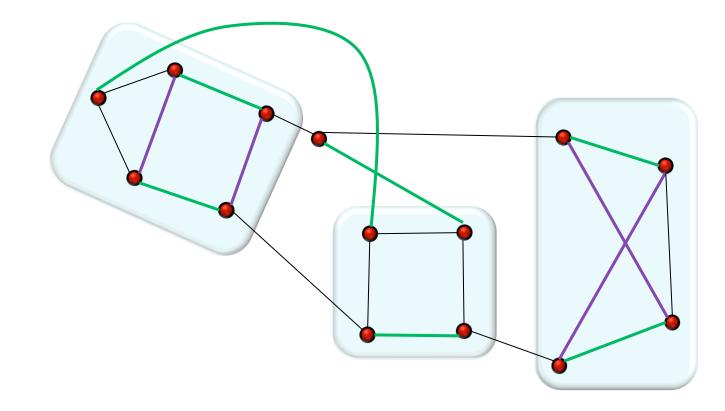
```
\Pr[X \text{ is } M_w \text{ - alternating}] \ge 1/3.
```

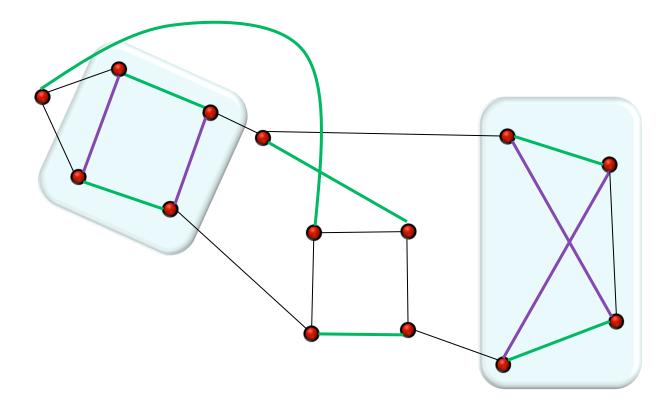
A foliage in *G* is a collection of pairwise disjoint burls.











A foliage in *G* is a collection of pairwise disjoint burls. Let f(G) denote the maximum size of a foliage in *G*.

Lemma: $m(G) \downarrow 2^{f(G)/3}$

<u>Proof</u>: Given a foliage { $X_1, X_2, ..., X_k$ } there exists $w \in PMP(G)$ such that each X_i is *w*-alternating. Then

$$\Pr[X_i \text{ is } M_w \text{ - alternating}] \ge 1/3.$$

 $E[|\{i: X_i \text{ is } M_w \text{ - alternating}\}|] \ge k/3.$

A perfect matching achieving the expected value can be independently changed to another perfect matching on each of the k/3 disjoint burls.

Examples of burls: Twigs

Lemma: For a cubic bridgeless graph G, $\circ m^*(G) \ge 1$, $\circ m^*(G) \ge 2$, if $|V(G)| \ge 6$ and G has no non-trivial cuts of size ≤ 3 , $\circ m(G) \ge 4$, if $|V(G)| \ge 6$.

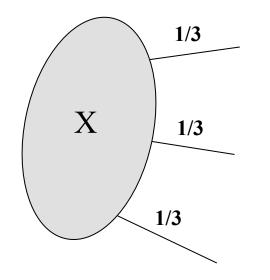
Examples of burls: Twigs

Lemma: For a cubic bridgeless graph G, $\circ m^*(G) \ge 1$, $\circ m^*(G) \ge 2$, if $|V(G)| \ge 6$ and G has no non-trivial cuts of size ≤ 3 , $\circ m(G) \ge 4$, if $|V(G)| \ge 6$.

A set $X \subseteq V(G)$ is a twig if either $|\delta(X)|=2$, or $|\delta(X)|=3$ and $|X|_{,5}$.

Lemma: Every twig is a burl.

<u>Proof</u>: $\Pr[|M_w \cap \delta(X)| = 1] = 1.$



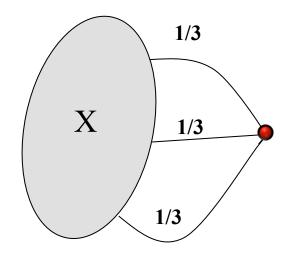
Examples of burls: Twigs

Lemma: For a cubic bridgeless graph G, $\circ m^*(G) \ge 1$, $\circ m^*(G) \ge 2$, if $|V(G)| \ge 6$ and G has no non-trivial cuts of size ≤ 3 , $\circ m(G) \ge 4$, if $|V(G)| \ge 6$.

A set $X \subseteq V(G)$ is a twig if either $|\delta(X)|=2$ or $|\delta(X)|=3$ and |X|, 5.

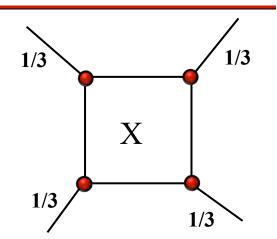
Lemma: Every twig is a burl.

<u>Proof</u>: $\Pr[|M_w \cap \delta(X)|=1]=1.$



One of the edges of $\delta(X)$ is in at least 2 perfect matchings of the new graph.

Examples of burls: 4-cycles

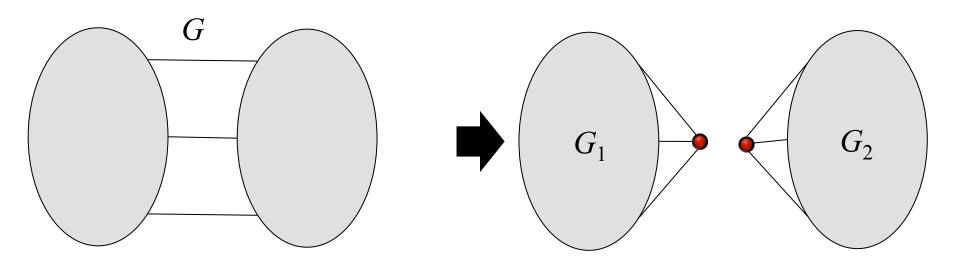


Lemma: Vertex set of any cycle of length 4 is a burl.

Proof:
$$E[|M_w \cap \delta(X)|] = 4/3,$$

 $|M_w \cap \delta(X)| \in \{0, 2, 4\},$
 $Pr[|M_w \cap \delta(X)| = 0] \ge 1/3.$

Decomposing along small cuts



We say that G_1 and G_2 are obtained from G by a cut contraction. (We can apply a similar procedure to cuts of size 2.)

Lemma:
$$m^*(G) \ge m^*(G_1)m^*(G_2), \qquad f(G) \ge f(G_1) + f(G_2) - 2.$$

We say that *G* has a core if a graph *G*' with |V(G')|, 6 and no non-trivial cuts of size at most 3 can be obtained from *G* by a (possibly empty) sequence of cut contractions.

<u>Theorem</u>: Let *G* be a cubic bridgeless graph then, if *G* has a core

$$m^*(G) \ge 2^{\alpha |V(G)| - \beta f(G) + \gamma},$$

where $\alpha << \beta << \gamma << 1$.

Main technical statement

<u>Theorem</u>: Let G be a cubic bridgeless graph then, if G has a core

$$m^*(G) \ge 2^{\alpha |V(G)| - \beta f(G) + \gamma}$$

Sketch of a proof: By induction.

1. If G has no non-trivial cuts of size at most 3 apply Voorhoeve's splitting trick.

$$3m^{*}(G) \ge m^{*}(G_{1}) + m^{*}(G_{2}) + m^{*}(G_{3}) + m^{*}(G_{4})$$
$$|V(G_{i})| = |V(G)| - 2$$
$$f(G_{i}) \le f(G) + 2$$

Main technical statement

<u>Theorem</u>: Let *G* be a cubic bridgeless graph then, if *G* has a core $m^*(G) \ge 2^{\alpha |V(G)| - \beta f(G) + \gamma}.$

Sketch of a proof: By induction.

- 1. If G has no non-trivial cuts of size at most 3 apply Voorhoeve's splitting trick.
- 2. Easy if for some small cut both contractions G_1 and G_2 have a core

$$m^{*}(G) \ge m^{*}(G_{1})m^{*}(G_{2}) \ge 2^{\alpha |V(G)| - \beta f(G) - 2\beta + 2\gamma}$$
$$f(G) \ge f(G_{1}) + f(G_{2}) - 2.$$

Main technical statement

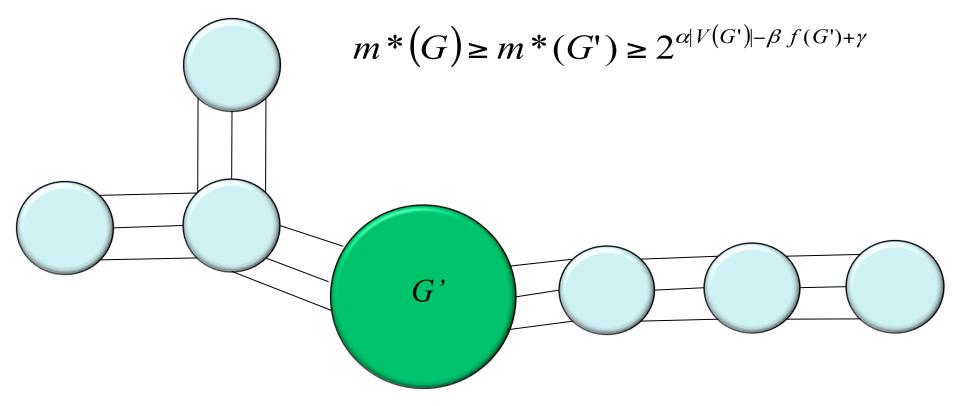
<u>Theorem</u>: Let *G* be a cubic bridgeless graph then, if *G* has a core

 $m^*(G) \ge 2^{\alpha |V(G)| - \beta f(G) + \gamma}.$

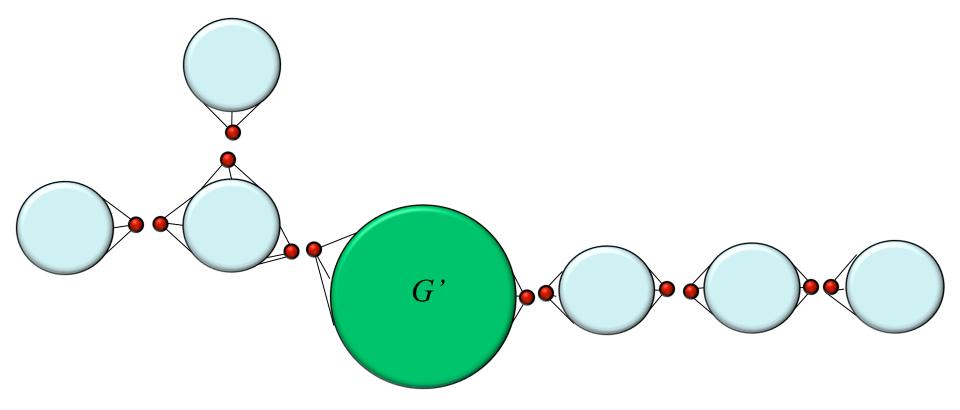
Sketch of a proof: By induction.

- 1. If *G* has no non-trivial cuts of size at most 3 apply Voorhoeve's splitting trick.
- 2. Easy if for some small cut both contractions G_1 and G_2 have a core.
- 3. Otherwise, *G* has a tree structure with respect to small cuts with exactly one "large" piece.

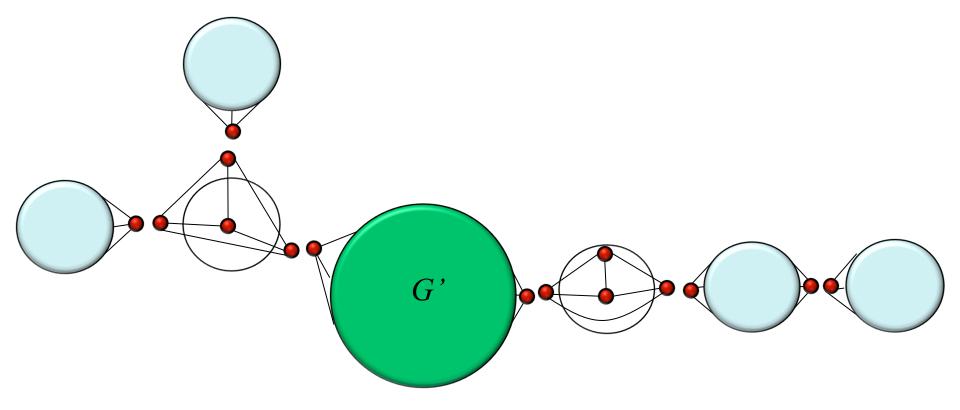
G has a tree structure with respect to small cuts with exactly one "large" piece.

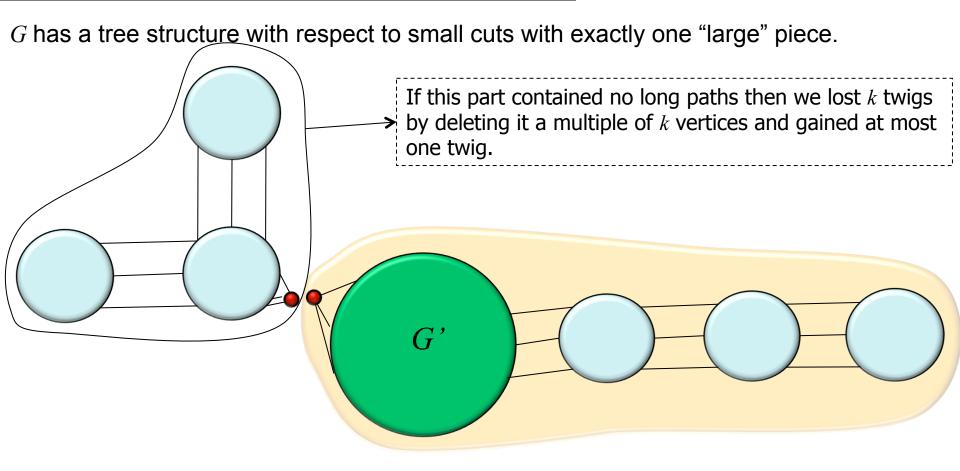


G has a tree structure with respect to small cuts with exactly one "large" piece.

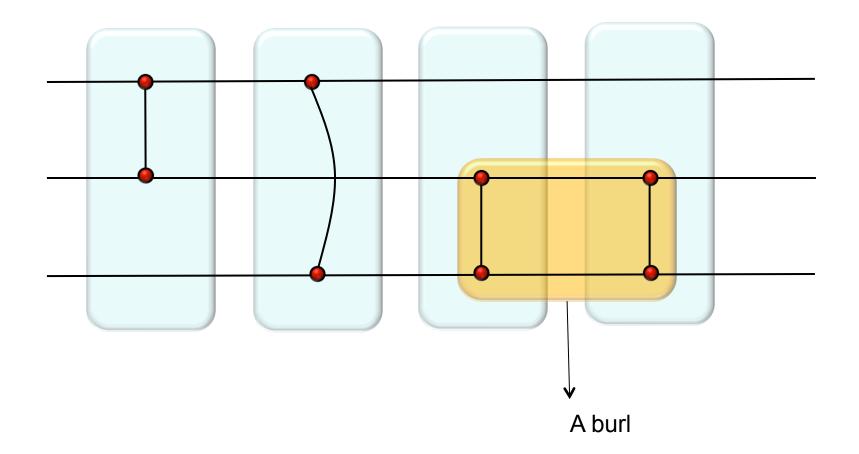


G has a tree structure with respect to small cuts with exactly one "large" piece.

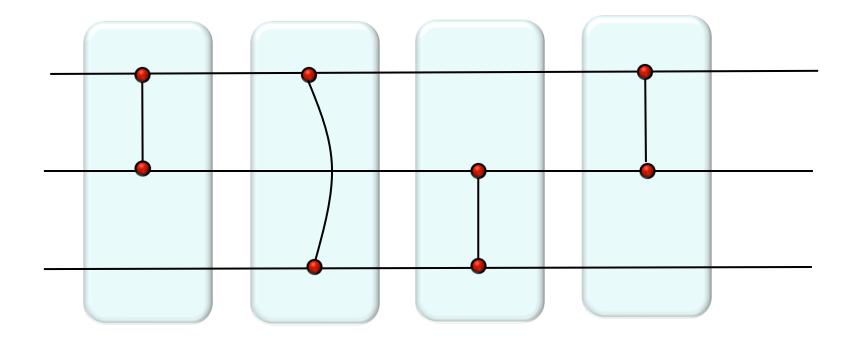




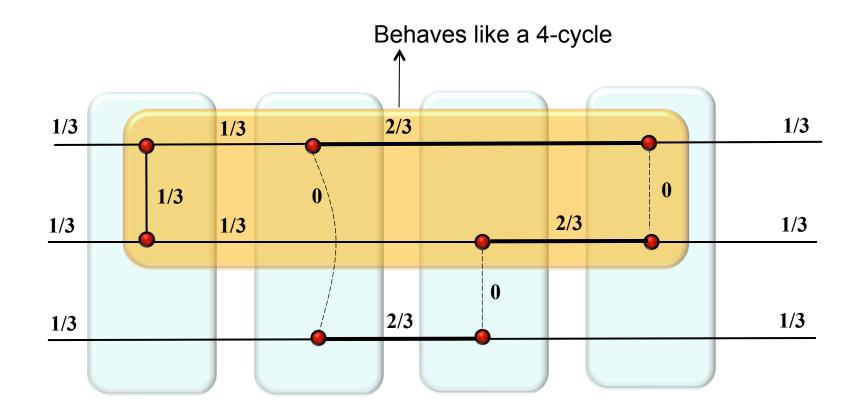
Burls in long paths of 3-cuts



Burls in long paths of 3-cuts



Burls in long paths of 3-cuts



<u>Conjecture(Lovász, Plummer, 1986)</u>: There exist constants $c_1(k)$, $c_2(k) > 0$ such that for every *k*-regular graph *G* with $m^*(G) \ge 1$, we have

$$m(G) \ge c_1(k) \left(c_2(k)\right)^{|V(G)|}$$

Moreover, $c_2(k) \rightarrow 1$ as $k \rightarrow 1$.

<u>Counterexample (Geelen, N.)</u>: For $k \downarrow 4$ there exist k-regular graphs G with $m^*(G) \ge 1$, and

 $m(G) \leq 2^{O(\sqrt{|V(G)|})}$

(Examples are not (*k*-1)-edge-connected.)

<u>Conjecture(Lovász, Plummer, 1986)</u>: There exist constants $c_1(k)$, $c_2(k)>0$ such that for every *k*-regular (*k*-1)-edge-connected graph *G* we have

$$m(G) \ge c_1(k) \left(c_2(k)\right)^{|V(G)|}$$

Moreover, $c_2(k) \rightarrow 1$ as $k \rightarrow 1$.

<u>Theorem(Seymour)</u>: There exist a constant $\varepsilon > 0$ such that $m(G) \ge 2^{\varepsilon | V(G) |}$ in every *k*-regular (*k*-1)-edge-connected graph *G*.

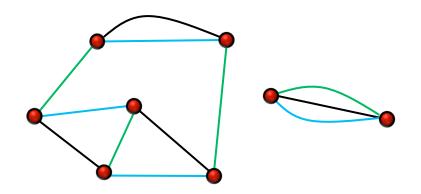
<u>Conjecture(Lovász, Plummer, 1986)</u>: There exist constants $c_1(k)$, $c_2(k)>0$ such that for every *k*-regular (*k*-1)-edge-connected graph *G* we have

$$m(G) \ge c_1(k) \left(c_2(k)\right)^{|V(G)|}$$

Moreover, $c_2(k) \rightarrow 1$ as $k \rightarrow 1$.

<u>Theorem(Seymour)</u>: There exist a constant $\varepsilon > 0$ such that $m(G) \ge 2^{\varepsilon | V(G) |}$ in every *k*-regular (*k*-1)-edge-connected graph *G*.

<u>Proof</u>: Consider $w \equiv 1/k \in PMP(G)$. Choose 3-perfect matchings independently from the corresponding distribution.



Thank you!