Exponentially meny perfect matching in cubic graphs

Louis Esperet

G-SCOP, Grenoble

František Kardoš

P.J. Safarik University, Košice

Andrew King
Columbia University

Charles University, Prague
and
Sergey Norin
Princeton University

Perfect matchings in bridgeless cubic graphs

A bridge: an edge whose deletion disconnects the graph

Cubic graph: Every vertex is incident to exactly 3 edges

Perfect matching: A set of edges that covers all vertices exactly once.

Perfect matchings in bridgeless cubic graphs

Theorem(Petersen, 1891): Every bridgeless cubic graph has a perfect matching.

Observation(Tait, 1880): The Four Color Theorem is equivalent to the following:

The edge set of every planar cubic bridgeless graph is the union of three perfect matchings.

Conjecture(Berge, Fulkerson, 1971):

In every bridgeless cubic graph there exists a collection of perfect matchings covering every edge exactly twice.

The number of perfect matchings

$m(G)$: The number of perfect matchings in a graph G

- $m(G)$ is hard to compute (Valiant, 1979)
- $m(G)$ is equal to the permanent of the graph biadjacency matrix when G is bipartite
- $m(G)$ is related to meaningful chemical and physical properties of molecules represented by G

Perfect matchings in bridgeless cubic graphs

$m(G)$: The number of perfect matchings in a graph G
Theorem: There exists a constant $\varepsilon>0$ such that $m(G) \geq 2^{\varepsilon| |(G) \mid}$ in every cubic bridgeless graph G. ($\varepsilon=1 / 3656$.)

Conjectured by Lovász and Plummer (1970's).

Perfect matchings in bridgeless cubic graphs

$m(G)$: The number of perfect matchings in a graph G
Theorem: There exists a constant $\varepsilon>0$ such that $m(G) \geq 2^{\varepsilon|V(G)|}$ in every cubic bridgeless graph G. ($\varepsilon=1 / 3656$.)

Conjectured by Lovász and Plummer (1970's).

Previous results:

Voorhoeve (1979) :
Chudnovsky, Seymour (2008):
$m(G) \geq\left(\frac{4}{3}\right)^{\mid V(G) / 2}$ for bipartite G.
$m(G) \geq 2^{\varepsilon|V(G)|} \quad$ for planar $G .(\varepsilon=1 / 655978752$.
$m(G) \geq n / 4+2(|V(G)|=n)$
Král', Sereni, Stiebitz (2008):
$m(G) \geq n / 2$
Esperet, Král', Škoda, Škrekovski (2009): $m(G) \geq 3 n / 4-10$
Esperet, Kardoš, Král' (2010):
$m(G)$ is superlinear.

$m^{*}(G)$

$m^{*}(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.

$m^{*}(G)$

$m^{*}(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.

$$
m *(G) \geq m *\left(G_{1}\right) m *\left(G_{2}\right)
$$

We can not say the same for $m(G)$.

Voorhoeve's splitting trick

$m^{*}(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.
Theorem(Voorhoeve): $m^{*}(G) \geq\left(\frac{4}{3}\right)^{\mid V(G) / 2-3}$ for every bipartite cubic graph G.
Proof:

Voorhoeve's splitting trick

$m^{*}(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.
Theorem(Voorhoeve): $m^{*}(G) \geq\left(\frac{4}{3}\right)^{\mid V(G) / 2-3}$ for every bipartite cubic graph G.
Proof:

Voorhoeve's splitting trick

$m^{*}(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.
Theorem(Voorhoeve): $m^{*}(G) \geq\left(\frac{4}{3}\right)^{\mid V(G) / 2-3}$ for every bipartite cubic graph G.
Proof:

Voorhoeve's splitting trick

$m^{*}(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.
Theorem(Voorhoeve): $m^{*}(G) \geq\left(\frac{4}{3}\right)^{\mid V(G) / 2-3}$ for every bipartite cubic graph G.
Proof:

Voorhoeve's splitting trick

$m^{*}(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.
Theorem(Voorhoeve): $m^{*}(G) \geq\left(\frac{4}{3}\right)^{\mid V(G) / 2-3}$ for every bipartite cubic graph G.
Proof:

Voorhoeve's splitting trick

$m^{*}(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.
Theorem(Voorhoeve): $m^{*}(G) \geq\left(\frac{4}{3}\right)^{\mid V(G) / 2-3}$ for every bipartite cubic graph G.
Proof:

$$
3 m *(G) \geq m *\left(G_{1}\right)+m *\left(G_{2}\right)+m *\left(G_{3}\right)+m *\left(G_{4}\right)
$$

Cubic bridgeless graph with $m^{*}(G)=1$

Cubic bridgeless graph with $m^{*}(G)=1$

Cubic bridgeless graph with $m^{*}(G)=1$

Cubic bridgeless graph with $m^{*}(G)=1$

Two perfect matchings M_{1} and M_{2} such that M_{1} [M_{2} contains at least $\varepsilon|V(G)|$ disjoint cycles.

Cubic bridgeless graph with $m^{*}(G)=1$

Two perfect matchings M_{1} and M_{2} such that M_{1} [M_{2} contains at least $\varepsilon|V(G)|$ disjoint cycles.

A strengthening

Theorem: There exists a constant $\varepsilon>0$ such that for every cubic bridgeless graph G either

- $m^{*}(G) \geq 2^{\varepsilon|V(G)|}$ or
- for some two perfect matchings M_{1} and M_{2} in G the edge set $M_{1}\left[M_{2}\right.$ contains at least $\varepsilon|V(G)|$ disjoint cycles.

The perfect matching polytope

With a perfect matching M we associate a vector $\chi_{M} \in R^{E(G)}: \chi_{M}(e)= \begin{cases}1, & e \in M \\ 0, & e \notin M\end{cases}$

The perfect matching polytope $\operatorname{PMP}(G)$ is the convex hull of characteristic vectors of perfect matchings of G.

Let $\delta(X)$ denote the set of edges in the cut separating X from $V(G)-X$.
Theorem(Edmonds): We have $w \in P M P(G)$ if and only if
$\circ 0 \leq w(e) \leq 1$ for every $e \in E(G)$,
○ $w(\delta(v))=1$ for every $v \in V(G)$,
○ $w(\delta(X)) \geq 1$ for every odd $X \subseteq V(G)$.
A vector $w \in P M P(G)$ corresponds to a probabilistic distribution on the set of perfect matchings of G such that

$$
\operatorname{Pr}\left[e \in M_{w}\right]=w(e)
$$

If G is cubic and bridgeless then $w \equiv 1 / 3 \in P M P(G)$.

Burls

A set $X \subseteq V(G)$ is M-alternating for a perfect matching M of G if there exists another perfect matching M^{\prime} such that M only differs from M^{\prime} on X.

A set $X \subseteq V(G)$ is a burl if for every probabilistic distribution M_{w} such that
$\operatorname{Pr}\left[e \in M_{w}\right]=1 / 3$,
we have
$\operatorname{Pr}\left[X\right.$ is M_{w} - alternating $] \geq 1 / 3$.

A foliage in G is a collection of pairwise disjoint burls.

A foliage

A foliage

A foliage

A foliage

Using a foliage

A foliage in G is a collection of pairwise disjoint burls.
Let $f(G)$ denote the maximum size of a foliage in G.
Lemma: $m(G), 2^{f(G) / 3}$
Proof: Given a foliage $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ there exists $w \in P M P(G)$ such that each X_{i} is w-alternating. Then

$$
\begin{gathered}
\operatorname{Pr}\left[X_{i} \text { is } M_{w} \text { - alternating }\right] \geq 1 / 3 . \\
\mathrm{E}\left[\mid\left\{i: X_{i} \text { is } M_{w} \text { - alternating }\right\} \mid\right] \geq k / 3 .
\end{gathered}
$$

A perfect matching achieving the expected value can be independently changed to another perfect matching on each of the $k / 3$ disjoint burls.

Examples of burls: Twigs

Lemma: For a cubic bridgeless graph G,

- $m^{*}(G) \geq 1$,
$\circ m^{*}(G) \geq 2$, if $|V(G)| \geq 6$ and G has no non- trivial cuts of size ≤ 3,
- $m(G) \geq 4$, if $|V(G)| \geq 6$.

Examples of burls: Twigs

Lemma: For a cubic bridgeless graph G,

- $m^{*}(G) \geq 1$,
- $m^{*}(G) \geq 2$, if $|V(G)| \geq 6$ and G has no non- trivial cuts of size ≤ 3,
- $m(G) \geq 4$, if $|V(G)| \geq 6$.

A set $X \subseteq V(G)$ is a twig if either $|\delta(X)|=2$, or $|\delta(X)|=3$ and $|X|, 5$.
Lemma: Every twig is a burl.
Proof: $\quad \operatorname{Pr}\left[\left|M_{w} \cap \delta(X)\right|=1\right]=1$.

Examples of burls: Twigs

Lemma: For a cubic bridgeless graph G,

- $m^{*}(G) \geq 1$,
$\circ m^{*}(G) \geq 2$, if $|V(G)| \geq 6$ and G has no non- trivial cuts of size ≤ 3,
- $m(G) \geq 4$, if $|V(G)| \geq 6$.

A set $X \subseteq V(G)$ is a twig if either $|\delta(X)|=2$ or $|\delta(X)|=3$ and $|X|, 5$.
Lemma: Every twig is a burl.
Proof: $\quad \operatorname{Pr}\left[\left|M_{w} \cap \delta(X)\right|=1\right]=1$.

One of the edges of $\delta(X)$ is in at least 2 perfect matchings of the new graph.

Examples of burls: 4-cycles

Lemma: Vertex set of any cycle of length 4 is a burl.
Proof: $\mathrm{E}\left[\left|M_{w} \cap \delta(X)\right|\right]=4 / 3$,

$$
\begin{gathered}
\left|M_{w} \cap \delta(X)\right| \in\{0,2,4\}, \\
\operatorname{Pr}\left[\left|M_{w} \cap \delta(X)\right|=0\right] \geq 1 / 3 .
\end{gathered}
$$

Decomposing along small cuts

We say that G_{1} and G_{2} are obtained from G by a cut contraction. (We can apply a similar procedure to cuts of size 2.)

Lemma: $\quad m^{*}(G) \geq m^{*}\left(G_{1}\right) m^{*}\left(G_{2}\right), \quad f(G) \geq f\left(G_{1}\right)+f\left(G_{2}\right)-2$.

We say that G has a core if a graph G^{\prime} with $\left|V\left(G^{\prime}\right)\right|, 6$ and no non-trivial cuts of size at most 3 can be obtained from G by a (possibly empty) sequence of cut contractions.

Main technical statement

Theorem: Let G be a cubic bridgeless graph then, if G has a core

$$
m^{*}(G) \geq 2^{\alpha|V(G)|-\beta f(G)+\gamma}
$$

where $\alpha \ll \beta \ll \gamma \ll 1$.

Main technical statement

Theorem: Let G be a cubic bridgeless graph then, if G has a core

$$
m^{*}(G) \geq 2^{\alpha|V(G)|-\beta f(G)+\gamma}
$$

Sketch of a proof: By induction.

1. If G has no non-trivial cuts of size at most 3 apply Voorhoeve's splitting trick.

$$
\begin{aligned}
& 3 m *(G) \geq m *\left(G_{1}\right)+m *\left(G_{2}\right)+m *\left(G_{3}\right)+m *\left(G_{4}\right) \\
& \left|V\left(G_{i}\right)\right|=|V(G)|-2 \\
& f\left(G_{i}\right) \leq f(G)+2
\end{aligned}
$$

Main technical statement

Theorem: Let G be a cubic bridgeless graph then, if G has a core

$$
m^{*}(G) \geq 2^{\alpha|V(G)|-\beta f(G)+\gamma}
$$

Sketch of a proof: By induction.

1. If G has no non-trivial cuts of size at most 3 apply Voorhoeve's splitting trick.
2. Easy if for some small cut both contractions G_{1} and G_{2} have a core

$$
\begin{aligned}
& m *(G) \geq m^{*}\left(G_{1}\right) m *\left(G_{2}\right) \geq 2^{\alpha|V(G)|-\beta f(G)-2 \beta+2 \gamma} \\
& f(G) \geq f\left(G_{1}\right)+f\left(G_{2}\right)-2
\end{aligned}
$$

Main technical statement

Theorem: Let G be a cubic bridgeless graph then, if G has a core

$$
m^{*}(G) \geq 2^{\alpha|V(G)|-\beta f(G)+\gamma}
$$

Sketch of a proof: By induction.

1. If G has no non-trivial cuts of size at most 3 apply Voorhoeve's splitting trick.
2. Easy if for some small cut both contractions G_{1} and G_{2} have a core.
3. Otherwise, G has a tree structure with respect to small cuts with exactly one "large" piece.

Cut decomposition

G has a tree structure with respect to small cuts with exactly one "large" piece.

Cut decomposition

G has a tree structure with respect to small cuts with exactly one "large" piece.

Cut decomposition

G has a tree structure with respect to small cuts with exactly one "large" piece.

Cut decomposition

G has a tree structure with respect to small cuts with exactly one "large" piece.

Burls in long paths of 3-cuts

Burls in long paths of 3-cuts

Burls in long paths of 3-cuts

k-regular graphs

Conjecture(Lovász,Plummer,1986): There exist constants $c_{1}(k), c_{2}(k)>0$ such that for every k-regular graph G with $m^{*}(G) \geq 1$, we have

$$
m(G) \geq c_{1}(k)\left(c_{2}(k)\right)^{|V(G)|}
$$

Moreover, $c_{2}(k) \rightarrow 1$ as $k \rightarrow 1$.
Counterexample (Geelen, N.): For $k, 4$ there exist k-regular graphs G with $m^{*}(G) \geq 1$, and

$$
m(G) \leq 2^{O(\sqrt{|V(G)|})}
$$

(Examples are not (k-1)-edge-connected.)

k-regular graphs

Conjecture(Lovász,Plummer,1986): There exist constants $c_{1}(k), c_{2}(k)>0$ such that for every k-regular (k-1)-edge-connected graph G we have

$$
m(G) \geq c_{1}(k)\left(c_{2}(k)\right)^{|V(G)|}
$$

Moreover, $c_{2}(k) \rightarrow 1$ as $k \rightarrow 1$.
Theorem(Seymour): There exist a constant $\varepsilon>0$ such that $m(G) \geq 2^{\varepsilon|V(G)|}$ in every k regular ($k-1$)-edge-connected graph G.

k-regular graphs

Conjecture(Lovász,Plummer,1986): There exist constants $c_{1}(k), c_{2}(k)>0$ such that for every k-regular (k-1)-edge-connected graph G we have

$$
m(G) \geq c_{1}(k)\left(c_{2}(k)\right)^{|V(G)|}
$$

Moreover, $c_{2}(k) \rightarrow 1$ as $k \rightarrow 1$.
Theorem(Seymour): There exist a constant $\varepsilon>0$ such that $m(G) \geq 2^{\varepsilon \mid V(G)}$ in every k regular ($k-1$)-edge-connected graph G.

Proof: Consider $w \equiv 1 / k \in P M P(G)$. Choose 3-perfect matchings independently from the corresponding distribution.

Thank you!

