
MATH 340: Discrete Structures II. Winter 2017.

Assignment #4: Discrete Probability II.

1. The Birthday problem. Suppose that the birthdays of n people in the
room are uniformly distributed among the 365 days of the year. Estimate
how large should n be to guarantee that the probability of some two people
sharing a birthday is at least 999/1000.

Solution: We estimate the probability of the event that all n people have
different birthday:

p(B) =
n−1∏
k=1

(
1− k

365

)
≤

n−1∏
k=1

e−k/365

= e−
∑n−1

k=1 k/365 = e−n(n−1)/730 ≤ 1/1000.

Thus we need n such that n(n− 1) ≥ 730 ln 1000. n = 72 suffices.

2. Quicksort. Let x1, x2, . . . , xn be a permutation of numbers 1, . . . , n
chosen uniformly at random.

a) Show that the probability that the numbers i and j, such that
1 ≤ i ≤ j ≤ n, are compared to each other by the Quicksort algorithm
is equal to

2

j − i+ 1
.

b) Deduce that the expected number of comparisons made by the Quick-
sort algorithm is equal to

2
n−1∑
k=1

n− k
k + 1

.

Solution:
a): The numbers i and j, such that
1 ≤ i ≤ j ≤ n, are compared to each other by the Quicksort algorithm if
and only if either i or j is the first number among the numbers i, i+ 1, i+



2, . . . , j that appears in the sequence x1, x2, . . . , xn. (Otherwise, one of the
numbers strictly between i and j will be processed first, and they will not
be compared.) Clearly the probability of this event is 2

j−i+1 .
b): By linearity of expectation the total number of comparisons will be

∑
1≤i<j≤n

2

j − i+ 1
=

n−1∑
k=1

∑
1≤i<j≤n
j=i+k

2

j − i+ 1

=
n−1∑
k=1

(
(n− k)

2

k + 1

)
= 2

n−1∑
k=1

n− k
k + 1

.

3. Balls and bins. Suppose that we randomly drop n3/2 balls into n
bins. Give an upper bound on the expectation of the maximum number of
balls in any bin.

Solution: Let Xi be the random variable equal to the number of balls in
the ith bins. Then E[Xi] =

√
n. Let δ = 3

√
lnn
n1/4

. By the Chernoff bound,

p(Xi > (1 + δ)
√
n) ≤ e−

√
nδ2/3 = e−9/3 lnn =

1

n3

for δ ≤ 1. Let M be the random variable equal to the maximum number
of balls in a bin. Then

p(M > (1 + δ)
√
n ≤

n∑
i=1

p(Xi > (1 + δ)
√
n) ≤ 1

n2
.

Finally,

E[M ] ≤ (1 + δ)
√
np(M ≤ (1 + δ)n) + n3/2p(M ≥ (1 + δ)

√
n)

≤ (1 + δ)
√
n+ 1 =

√
n+ 1 + 3n1/4

√
lnn

4. Balls and bins II. Given n balls of each of n different colors (n2 balls
in total), we distribute them among n boxes, as follows. For each ball we
choose a box at random. If the chosen box already contains the ball of the
same color as the ball we are considering, we throw the current ball away.
Otherwise, we put it in the box.



a) Show that the probability that a box contains a ball of given color is

1−
(

1− 1

n

)n
.

b) Find the expected number of balls that we throw away.

c) Show that with high probability no box contains more than

n

(
1−

(
1− 1

n

)n)
+ 2
√
n lnn

balls.

Solution:
a): If a box does not contain a ball of some color, then for all the balls of
this color we chose one of the other boxes to place it in. As these choices are
independent this happens with probability

(
1− 1

n

)n
. Thus the probability

that a box contains a ball of given color is

1−
(

1− 1

n

)n
.

b): Let Xij be the number of balls in box i of color j. (Let us assume that
boxes and colors are numbered 1, . . . , n.) By a) E(Xij) = 1 −

(
1− 1

n

)n
.

Thus the expected total number of balls we keep is

E

(
n∑
i=1

n∑
j=1

Xij

)
= n2

(
1−

(
1− 1

n

)n)
.

All the other balls we throw away, giving the answer

n2 − n2
(

1−
(

1− 1

n

)n)
= n2

(
1− 1

n

)n
.

c): Let Zi =
∑n

j=1Xij be the number of balls in ith box. Let c =

1 −
(
1− 1

n

)n
for brevity. From b) we have µ = E(Zi) = cn As Xij are

independent Bernoulli random variables by Chernoff bound we have

p(Zi > nc+ 2
√
n lnn) = p

(
Zi > µ

(
1 + 2

√
lnn

nc2

))
≤ e−4µ lnn/(3c

2n) ≤ e−4 lnn/3 =
1

n4/3
.



Thus by the union bound probability that some box contains more than
nc+ 2

√
n lnn is at most n

n4/3
= 1

n1/3
→n→∞ 0, as desired.

5. Deviation below the mean. Prove the following variant of the Chernoff
bound for the deviation below the mean. Let X be the sum of independent
Bernoulli random variables, and let µ = E[X]. Show that, if 0 < δ < 1,
then

p(X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)(1−δ)

)µ
≤ e−µδ

2/2

Solution: For any t ≥ 0 we have

p(X ≤ (1− δ)µ) = p(etX ≤ e(1−δ)tµ)

= p(e−tX ≥ e−(1−δ)tµ) ≤ E[e−tX ]

e−(1−δ)tµ
,

where the last inequality is by Markov’s inequality. Let X be the sum
of the independent Bernoulli random variables X1, X2, . . . , Xn such that
E[Xi] = pi. We have

E[e−tX ] = E[e−t
∑n

i=1Xi] =
n∏
i=1

E[e−tXi]

=
n∏
i=1

((1− pi) · e0 + pie
−t) =

n∏
i=1

(1− pi(1− e−t))

≤
n∏
i=1

e−pi(1−e
−t) = e−(1−e

−t)
∑n

i=1 pi = e−µ(1−e
−t).

Thus

p(X ≤ (1− δ)µ) ≤ e−µ(1−e
−t)

e−(1−δ)tµ
.

Setting t = − ln(1− δ), we get

p(X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)(1−δ)

)µ
≤ e−µδ

2/2.

To verify the last inequality we need to show that

(1− δ)(1−δ) ≥ e−δ+δ
2/2,



or, equivalently,
(1− δ) ln(1− δ) + δ − δ2/2 ≥ 0.

For δ = 0 the above inequality holds with equality, and the derivative of
the left side is − ln(1 − δ) − δ, which is non-negative for δ < 1. Thus the
inequality holds for all 0 < δ < 1.

6. Random graphs. In a random graph on n vertices for each pair of
vertices i and j we independently include the edge {i, j} in the graph with
probability 1/2. Show that with high probability every two vertices have
at least n/4−

√
n log n common neighbors.

Solution: Given a pair of vertices i and j, let Xij be the random variable
equal to the number of their common neighbors. As each of the remaining
n − 2 vertices is a common neighbor of i and j with probability 1/4, we
have E[Xij] = (n− 2)/4. Let δ = 4

√
n lnn/(n− 2) and

p

(
Xij < (1 + δ)

n− 2

4

)
≤ e−(n−2)δ

2/8 = e2n lnn/(n−2) →n→∞ 0,

as desired.


