
MATH 340: Discrete Structures II. Winter 2017.

Assignment #1: Matchings.

1. Stable matching algorithm. Apply the Boy Proposal algorithm to
find a stable matching given the preference lists below. Are there any other
stable matchings?

B1 : G3 > G2 > G1 > G4 > G5

B2 : G2 > G1 > G3 > G5 > G4

B3 : G2 > G5 > G4 > G3 > G1

B4 : G1 > G3 > G4 > G2 > G5

B5 : G2 > G3 > G1 > G5 > G4

G1 : B5 > B2 > B1 > B4 > B3

G2 : B3 > B1 > B4 > B2 > B5

G3 : B2 > B5 > B4 > B3 > B1

G4 : B1 > B3 > B4 > B5 > B2

G5 : B4 > B1 > B5 > B3 > B2

Solution: In the Boy Proposal Algorithm there is a potential choice in-
volved in each step: Which one of the currently unengaged boys proposes
next. We will always choose the one with the lowest number. We will
record a proposal of Bi to Gj in the form BiGj. We will indicate that
the proposal is accepted by writing BiGj! The algorithm results in the
following sequence of proposals:

B1G3!, B2G2!, B3G2!, B2G1!, B4G1, B4G3!, B1G2,

B1G1, B1G4!, B5G2, B5G3!, B4G4, B4G2, B4G5!

with the final matching

B1G4, B2G1, B3G2, B4G5, B5G3.

It follows from the results established in class that, if there exists two dif-
ferent stable matchings, then the Girl Proposal Algorithm yields a different



stable matching from the Boy Proposal Algorithm. And indeed in the Girl
Proposal Algorithm each girl can end up with their top choice:

B1G4, B2G3, B3G2, B4G5, B5G1,

which is different from the matching above.

2. Stable roommates. We wish to pair up an even number of students
in a student dormitory. Each student has a preference list over every other
potential roommate. Give an example to show that a stable matching need
not exist.

Solution: Here is an example with for students:

S1 : S2 > S3 > S4

S2 : S3 > S1 > S4

S3 : S1 > S2 > S4

S4 : S1 > S2 > S3

There are three possible matchings none of which are stable. In the
matching S1S2, S3S4, the pair S2S3 prefers each other. In the matching
S1S3, S2S4, the pair S1S2 prefers each other. Finally, in the matching
S1S4, S2S3, the pair S1S3 prefers each other.

3. Edge-coloring. Let G be a (not necessarily bipartite) graph with
maximum degree ∆ > 0.

a) Show that χ′(G) ≤ 2∆− 1.

b) Suppose that G has a perfect matching M such that G\M is bipartite.
Determine χ′(G) in terms of ∆.

Solution:
a): For fixed ∆ > 0 we will show by induction on |E(G)| that

χ′(G) ≤ 2∆− 1

for every graph G with maximum degree at most ∆.
Base case: |E(G)| = 0. There is nothing to prove.



Induction step: Consider a graph G with n ≥ 1 edges. Choose e ∈ E(G),
and let G′ = G \ e. By the induction hypothesis, χ′(G) ≤ 2∆ − 1 and
so there exists an edge-coloring c : E(G′) → {1, . . . , 2∆ − 1}. Note that
e shares an end with at most 2∆ − 2 other edges, and so there is a color
available for e which is used on none of these edges. Thus we can extend
the coloring by assigning this color to e.

b): As every vertex of G is incident to an edge of M , the maximum degree
of G \ M is ∆ − 1. Therefore we have χ′(G \ M) = ∆ − 1 by Kőnig’s
theorem on edge colorings of bipartite graphs. Moreover, we can extend
the coloring of G \M to G by using the same previously unused color on
all the edges of M . Thus χ′(G) ≤ (∆ − 1) + 1 = ∆. On the other hand,
we have χ′(G) ≥ ∆ for every graph G. Therefore

χ′(G) = ∆.

4. Counting matchings. Let G be a graph with bipartition (A,B)
such that A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn+1} and the vertex ai
is adjacent to vertices b1, b2, . . . , bi+1 for every i = 1, 2, . . . , n. Show that
there are exactly 2n matchings in G covering A.

Solution: By induction on n.
Base case: n = 1. Clearly there are two ways of choosing the vertex to
match a1 to: We either choose b1, or b2.
Induction step (n− 1→ n): By the induction hypothesis there are 2n−1

matchings, which match {a1, a2, . . . , an−1} to a subset of B. Note that
such a macthing will leave exactly two elements of B not chosen. Therefore
each of these 2n−1 matchings extends to exactly two matchings covering A,
leaving 2n−1 × 2 = 2n matchings, as desired.

5. Kőnig’s theorem. Let G be a bipartite graph with bipartition (A,B),
such that |A| = |B| = 10, and every vertex of G has degree at least five.
Show that G has a perfect matching.

Solution: By Kőnig’s theorem it suffices to show that the minimum size
of a vertex cover in G is eight. Let X be a vertex cover in G of minimum
size. If A ⊆ X, or B ⊆ X, then clearly |X| ≥ 10. Otherwise, there exists
v ∈ A − X, which implies that all the neighbors of v lie in X, as X is a



vertex cover. Therefore |X ∩ B| ≥ 5. Similarly, |X ∩ A| ≥ 5. It follows
that |X| = |X ∩ A|+ |X ∩B| ≥ 10, as desired.

6. Matching markets. Consider a matching market with with four
buyers (A,B,C,D) and four sellers (X, Y, Z,W ), where the valuations of
the buyers are listed in the following table.

X Y Z W

A 6 4 6 6
B 6 5 7 2
C 4 1 7 5
D 3 1 6 3

Use the method seen in class to find a set of market clearing prices.

Solution: The process of generating the market clearing prices is recorded
in the following table. In each row we write down the prices for the houses
at the beginning of the step, the maximum potential satisfaction of all
buyers and their currently preferred houses, and, finally, the set of houses
for which the price is raised in this step.

X Y Z W A B C D

0 0 0 0 6(X,Z,W) 7(Z) 7(Z) 6(Z) X,Z,W
1 0 1 1 5(X,Z,W) 6(Z) 6(Z) 5(Z) X,Z,W
2 0 2 2 4(X,Y,Z,W) 5(Y,Z) 5(Z) 4(Z) Z
2 0 3 2 4(X,Y,W) 5(Y) 4(Z) 3(Z) Z
2 0 4 2 4(X,Y,W) 5(Y) 3(Z,W) 2(Z)

After the last step the market clears with houses going to the following
buyers:

A← X,B ← Y,C ← W,D ← Z.


