
MATH 240: Discrete structures I. Fall 2011

Assignment #5: Combinatorics and Graph Theory. Solutions.

1. Fibonacci Numbers.
Show that for every positive integer n the Fibonacci number F5n is divisible by 5.

Solution: By induction on n. Base case (n = 1): F5 = 5.
Induction step (n→ n + 1):

F5(n+1) = F5n+4 + F5n+3 = (F5n+3 + F5n+2) + F5n+3 = 2F5n+3 + F5n+2 =

= 2(F5n+2 + F5n+1) + F5n+2 = 3F5n+2 + 2F5n+1 = 3(F5n+1 + F5n) + 2F5n+1

= 5F5n+1 + 3F5n.

As F5n is divisible by 5 by the induction hypothesis we conclude that so is F5(n+1).

2. Recurrence relations.

(a) Solve the recurrence relation

p(n) = 4p(n− 1) + 5

with initial conditions p(0) = 1, p(1) = 9.

(b) Let fn be the number of subsets of {1, 2, . . . , n} that contain no three consecutive
integers. Find a recurrence for fn.

Solution: (a) We search for a solution in the form p(n) = a4n + b for constants a and b.
The recurrence relation is satisfied when

a4n + b = 4(a4n−1 + b) + 5 = a4n + (4b + 5),

that is when b = 4b + 5. Therefore b = −5/3. Plugging in the initial condition we have
a + b = 1, and therefore a = 8/3. The final answer is

p(n) =
8

3
4n − 5

3
.

(b) Consider subsets counted by fn. The number of subsets not containing n as an
element is fn−1. The number of subsets which contain n, but do not contain n − 1, is
fn−2. (They correspond exactly to subsets of {1, 2, . . . , n−2} containing no 3 consecutive
integers.) Finally, if a subset contains n and n − 1 then it can not contain n − 2 and
therefore there are fn−3 such subsets. This gives a recurrence

fn = fn−1 + fn−2 + fn−3.



3. Inclusion-Exclusion.

(a) An integer n is called square free if it does not have a divisor of the form k2 where
k ∈ {2, 3, . . . , n}. Find the number of square-free integers between 1 and 120.

(b) In how many permutations of the set {0, 1, 2, . . . , 9} do either of 0 and 1, or 2 and
0, or 3 and 2 appear consecutively? (For example, we do not count

(5, 6, 0, 4, 9, 2, 3, 7, 8, 1),

as we want 3 and 2 to appear consecutively in that order. We count

(3, 5, 7, 2, 0, 1, 9, 8, 4, 6),

both 0 and 1, and 2 and 0 appear consecutively in it.)

Solution: (a) An integer is square free if and only if it does not have a divisor of the
form p2 for some prime p. Let Ap be the set of all integers between 1 and 120 divisible by
p2. Then the number we are interested in is 120− |A2 ∪ A3 ∪ A5 ∪ A7|.
By inclusion-exclusion

|A2 ∪ A3 ∪ A5 ∪ A7| = |A2|+ |A3|+ |A5|+ |A7| − |A2 ∩ A3| − |A2 ∩ A5|

=
120

22
+ b120

32
c+ b120

52
c+ b120

72
c − b 120

2232
c − b 120

2252
c

= 30 + 13 + 4 + 2− 3− 1 = 45.

(All the other summands in the inclusion-exclusion formula are equal to zero. bxc denotes
the greatest integer less than or equal to x.) The final answer is 120− 45 = 75.

(b) Let A be the set of permutation where 0 and 1 appear consecutively, B be the set of
permutations, where 2 and 0 appear consecutively, and let C be the set of permutations,
where 3 and 2 do. Then |A| = |B| = |C| = 9!. For example, permutations in A
correspond to permutations of the alphabet {01, 2, 3, 4, . . . , 9}, where 01 is considered
as a single symbol. Similarly, |A ∩ B| = |B ∩ C| = |A ∩ C| = 8!. (Permutations in
A∩B correspond to permutations of the alphabet with symbol 201 replacing 0, 1 and 2.)
Finally, |A ∩B ∩ C| = 7!. Using the inclusion-exclusion formula we have

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |A ∩ C|+ |A ∩B ∩ C|
= 3 · 9!− 3 · 8! + 7!



4. Counting integer solutions.

(a) How many integer solutions are there to the equation

x1 + x2 + x3 + x4 = 30,

such that 3 ≤ xi ≤ 10 for every 1 ≤ i ≤ 4.

(b) How many non-negative integer solutions are there to the inequality

x1 + x2 + . . . + xk ≤ n.

Solution: (a) First, let yi = xi − 3 for 1 ≤ i ≤ 4. We will count integer solutions of the
equation y1 + y2 + y3 + y4 = 18, with 0 ≤ yi ≤ 7, as there is a straightforward bijection
between such solutions and the solutions of the original equation. There are(

18 + 4− 1

4− 1

)
=

21 · 20 · 19

6
= 1330

non-negative solutions to this equation, when we ignore the upper bounds. Let Ai be
the set of solutions with yi ≥ 8. Then we are interested in 1330 − |A1 ∪ A2 ∪ A3 ∪ A4|.
Applying inclusion-exclusion, we have

|A1 ∪ A2 ∪ A3 ∪ A4| =
4∑

i=1

|Ai| −
∑

1≤i<j≤4

|Ai ∩ Aj|

= 4

(
(18− 8) + 4− 1

3

)
− 6

(
(18− 2 · 8) + 4− 1

3

)
= 4

13 · 12 · 11

6
− 6

5 · 4 · 3
6

= 4 · 286− 6 · 10 = 1084.

To compute |A1|, for example, we used the fact that solutions in A1 correspond to non-
negative integer solutions of z1 + y2 + y3 + y4 = 18− 8 after substitution z1 = y1− 8. The
final answer is 1330− 1084 = 246.

(b) Such solutions are in bijection with the non-negative integer solutions of the equation

x1 + x2 + . . . + xk + xk+1 = n.

There are (
n + (k + 1)− 1

(k + 1)− 1

)
=

(
n + k

k

)
such solutions.



5. Graph Degrees.

(a) Does there exist a simple graph with 7 vertices and the following degrees: {0, 1, 2, 2, 2, 3, 6}?

(b) How many simple graphs are there with the vertex set {A,B,C,D} such that two
of the vertices have degree one and the remaining two vertices have degree two?

Solution: (a) No, as the vertex of degree six would have to be adjacent to every other
vertex, but the vertex of degree zero has no neighbors.

(b) It is not hard to check that the only simple graph upto an isomorphism with these
degrees is a path with four vertices. There are 4! = 24 ways to label the vertices of the
path with labels {A,B,C,D} starting with a particular end. But using this method we
count every graph twice, as we could have also started labeling from the other end of the
path. Thus there are 24/2 = 12 different graphs.


