Stability for Turan’s theorem.

In this note we prove a version of the classical result of Erdos and Simonovits
that a graph with no K, subgraph and a number of edges close to the max-
imum is close to the extreme example. In particular, such a graph is nearly
(t —1)-colorable. Our methods can be used to obtain similar stability results
in a wider variety of situations.

We will use V(G) to denote the set of vertices of a hypergraph G. Following
the convention used in class G will be identified with its set of edges. In
particular, |G| denotes the number of edges in a hypergraph G. Given an
r-graph H, let Ex(H) denote the family of all r-graphs not containing H.
Let

ex(n, H) := max |G|,
GeEx(H),|V (G)|=n

and let the Turdn density of H be defined as
H
m(H) := lim M.
n—00 (T)
We have shown in class that this limit exists.

The next lemma will demonstrate that almost all the vertices in a graph in

Ex(K,) with density close to 7(K;) = =2 have degree close to the average.

Lemma 1. For every r-graph H and every € > 0 there exists 6 > 0 and
no > 0 such that every r-graph G € Ex(H) with |V (G)| > ny and |G| >
(1= 0)m(H)[V(G)["/r!

e cither contains a sub-r-graph G' with n' := |V(G')| > (1 — €)n such
that every vertex of G' belongs to more than (1—¢e)m(H)(n')"~!/(r—1)!

edges, or

e contains a sub-r-graph G" with n’ := |V(G")| = |[(1 — e)n] and |G'| >
w(H)(n')"/rl.



Proof. Let § be chosen so that (1 —§)> > 1—¢/2 and § < re?/2. Let ng be
chosen so that (n”)" > (n” —1)" + (1 — &§)r(n”)"! for all n” > (1 — &)ny.
Let n := |V(G)|. If every vertex of G belongs to more than (1—&)m(H)n" ! /(r—
1)! edges the lemma holds. Otherwise, delete a vertex of G which belongs to
at most these many edges to obtain an r-graph G;. Repeat this procedure
on (1, deleting a vertex belonging to at most (1 —e&)m(H)(n—1)""'/(r —1)!
edges, if necessary, to obtain a graph Gs, etc. If the procedure stops in less
than en steps the lemma holds. Otherwise, we obtain a graph G’ := G, with
k = [en]. We have n' := |V(G")| = | (1 —¢)n] and it remains to upper bound
|G|.

We prove by induction on [ that

kE—1

Gl > (1 - 75) (=

rl

Y

for | < k. The lemma will follow. The base case for Gy := G is immediate.

For the induction step, let n” =n — (I — 1). We have
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RS
() (2 ) i
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as desired. In the chain of inequalities above, the induction hypothesis is
used in the second line, the choice of ng in the third line, and the choice of

¢ in the fourth and fifth line. O]

Note that the second outcome of Lemma 1 can not occur for many choices



of H. In particular, when H = K, it is impossible by Turan’s theorem. We

are now ready for our main result.

Theorem 2. For every positive integer t > 3 and every € > 0 there exists

d > 0 and ng > 0 so that every G € Ex(K;) with |V(G)| > ng and

t—2|V(G)]
Gl>1-6§)——
= -gi 2
contains disjoint subsets of vertices Ay, As, ..., Ay_1 so that

|AjUAU...UA 4| > (1-&)V(G)
and no edge of G joins to vertices in some A; to each other.

Proof. Let ¢ = min{e’/2(t — 2),1/t*} and let ny and § be chosen as in
Lemma 1 for this value of e, r = 2 and H = K,;. Let G’ satisfy the first
outcome of the lemma. (As we noted above the second outcome can not
hold.) Let n := |[V(G)|. As |G'| > (1 — 5)%%2, by the choice of ¢ and
Turan’s theorem G’ contains a complete subgraph on ¢ — 1 vertices. Let V =
{v1,v9,...,v;_1} be set of vertices of this subgraph. Fori =1,2,...,t—1, let
A; consist of the set of vertices of G which are connected to all vertices of V
except for v;. No edge of G joins to vertices in some A; to each other, as oth-
erwise the corresponding vertices together with V' — {v;} induce a complete

subgraph of G on t vertices.

By the choice of G’ and € we have

t—2 e’ t—2
) > — — > — E—
deg(v;) > (1 E)t—l(l en > (1 t—2) "

Let A:= A UAyU...UA; ;. Then every vertex in V(G) — A is joined to

at most t — 3 vertices in V. It follows that

(1= 755 ) =20 < S deglu) < (¢ = 2T+ (¢ = 3V(E) - A)

=1

=(t—3)n— |A|

It follows that |A| > (1 — €’)n, as desired. O



The above theorem can be routinely strengthened in several ways:

e By modifying the choice of  one can remove the requirement on the
minimum size of |V(G)|. Indeed, for an appropriate choice of ¢ and
|[V(G)| < ng one would have |G| = i:—f@ It follows from the first
proof of Turan’s theorem presented in class that in such a case the set

A constructed in the proof of the Theorem 2 is equal to V(G).

e The bound on the number of edges of G implies that by once again
modifying the choice of § one can guarantee that |A;| > ==n for every

1=1,2,...,t — 1 and for i # j there are at least

(i)

edges joining A; to A;. Thus the graph G “differs” from a complete
(t — 1)-partite graph with sizes of parts as equal as possible (the Turdn
graph) by at most O(en?) edges.



