
Stability for Turán’s theorem.

In this note we prove a version of the classical result of Erdös and Simonovits

that a graph with no Kt subgraph and a number of edges close to the max-

imum is close to the extreme example. In particular, such a graph is nearly

(t−1)-colorable. Our methods can be used to obtain similar stability results

in a wider variety of situations.

We will use V (G) to denote the set of vertices of a hypergraph G. Following

the convention used in class G will be identified with its set of edges. In

particular, |G| denotes the number of edges in a hypergraph G. Given an

r-graph H, let Ex(H) denote the family of all r-graphs not containing H.

Let

ex(n,H) := max
G∈Ex(H),|V (G)|=n

|G|,

and let the Turán density of H be defined as

π(H) := lim
n→∞

ex(n,H)(
n
r

) .

We have shown in class that this limit exists.

The next lemma will demonstrate that almost all the vertices in a graph in

Ex(Kt) with density close to π(Kt) = t−2
t−1 have degree close to the average.

Lemma 1. For every r-graph H and every ε > 0 there exists δ > 0 and

n0 > 0 such that every r-graph G ∈ Ex(H) with |V (G)| ≥ n0 and |G| ≥
(1− δ)π(H)|V (G)|r/r!

• either contains a sub-r-graph G′ with n′ := |V (G′)| > (1 − ε)n such

that every vertex of G′ belongs to more than (1−ε)π(H)(n′)r−1/(r−1)!

edges, or

• contains a sub-r-graph G′ with n′ := |V (G′)| = b(1 − ε)nc and |G′| >
π(H)(n′)r/r!.



Proof. Let δ be chosen so that (1− δ)2 > 1− ε/2 and δ < rε2/2. Let n0 be

chosen so that (n′′)r ≥ (n′′ − 1)r + (1− δ)r(n′′)r−1 for all n′′ ≥ (1− ε)n0.

Let n := |V (G)|. If every vertex ofG belongs to more than (1−ε)π(H)nr−1/(r−
1)! edges the lemma holds. Otherwise, delete a vertex of G which belongs to

at most these many edges to obtain an r-graph G1. Repeat this procedure

on G1, deleting a vertex belonging to at most (1− ε)π(H)(n− 1)r−1/(r− 1)!

edges, if necessary, to obtain a graph G2, etc. If the procedure stops in less

than εn steps the lemma holds. Otherwise, we obtain a graph G′ := Gk with

k = dεne. We have n′ := |V (G′)| = b(1−ε)nc and it remains to upper bound

|G|.
We prove by induction on l that

|Gl| ≥
(

1− k − l
k

δ

)
π(H)

(n− l)r

r!
,

for l ≤ k. The lemma will follow. The base case for G0 := G is immediate.

For the induction step, let n′′ = n− (l − 1). We have

|Gl|
π(H)

≥ |Gl−1|
π(H)

− (1− ε) (n′′)r−1

(r − 1)!

≥
(

1− k − l + 1

k
δ

)
(n′′)r

r!
− (1− ε) (n′′)r−1

(r − 1)!

≥
(

1− k − l + 1

k
δ

)(
(n′′ − 1)r

r!
+ (1− δ) (n′′)r−1

(r − 1)!

)
− (1− ε) (n′′)r−1

(r − 1)!

≥
(

1− k − l
k

δ

)
(n′′ − 1)r

r!
− δ

εn

(n′′ − 1)r

r!
+
ε

2

(n′′)r−1

(r − 1)!

≥
(

1− k − l
k

δ

)
(n′′ − 1)r

r!
+

(
ε

2
− δ

εr

)
(n′′)r−1(r − 1)!

≥
(

1− k − l
k

δ

)
(n′′ − 1)r

r!
,

as desired. In the chain of inequalities above, the induction hypothesis is

used in the second line, the choice of n0 in the third line, and the choice of

δ in the fourth and fifth line.

Note that the second outcome of Lemma 1 can not occur for many choices



of H. In particular, when H = Kt, it is impossible by Turán’s theorem. We

are now ready for our main result.

Theorem 2. For every positive integer t ≥ 3 and every ε′ > 0 there exists

δ > 0 and n0 > 0 so that every G ∈ Ex(Kt) with |V (G)| ≥ n0 and

|G| ≥ (1− δ)t− 2

t− 1

|V (G)|2

2

contains disjoint subsets of vertices A1, A2, . . . , At−1 so that

|A1 ∪ A2 ∪ . . . ∪ At−1| ≥ (1− ε′)|V (G)|

and no edge of G joins to vertices in some Ai to each other.

Proof. Let ε = min{ε′/2(t − 2), 1/t2} and let n0 and δ be chosen as in

Lemma 1 for this value of ε, r = 2 and H = Kt. Let G′ satisfy the first

outcome of the lemma. (As we noted above the second outcome can not

hold.) Let n := |V (G)|. As |G′| ≥ (1 − ε) t−2
t−1

n2

2
, by the choice of ε and

Turán’s theorem G′ contains a complete subgraph on t− 1 vertices. Let V =

{v1, v2, . . . , vt−1} be set of vertices of this subgraph. For i = 1, 2, . . . , t−1, let

Ai consist of the set of vertices of G which are connected to all vertices of V

except for vi. No edge of G joins to vertices in some Ai to each other, as oth-

erwise the corresponding vertices together with V − {vi} induce a complete

subgraph of G on t vertices.

By the choice of G′ and ε we have

deg(vi) ≥ (1− ε)t− 2

t− 1
(1− ε)n ≥

(
1− ε′

t− 2

)
t− 2

t− 1
n.

Let A := A1 ∪ A2 ∪ . . . ∪ At−1. Then every vertex in V (G) − A is joined to

at most t− 3 vertices in V . It follows that(
1− ε′

t− 2

)
(t− 2)n ≤

t−1∑
i=1

deg(vi) ≤ (t− 2)|A|+ (t− 3)(|V (G)− A|)

= (t− 3)n− |A|

It follows that |A| ≥ (1− ε′)n, as desired.



The above theorem can be routinely strengthened in several ways:

• By modifying the choice of δ one can remove the requirement on the

minimum size of |V (G)|. Indeed, for an appropriate choice of δ and

|V (G)| < n0 one would have |G| = t−2
t−1
|V (G)|2

2
. It follows from the first

proof of Turán’s theorem presented in class that in such a case the set

A constructed in the proof of the Theorem 2 is equal to V (G).

• The bound on the number of edges of G implies that by once again

modifying the choice of δ one can guarantee that |Ai| ≥ 1−ε
t−1n for every

i = 1, 2, . . . , t− 1 and for i 6= j there are at least

(1− ε)
(

n

t− 1

)2

edges joining Ai to Aj. Thus the graph G “differs” from a complete

(t− 1)-partite graph with sizes of parts as equal as possible (the Turán

graph) by at most O(εn2) edges.


