Adaptive boundary element methods with convergence rates

Gantumur Tsogtgerel

McGill University

ESI Workshop on Wavelets in Scientific Computing
Vienna

Monday November 12, 2012

Boundary integral equations

Boundary integral equations are rooted in the works of Gauss, August Beer, and Carl Neumann on reformulations of the Dirichlet problem as integral equations involving the single- and double layer potentials.

There are many ways to convert (interior or exterior) boundary value problems for $\boldsymbol{\Omega}$ into an integral equation

$$Au = f$$
 on $\Gamma = \partial \Omega$.

Typically, A has a singular kernel, $A: H^t(\Gamma) \to H^{-t}(\Gamma)$ is self-adjoint and bounded, and satisfies

$$\langle Au, u \rangle \ge \alpha \|u\|_t^2$$

with $\alpha > 0$ and $t \in \{0, \pm \frac{1}{2}\}$. In particular, A is invertible.

Adaptive boundary element methods

For a triangulation T of Γ , let S = S(T) be the space of piecewise constant functions on Γ subordinate to T. Then the Galerkin approximation $u_T \in S$ of u from the subspace $S \subset H^t$ $\left(t < \frac{1}{2}\right)$ is the solution of

$$\langle Au_T, v \rangle = \langle f, v \rangle, \quad \forall v \in S.$$

Local a posteriori error indicators, $\eta(T,\tau)$, are supposed to measure how much error the triangle τ contains, e.g., $\|u-u_T\|_{t,\tau}$. We need a parameter $0<\theta<1$, and an initial triangulation T_0 . Then we repeat the following for $k=0,1,\ldots$

- Compute $u_k = u_{T_k}$, and the error indicators $\eta(T_k, \tau)$, $\tau \in T_k$.
- Choose a minimal subset $R \subset T_k$, such that

$$\sum_{\tau \in R} \eta(T_k,\tau) \geq \theta \sum_{\tau \in T_k} \eta(T_k,\tau).$$

• Refine (at least) all triangles in R, to get T_{k+1} .

Some prior work on a posteriori error indicators

Residual is equivalent to error: $||r_T||_{-t} \equiv ||f - Au_T||_{-t} \sim ||u - u_T||_t$. There is a localization issue for t fractional. Recall the Slobodeckij norm

$$|v|_{s,\omega}^2 = \int_{\omega \times \omega} \frac{|v(x) - v(y)|^2}{|x - y|^{2+2s}} dx dy.$$

• Faermann '00-'02: for $-1 < t \le 0$, global equivalence

$$||r_T||_{-t}^2 \sim \sum_{z \in N_T} |r_T|_{-t,\omega(z)}^2.$$

• Carstensen, Maischak, Stephan '01: for $-1 < t \le 0$, global upper bound

$$||r_T||_{-t}^2 \lesssim \sum_{\tau \in T} h^{2(1-t)} |r_T|_{1,\tau}^2.$$

• Carstensen, Maischak, Praetorius, Stephan '04, Nochetto, von Petersdorff, Zhang '10: for t > 0, global upper bound

$$||r_T||_{-t}^2 \lesssim \sum_{\tau \in T} h^{2t} |r_T|_{0,\tau}^2.$$

Results on a posteriori error indicators

Gantumur '11: Lower bounds and local results. Similar results were independently obtained for $t=-\frac{1}{2}$ by Feischl, Karkulik, Melenk, and Praetorius. Example of a local result for t=0:

Lemma

Let T' be a refinement of T, and let $\gamma = \bigcup_{\tau \in T \setminus T'} \tau$. Then we have

$$\alpha \| u_T - u_{T'} \| \le \| r_T \|_{\gamma} \le \beta \| u_T - u_{T'} \| + 2 \| r_T - v \|_{\gamma}$$

for any function $v \in S_{T'}$.

Proof of the first inequality.

Let $v = u_{T'} - u_T$, and let $v_T \in S_T$ be the L^2 -orthogonal projection of v onto S_T . Then we have

$$\langle Av,v\rangle = \langle r_T,v\rangle = \langle r_T,v-v_T\rangle \leq \|r_T\|_\gamma \|v-v_T\|_\gamma \leq \|r_T\|_\gamma \|v\|_\gamma$$

where we have used that $v = v_T$ outside γ .

Oscillation

The second inequality $||r_T||_{\gamma} \le \beta ||u_T - u_{T'}|| + 2||r_T - v||_{\gamma}$.

Let $v \in S_{T'}$ be supported in γ . Then we have

$$\left\| v \right\|_{\gamma}^2 = \left\langle v, v \right\rangle = \left\langle v - r_T, v \right\rangle + \left\langle A(u_{T'} - u_T), v \right\rangle \leq \left(\left\| v - r_T \right\|_{\gamma} + \left\| A(u_{T'} - u_T) \right\|_{\gamma} \right) \left\| v \right\|_{\gamma}$$

implying that
$$||r_T||_{\gamma} \le ||r_T - v||_{\gamma} + ||v||_{\gamma} \le 2||r_T - v||_{\gamma} + ||A(u_{T'} - u_T)||$$
.

Suppose r_T is piecewise H^r . Then

$$\inf_{v \in S_{T'}} \| r_T - v \|_{\gamma}^2 \leq C_J^2 \sum_{\tau \in T \setminus T'} h_{\tau}^{2r} |r_T|_{r,\tau}^2.$$

Define

$$\operatorname{osc}(T,\omega) := \left(\sum_{\tau \in T, \tau \subset \omega} h_{\tau}^{2r} |f - Au_{T}|_{r,\tau}^{2}\right)^{\frac{1}{2}},$$

for $\omega \subseteq \Gamma$ and $\nu \in S_T$, so that we have

$$\alpha \|u_T - u_{T'}\| \le \|r_T\|_{\gamma} \le \beta \|u_T - u_{T'}\| + 2C_J \operatorname{osc}(T, \gamma).$$

Some other works on convergence analysis

Symm's integral equation $(t = -\frac{1}{2})$.

• Ferraz-Leite, Ortner, Praetorius '10: With \tilde{T} the uniform refinement of T, use error estimators of the type

$$\eta(T,\tau) = h_{\tau}^{1/2} \| u_T - u_{\tilde{T}} \|_{\tau}.$$

Assume saturation (1985-):

$$||u-u_{\tilde{T}}|| \leq \alpha ||u-u_T||, \qquad (\alpha < 1).$$

Then $||u-u_k|| \le C\rho^k$ with $\rho < 1$.

- Aurada, Ferraz-Leite, Praetorius '11: Estimator convergence $\sum_{\tau} \eta(T_k, \tau) \rightarrow 0$ without saturation.
- Feischl, Karkulik, Melenk, Praetorius '11: Weighted residual estimator from [CMS01], geometric error reduction and convergence rate, without saturation.

Geometric error reduction

Assume

$$\sum_{\tau \in T} h_{\tau}^{2r} |Av|_{r,\tau}^2 \leq C_A \|v\|^2, \qquad v \in S_T,$$

for all admissible T. Let T,T' be admissible partitions with T' being a refinement of T, and let $\gamma = \bigcup_{\tau \in T \setminus T'} \tau$. Suppose, for some $\theta \in (0,1]$ that

$$||r_T||_{\gamma}^2 + \operatorname{osc}(T, \gamma)^2 \ge \theta \left(||r_T||_{\Gamma}^2 + \operatorname{osc}(T, \Gamma)^2 \right).$$

Then there exist constants $\delta \ge 0$ and $\rho \in (0,1)$ such that

$$||u - u_{T'}||^2 + \delta \operatorname{osc}(T', \Gamma)^2 \le \rho (||u - u_T||^2 + \delta \operatorname{osc}(T, \Gamma)^2).$$

Proof sketch:

$$||u-u_T|| \lesssim ||r||_{\Gamma} \lesssim ||r||_{\gamma} \lesssim ||u_T-u_{T'}||.$$

$$||u - u_T||^2 = ||u_T - u_{T'}||^2 + ||u - u_{T'}||^2.$$

Convergence rates

We know $||u-u_k|| \le C\rho^k$ with $\rho < 1$. How fast does $\#T_k$ grow? Define approximation classes

$$\mathcal{A}_s = \{u \in L^2 : \inf_{\#T \leq N} \inf_{v \in S_T} \|u - v\| \leq CN^{-s}\}.$$

It is known that $W^{2s,p} \subset \mathcal{A}_s$ with $\frac{1}{p} = s + \frac{1}{2}$, and that $W^{2s,p}$ is much larger than H^{2s} , and friendlier to solutions of BVP and BIE.

Define $\mathcal{A}_{r,s}$ by replacing ||u-v|| with ||u-v|| + osc. We expect $\mathcal{A}_{r,s}$ to be close to \mathcal{A}_s .

Assume

$$\sum_{\tau \in T} h_{\tau}^{2r} |Av|_{r,\tau}^2 \le C_A \|v\|^2, \qquad v \in S_T,$$

for all admissible T. Let $\theta \in (0, \theta^*)$. Let f be piecewise H^r in the initial triangulation, and $u \in \mathcal{A}_{r,s}$ for some s > 0. Then

$$||u-u_k|| \le C|u|_{A_{r,s}}(\#T_k)^{-s}.$$

Inverse-type inequalities

$$\sum_{\tau \in T} h_{\tau}^{2r} |Av|_{r,\tau}^2 \leq C_A \|v\|^2, \qquad v \in S_T.$$

If A=I or multiplication by a smooth function, then it is the standard inverse inequality. Validity of this inequality depends on how A shifts low frequencies to high frequencies locally, and how it moves frequencies around in space. We decompose $L^2=S_T\oplus H_T$ and correspondingly, $Av=(Av)_S+(Av)_H$. The low frequency component poses no problem:

$$\sum_{\tau \in T} h_{\tau}^{2r} |(Av)_S|_{r,\tau}^2 \lesssim \|(Av)_S\|^2 \leq \|Av\|^2 \lesssim \|v\|^2.$$

For each triangle $\tau \in T$, we decompose v as $v = v_{\tau} + (v - v_{\tau})$, where v_{τ} is the part of v near τ . Then the high frequency component of Av locally decomposes into near-field interactions and far-field interactions:

$$(A\nu)_H|_\tau=(A\nu_\tau)_H|_\tau+(A(\nu-\nu_\tau))_H|_\tau.$$

For boundary integral operators, the far-field part is harmless, and the near-field part is ok if the underlying surface is regular (e.g., $C^{1,1}$).

Further developments

The inverse-type inequalities for polyhedral surfaces and for the 4 standard BIOs have been proved by Aurada, Feischl, Führer, Karkulik, Melenk, and Praetorius in 2012.

I speculate that wavelet techniques can be adapted to prove the same result.

It should also be possible to characterize the approximation classes.

Open problems

- higher order discretizations
- to characterize the approximation classes associated to the proposed adaptive BEMs
- to extend the analysis to transmission problems, and adaptive FEM-BEM coupling
- complexity analysis, i.e., the problem of quadrature and linear algebra solvers
- convergence rate for adaptive BEMs based on non-residual type error estimators