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Einstein constraint equations

Let M be a closed 3-manifold. The initial data for the Einstein evolution
equation on M consist of

@ Riemannian metric h on M

@ Symmetric 2-tensor K (extrinsic curvature of M inside the
space-time that is to be “grown")

They must satisfy the constraint equations

2 2 _ — _
scal — |K|” + @’I_(’) 0, divk dgﬁ J
MC MC

where p and j are related to energy-momentum density.
The system is highly underdetermined.



Conformal parameterization

This is a proposed way to parameterize the constraint solution set. The
free (or conformal) data consist of

@ Riemannian metric g on M, representing the conformal class
(gl ={e"g:ae C* (M)},
@ Symmetric transverse traceless 2-tensor o (TT-tensor),
@ Scalar function 7, specifying the mean curvature,
and the determined data consist of
@ Positive scalar function ue C°(M,R,),
o 1-form we Ql'(M).

1
We assume h=u'g, K= u72(0+Lw)+§Tg,
where )
L) ap = Vawp + Ve — ggabdivw.

Then the (vacuum) constraint equations are equivalent to

2 2
—8Au+ Ru+ grz w= |a+LwI2 u’’, divLw = gusdr.



Momentum constraint

Note that if dt =0 (CMC case), then the constraint system

2 2
—8Au+ Ru+ 512 W= |(7+Lw|2 u’, diviw = gusdr,

decouples. The equation
Aw=diviw = w,

is called the momentum (or vector) constraint equation. Note that in the
constraint system, the momentum constraint appears with w = %usdr.

The operator A is self-adjoint and strongly elliptic, and its kernel is given
by the conformal Killing fields.

kerA=kerL
In particular, we have the elliptic estimate

lwlwer S 1AW + llwll p



Lichnerowicz equation

With @ =0 and =0, the equation
—8Au+Ru+au’ =pu’

is called the Lichnerowicz equation. Note that in the constraint system,
the Lichnerowicz equation appears with a = 72 and f =|o + Lw|>.

Suppose @+ #0 and a, € L” with p>3. Then there exists a positive
solution we W2P if and only if one of the following conditions holds:

@ g is Yamabe positive, and B#0

@ gis Yamabe null, a #0, and #0

@ g is Yamabe negative, and there is a metric in [g] with scalar
curvature equal to —«

Moreover, in each case the solution is unique.
This settles the CMC case. There one even has a = const.

Contributors: York, Choquet-Bruhat, Isenberg, O Murchadha, Maxwell, ...



Conformal invariance

Let g=6%g. Then
~8Au+Ru+au’ = pu’ = -8Av+Rv+av’ Z pv’

with v=0"'u, and B=0"128.

Example usage: Isenberg and O Murchadha proved that the constraint
system has no solution if R=0, 0 =0, and %”“;’l ~0. Let us extend it to
the full nonnegative Yamabe class.

Let 6 >0 be such that g=0*g has R>0. Suppose that the constraint
system has a solution u. Then v=0"'u is the solution of the #-scaled
Lichnerowicz equation with 8=07'2|Lw|?>. At maximum of v

3. -7 _p-12 2 -7 -12 2 12 -7 _n-12 2 12
avssﬁv =07 ILwl“v" " SO Ndrlpllul v =07 ldT 5, 101 1%

2 2
Idzll, _ Ndzly,
a ~ 12

which gives a contradiction if is small enough.



Sub- and supersolutions

Positive function u is called a supersolution if
—8Au+Ru+au’ = pu’.
Subsolutions are defined analogously.

If u_ >0 is a subsolution and u; = u_ is a supersolution, then there exists
a solution u to the Lichnerowicz equation, satisfying u_ su<u,. If
uniqueness available, this implies pointwise bounds. Note also that
subsolutions (supersolutions) can always be scaled down (up).

Example subsolution: Let 8 >0 be such that g=0%g has R=0. Then solve
—8Av+ (R+a)v= =028,
which has a unique positive solution if R+a#0 and f=0. From
—8Acv+ Rev+a(ev)® - Blev) ™" = a((cr)’ - cv) + B(c— () ™),

we see that cv is a subsolution of the 6-scaled Lichnerowicz equation if
¢> 0 is sufficiently small. Hence 8~'cv is a subsolution of the original
Lichnerowicz equation.



Uniqueness

Suppose ©>0 and 6 >0 are two solutions of

—8Au+Ru+aw’ =pu’.
Let g=0%g. Then

R=075(-8A0+R0)=0°(B0" — ab®) = f—«a,
and so v=07"1u solves

0=-8Av+Rv+ar’ - fv ' =-8Av+a(r®-1)+pA-v).
Hence

fsW(v—mZ=—f8(u—1)Av=—fa(u5—1)(v—1)—fﬁ(1—u‘7)(u—1).

We conclude that v=const, and so v=1 unless a = =0. The latter
condition would force R=0 hence Yamabe null.

The scaling argument also implies nonexistence for Yamabe positive with
B =0 and Yamabe negative with a =0.



NonCMC case

Recall the constraint system
5 2.7 . 2
—-8Au+Ru+aw’ =|lo+Lw|“u ’, divLw = gu dr,

with a = %Tz. A picture to have in mind is

—8Au+Ru+aw’ =c/Va-A)"1a®Pu .

Isenberg-Moncrief '96: Near-CMC, Yamabe negative
Allen-Clausen-Isenberg '07: Near-CMC, Yamabe nonnegative
Holst-Nagy-Tsogtgerel '07: Small-TT, Yamabe positive, nonvacuum
Maxwell '08: Small-TT, Yamabe positive, vacuum

Maxwell '09: Model problem on T"

Dahl-Gicquaud-Humbert '10: Near-CMC, compactness of the set of
solutions, Co—density of metrics that admit solution

Tcheng '11: Model problem on S' x §?



Fixed point iterations

Let us write the constraint system

2
—8Au+Ru+au’ =|o+Lw*u™’, divLw = 3 Sdr,

with a = 272

, as
u:.5£(|0+Lw|2), w:M(quT).

We assume g, a and o are so that L(lo1?) is well-defined. For o this
means that o #0 if g is Yamabe nonnegative. Since o is [?>-orthogonal to
Lw, 0 #0 implies 0+ Lw# 0. The constraint system is equivalent to

u=N()  with N (w)=LHuldr)).
This iteration was introduced by Isenberg and Moncrief in 96.

In [Holst-Nagy-Tsogtgerel '07] we inverted only a linear part of the
Lichnerowicz equation.



Invariant set via supersolutions

To solve u= A (u), we need to establish an invariant set consisting of
positive functions for the operator A". For this purpose, global barriers
have been used.

A positive function u; is called a global upper barrier if it is a
supersolution of the Lichnerowicz equation with 8 =|o + L. (18d7)|? for
all 0<u<uy. If uy is a global upper barrier, then 0 < A (1) < uy
pointwise for all 0 < u< u,.

Example: Let u; >0 be a constant. We want

Ru++aui > |U+L¢ﬂ(u6dr)|2u17, for all O<u<u,.
Since

lo+ L Wbdr)| < lol+ I1dTl ol <ol + IdTllippllul ll e,

provided that % is smaller than some threshold value, any sufficiently
large constant u, yields a global upper barrier.

The same constant u, also provides an a priori upper bound.



Maxwell's floor

Global lower barriers were used in [Holst-Nagy-Tsogtgerel '07] to bound
the iteration from below. This restricted us to nonvacuum case for
Yamabe positive metrics. Shortly after, Maxwell in '08 resolved the issue
by the following elegant argument.

Let V=0 and V#0. Then the Green function G of —A + V satisfies
G(x,y) = ¢ for some constant ¢ > 0.

For the solution u of —Au+ Vu=f with f=0, this implies

u(x) = f Glx, ) f(y)dy = Cff= cllflipr.
We saw that 87 1cv is a subsolution (and so a lower bound), where
—8Av+ (R+a)v=pF=0"12p,
and ¢=min{l, |v]|;&}. Hence

2 2 2 2
o-1ev> WPl _ lol, +ILwlly, ol loli?,

~ 1Bl 181l Bl T 1+ ldT i, U e




One can apply the Schauder theorem with the invariant set {c< u<u,}.

Moreover, A is a contraction if % is small enough.

However, we want the invariant set to be the L™-ball U= {u: ||ulr < M}.
The Lichnerowicz solution operator £ : P — WP is C!, [Maxwell '08].
For u=%(p), we have

5 -7
IAulr S lule + lalelul}s, + 1Bl llu e,

1

and u~" is uniformly bounded, so A : U — U is compact.



Invariant set via a priori estimates

From
—8Au+Ru+aw’ =pu’, ie., —-8u’Au+Rub + au'? = B,

we get, with =0 + L. (15d7)|
f|Vu4|2 +Ri® + au™ <181 SN+ Idrl? vl 2.

Supposing R>0 and |v||;r < M, this yields
lul®s S ol + dzl* M2,
Similar argument gives

8+ 2 2 q12 8 2 2 12
Il 58 < (lol® + Ide i M*2) ullfy, hence lulf, < lol*"+Idz)"M'".

Take r=8n, and an invariant set is obtained if o] is small enough
(small-TT solutions).



Compact manifolds with boundary

What boundary conditions?
Outer boundary: Dirchlet u=1 or Robin d,u+u=1.

Inner boundary: Trapped surface condition. We want
0. =F2H+1t-K(v,v)<0.

In conformal quantities, this is
— =93 2 -6
0. =7F2u ° (20, u+ Hu) + §T_ uov,v),
and one ends up with a condition that looks like
20y u+ Hu+ au® + u~> +yu® =0.

The theory of Lichnerowicz equation can be extended to this case
[Holst-Tsogtgerel].



