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Einstein constraint equations Ric(N , ·) = 0
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Einstein constraint equations

Let M be a closed 3-manifold. The initial data for the Einstein evolution
equation on M consist of

Riemannian metric h on M

Symmetric 2-tensor K (extrinsic curvature of M inside the
space-time that is to be “grown”)

They must satisfy the constraint equations

scal−|K |2 + ( trK︸︷︷︸
MC

)2 = ρ, divK −d trK︸︷︷︸
MC

= j,

where ρ and j are related to energy-momentum density.
The system is highly underdetermined.



Conformal parameterization

This is a proposed way to parameterize the constraint solution set. The
free (or conformal) data consist of

Riemannian metric g on M, representing the conformal class
[g] = {eαg :α ∈ C∞(M)},
Symmetric transverse traceless 2-tensor σ (TT-tensor),
Scalar function τ, specifying the mean curvature,

and the determined data consist of
Positive scalar function u ∈ C∞(M ,R+),
1-form w ∈Ω1(M).

We assume h = u4g, K = u−2(σ+Lw)+ 1

3
τg,

where
(Lw)ab =∇awb +∇bwa − 2

3
gab divw.

Then the (vacuum) constraint equations are equivalent to

−8∆u+Ru+ 2

3
τ2u5 = |σ+Lw|2u−7, divLw = 2

3
u6dτ.



Momentum constraint

Note that if dτ= 0 (CMC case), then the constraint system

−8∆u+Ru+ 2

3
τ2u5 = |σ+Lw|2u−7, divLw = 2

3
u6dτ,

decouples. The equation

Aw ≡ divLw =ω,

is called the momentum (or vector) constraint equation. Note that in the
constraint system, the momentum constraint appears with ω= 2

3 u6dτ.

The operator A is self-adjoint and strongly elliptic, and its kernel is given
by the conformal Killing fields.

kerA = kerL

In particular, we have the elliptic estimate

‖w‖W 2,p . ‖Aw‖Lp +‖w‖Lp



Lichnerowicz equation

With α≥ 0 and β≥ 0, the equation

−8∆u+Ru+αu5 =βu−7

is called the Lichnerowicz equation. Note that in the constraint system,
the Lichnerowicz equation appears with α= 2

3τ
2 and β= |σ+Lw|2.

Suppose α+β 6≡ 0 and α,β ∈ Lp with p > 3. Then there exists a positive
solution u ∈ W 2,p if and only if one of the following conditions holds:

g is Yamabe positive, and β 6≡ 0

g is Yamabe null, α 6≡ 0, and β 6≡ 0

g is Yamabe negative, and there is a metric in [g] with scalar
curvature equal to −α

Moreover, in each case the solution is unique.

This settles the CMC case. There one even has α= const.

Contributors: York, Choquet-Bruhat, Isenberg, ÓMurchadha, Maxwell, ...



Conformal invariance

Let ḡ = θ4g. Then

−8∆u+Ru+αu5 Rβu−7 ⇐⇒ −8∆̄v+ R̄v+αv5 R β̄v−7

with v = θ−1u, and β̄= θ−12β.
Example usage: Isenberg and ÓMurchadha proved that the constraint
system has no solution if R ≥ 0, σ≡ 0, and ‖dτ‖∞

min |τ| ∼ 0. Let us extend it to
the full nonnegative Yamabe class.
Let θ > 0 be such that ḡ = θ4g has R̄ ≥ 0. Suppose that the constraint
system has a solution u. Then v = θ−1u is the solution of the θ-scaled
Lichnerowicz equation with β̄= θ−12|Lw|2. At maximum of v

αv5 ≤ β̄v−7 = θ−12|Lw|2v−7 . θ−12‖dτ‖2
Lp‖u‖12

L∞v−7 ≤ θ−12‖dτ‖2
Lp‖θ‖12

L∞v5

which gives a contradiction if
‖dτ‖2

Lp

α ≡ ‖dτ‖2
Lp

τ2 is small enough.



Sub- and supersolutions

Positive function u is called a supersolution if

−8∆u+Ru+αu5 ≥βu−7.

Subsolutions are defined analogously.

If u− > 0 is a subsolution and u+ ≥ u− is a supersolution, then there exists
a solution u to the Lichnerowicz equation, satisfying u− ≤ u ≤ u+. If
uniqueness available, this implies pointwise bounds. Note also that
subsolutions (supersolutions) can always be scaled down (up).

Example subsolution: Let θ > 0 be such that ḡ = θ4g has R̄ ≥ 0. Then solve

−8∆̄v+ (R̄+α)v = β̄≡ θ−12β,

which has a unique positive solution if R̄+α 6≡ 0 and β≡ 0. From

−8∆̄cv+ R̄cv+α(cv)5 − β̄(cv)−7 =α(
(cv)5 − cv

)+ β̄(
c− (cv)−7) ,

we see that cv is a subsolution of the θ-scaled Lichnerowicz equation if
c > 0 is sufficiently small. Hence θ−1cv is a subsolution of the original
Lichnerowicz equation.



Uniqueness

Suppose u > 0 and θ > 0 are two solutions of

−8∆u+Ru+αu5 =βu−7.
Let ḡ = θ4g. Then

R̄ = θ−5(−8∆θ+Rθ) = θ−5(βθ−7 −αθ5) = β̄−α,

and so v = θ−1u solves

0 =−8∆̄v+ R̄v+αv5 − β̄v−7 =−8∆̄v+α(v5 −1)+ β̄(1−v−7).
Hence∫

8|∇̄(v−1)|2 =−
∫

8(v−1)∆̄v =−
∫
α(v5 −1)(v−1)−

∫
β̄(1−v−7)(v−1).

We conclude that v = const, and so v ≡ 1 unless α=β≡ 0. The latter
condition would force R̄ ≡ 0 hence Yamabe null.

The scaling argument also implies nonexistence for Yamabe positive with
β≡ 0 and Yamabe negative with α≡ 0.



NonCMC case

Recall the constraint system

−8∆u+Ru+αu5 = |σ+Lw|2u−7, divLw = 2

3
u6dτ,

with α= 2
3τ

2. A picture to have in mind is

−8∆u+Ru+αu5 = c |∇(1−∆)−1(u6)|2u−7.

Isenberg-Moncrief ’96: Near-CMC, Yamabe negative
Allen-Clausen-Isenberg ’07: Near-CMC, Yamabe nonnegative
Holst-Nagy-Tsogtgerel ’07: Small-TT, Yamabe positive, nonvacuum
Maxwell ’08: Small-TT, Yamabe positive, vacuum
Maxwell ’09: Model problem on Tn

Dahl-Gicquaud-Humbert ’10: Near-CMC, compactness of the set of
solutions, C0-density of metrics that admit solution
Tcheng ’11: Model problem on S1 ×S2



Fixed point iterations

Let us write the constraint system

−8∆u+Ru+αu5 = |σ+Lw|2u−7, divLw = 2

3
u6dτ,

with α= 2
3τ

2, as
u =L (|σ+Lw|2), w =M (u6dτ).

We assume g, α and σ are so that L (|σ|2) is well-defined. For σ this
means that σ 6≡ 0 if g is Yamabe nonnegative. Since σ is L2-orthogonal to
Lw, σ 6≡ 0 implies σ+Lw 6≡ 0. The constraint system is equivalent to

u =N (u) with N (u) =L (M (u6dτ)).

This iteration was introduced by Isenberg and Moncrief in 96.

In [Holst-Nagy-Tsogtgerel ’07] we inverted only a linear part of the
Lichnerowicz equation.



Invariant set via supersolutions

To solve u =N (u), we need to establish an invariant set consisting of
positive functions for the operator N . For this purpose, global barriers
have been used.

A positive function u+ is called a global upper barrier if it is a
supersolution of the Lichnerowicz equation with β= |σ+LM (u6dτ)|2 for
all 0 < u ≤ u+. If u+ is a global upper barrier, then 0 <N (u) ≤ u+
pointwise for all 0 < u ≤ u+.

Example: Let u+ > 0 be a constant. We want

Ru++αu5
+ ≥ |σ+LM (u6dτ)|2u−7

+ , for all 0 < u ≤ u+.
Since

|σ+LM (u6dτ)|. |σ|+‖dτ‖Lp‖u6‖L∞ . |σ|+‖dτ‖Lp‖u6
+‖L∞ ,

provided that ‖dτ‖
minτ is smaller than some threshold value, any sufficiently

large constant u+ yields a global upper barrier.

The same constant u+ also provides an a priori upper bound.



Maxwell’s floor

Global lower barriers were used in [Holst-Nagy-Tsogtgerel ’07] to bound
the iteration from below. This restricted us to nonvacuum case for
Yamabe positive metrics. Shortly after, Maxwell in ’08 resolved the issue
by the following elegant argument.

Let V ≥ 0 and V 6≡ 0. Then the Green function G of −∆+V satisfies
G(x,y) ≥ c for some constant c > 0.

For the solution u of −∆u+Vu = f with f ≥ 0, this implies

u(x) =
∫

G(x,y)f (y)dy ≥ c
∫

f = c‖f ‖L1 .

We saw that θ−1cv is a subsolution (and so a lower bound), where

−8∆̄v+ (R̄+α)v = β̄≡ θ−12β,

and c = min{1,‖v‖−1
L∞ }. Hence

θ−1cv &
‖β‖L1

‖β‖Lp
=

‖σ‖2
L2 +‖Lw‖2

L2

‖β‖Lp
≥

‖σ‖2
L2

‖β‖Lp
&

‖σ‖2
L2

1+‖dτ‖2
2p‖u12+ ‖L∞



Compactness

One can apply the Schauder theorem with the invariant set {c ≤ u ≤ u+}.
Moreover, N is a contraction if ‖dτ‖

minτ is small enough.

However, we want the invariant set to be the Lr-ball U = {u : ‖u‖Lr ≤ M}.

The Lichnerowicz solution operator L : Lp → W 2,p is C1, [Maxwell ’08].

For u =L (β), we have

‖∆u‖Lp . ‖u‖Lp +‖α‖L∞‖u‖5
L5p +‖β‖Lp‖u−7‖L∞ ,

and u−1 is uniformly bounded, so N : U → U is compact.



Invariant set via a priori estimates

From

−8∆u+Ru+αu5 =βu−7, i.e., −8u7∆u+Ru8 +αu12 =β,

we get, with β= |σ+LM (v6dτ)|∫
|∇u4|2 +Ru8 +αu12 . ‖β‖L1 . ‖σ2‖+‖dτ‖2‖v‖12

Lr .

Supposing R > 0 and ‖v‖Lr ≤ M, this yields

‖u‖8
L8 . ‖σ‖2 +‖dτ‖2M12.

Similar argument gives

‖u‖8+q
L8+q .

(‖σ‖2 +‖dτ‖2M12)‖u‖q
Lq , hence ‖u‖8n

L8n . ‖σ‖2n+‖dτ‖2nM12n.

Take r = 8n, and an invariant set is obtained if ‖σ‖ is small enough
(small-TT solutions).



Compact manifolds with boundary

What boundary conditions?

Outer boundary: Dirchlet u = 1 or Robin ∂ru+u = 1.

Inner boundary: Trapped surface condition. We want

θ± ≡∓2H +τ−K (ν,ν) ≤ 0.

In conformal quantities, this is

θ± ≡∓2u−3 (2∂νu+Hu)+ 2

3
τ−u−6σ(ν,ν),

and one ends up with a condition that looks like

2∂νu+Hu+αu3 +βu−3 +γue = 0.

The theory of Lichnerowicz equation can be extended to this case
[Holst-Tsogtgerel].


