PCGM 25

Solutions of the Einstein constraint equations with freely specified mean curvature

Gantumur Tsogtgerel

University of California, San Diego

Joint with M. Holst, J. Isenberg and G. Nagy

January 21, 2013

Initial value formulation of the Einstein equations

The Lorentzian manifold (M, g) satisfies

$$G(\mathbf{g}) := \mathsf{Ric}(\mathbf{g}) - \tfrac{1}{2} R(\mathbf{g}) \mathbf{g} = \mathbf{0}.$$

Suppose $M=\mathbb{R}\times\Sigma,$ each $\Sigma_t=\{t\}\times\Sigma$ is spacelike. On each $\Sigma_t,$ one has

$$\begin{split} R(g) &- |\mathsf{K}|_g^2 + (\mathsf{tr}_g\mathsf{K})^2 = \mathsf{0}, \\ & \operatorname{div}_g\mathsf{K} - \mathsf{d}(\mathsf{tr}_g\mathsf{K}) = \mathsf{0}. \end{split} \tag{C}$$

Conversely, if (C) holds on some Riemannian manifold (Σ, g) , then there are

- a Lorentzian manifold (M, g)
- and an embedding $\theta: \Sigma \to M$

such that $G(\mathbf{g}) = 0$ and that $\theta_* g$ and $\theta_* K$ are the first and second fundamental forms of $\theta \Sigma \subset M$ [Choquet-Bruhat '52].

The conformal method

Let (Σ, \hat{g}) be a Riemannian manifold, σ be a symmetric tensor with div $_{\hat{g}}\sigma = 0$, tr $_{\hat{q}}\sigma = 0$, and let $\tau \in C^{\infty}(\Sigma)$. With φ a positive scalar, and w a vector field, put

$$g = \phi^4 \hat{g}, \quad K = \phi^{-2}(\sigma + L_{\hat{g}}w) + \frac{1}{3}\tau \phi^4 \hat{g},$$

where $L_{\hat{g}}w = \pounds_w \hat{g} - \frac{2}{3}\hat{g} \operatorname{div}_{\hat{g}}w$. Then (C) is equivalent to

$$\begin{split} -8\Delta_{\hat{g}}\varphi + R(\hat{g})\varphi + \frac{2}{3}\tau\varphi^5 - \left|\sigma + L_{\hat{g}}w\right|^2_{\hat{g}}\varphi^{-7} = 0,\\ -\text{div}_{\hat{g}}L_{\hat{g}}w + \frac{3}{2}\varphi^6d\tau = 0. \end{split}$$

Let us rewrite the above as

$$A\phi + R\phi + \frac{2}{3}\tau\phi^5 - a(w)\phi^{-7} =: A\phi + f(w, \phi) = 0,$$

$$Bw + \phi^6 d\tau = 0.$$

Note that $tr_q K = \tau$ and that if $\tau = const$ the system decouples.

Fixed point approach

[Holst, Nagy, GT '07, '08]

 $A\varphi + f(w, \varphi) = 0$, $Bw + \varphi^6 d\tau = 0$.

With $S:\varphi\mapsto -B^{-1}(\varphi^6d\tau)$ this can be written as

 $A\phi + f(S(\phi), \phi) = 0.$

Let $0<\varphi_-\leqslant\varphi_+<\infty$ be global barriers, i.e.,

 $A\varphi_{-}+f(w,\varphi_{-})\leqslant 0, \qquad A\varphi_{+}+f(w,\varphi_{+})\geqslant 0,$

for all $w \in S([\phi_{-}, \phi_{+}])$. Then for s > 0 large, and any $w \in S([\phi_{-}, \phi_{+}])$

$$\mathsf{T}_{w}: \phi \mapsto (\mathsf{A} + \mathsf{sI})^{-1}(\mathsf{s}\phi - \mathsf{f}(w, \phi))$$

is monotone increasing on $U=[\varphi_-,\varphi_+],$ and for $\varphi\in U$

$$T(\varphi) \equiv T_{S(\varphi)}(\varphi) \leqslant T_{S(\varphi)}(\varphi_+) \leqslant \varphi_+, \qquad T(\varphi) \geqslant \varphi_-,$$

so T : U \rightarrow U. Since T is compact, there is a fixed point in U.

Global super-solution

[Holst, Nagy, GT '07, '08]

We want to find $\phi > 0$ such that

$$A\varphi + f(w, \varphi) = A\varphi + R\varphi + \frac{2}{3}\tau\varphi^{5} - a(w)\varphi^{-7} \ge 0.$$

for all $w \in S([0, \phi])$. Recall that $\mathfrak{a}(w) = |\sigma + L_{\hat{g}}w|_{\hat{\mathfrak{a}}}^2$. Elliptic estimates give

 $\mathfrak{a}(w) \leqslant p + q \|\varphi\|_{C^0}^{12}, \qquad \mathrm{with} \ q \sim |d\tau|^2$

Assume that R = const > 0, $\tau = const$, and let $\varphi = const > 0$.

$$\begin{split} \mathsf{R}\varphi + \tfrac{2}{3}\tau\varphi^5 - \mathfrak{a}(w)\varphi^{-7} &\geqslant \tfrac{2}{3}\tau\varphi^5 + \mathsf{R}\varphi - p\varphi^{-7} - q\varphi^{-7}\varphi^{12} \\ &\geqslant \varphi^{-7}\left(\mathsf{R}\varphi^8 - (q - \tfrac{2}{3}\tau)\varphi^{12} - p\right) \end{split}$$

If p is small enough (depending on how large q is), choosing $\varphi>0$ sufficiently small one can ensure that the above is nonnegative.

Asymptotically Euclidean manifolds

[Choquet-Bruhat, Isenberg, York '07], [Holst, Isenberg, Nagy, GT '09]

Let $\phi > 0$ be the solution to

$$-\Delta arphi = \eta^{-eta}$$
 ,

for a suitable $\beta > 0$. Then $\varphi = \lambda \varphi$ is a global supersolution if

$$-\phi\Delta\lambda - 2(d\phi)(d\lambda) + \epsilon\eta^{-\beta} \ge 0$$
,

for certain $\varepsilon > 0$.

Manuscripts, Collaborators, Acknowledgments

- HNT2 M. HOLST, G. NAGY, AND GT, Far-from-constant mean curvature solutions of Einstein's constraint equations with positive Yamabe metrics. *Phys. Rev. Let.*, 100:161101, 2008. Also available as arXiv:0802.1031 [gr-qc]
- HNT1 M. HOLST, G. NAGY, AND GT, Rough solutions of the Einstein constraint equations on closed manifolds without near-CMC conditions. arXiv:0712.0798 [gr-qc]. To appear in *Comm. Math. Phys.*.
- HINT M. HOLST, J. ISENBERG, G. NAGY, AND GT, A class of solutions of the Einstein constraint equations on asymptotically Euclidean manifolds with freely specified mean curvature. In preparation.

Acknowledgments:

NSF: DMS 0411723, DMS 0715146 (Numerical geometric PDE) DOE: DE-FG02-05ER25707 (Multiscale methods)