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Initial value formulation of the Einstein equations

The Lorentzian manifold (M, g) satisfies

G(g) := Ric(g) − 1
2
R(g)g = 0.

Suppose M = R× Σ, each Σt = {t}× Σ is spacelike. On each Σt, one has

R(g) − |K|2g + (trgK)
2 = 0,

divgK− d(trgK) = 0.
(C)

Conversely, if (C) holds on some Riemannian manifold (Σ,g), then there are

• a Lorentzian manifold (M, g)

• and an embedding θ : Σ→M

such that G(g) = 0 and that θ∗g and θ∗K are the first and second fundamental
forms of θΣ ⊂M [Choquet-Bruhat ’52].



The conformal method

Let (Σ, ĝ) be a Riemannian manifold, σ be a symmetric tensor with divĝσ = 0,
trĝσ = 0, and let τ ∈ C∞(Σ). With φ a positive scalar, and w a vector field, put

g = φ4ĝ, K = φ−2(σ+ Lĝw) +
1
3
τφ4ĝ,

where Lĝw = £wĝ−
2
3
ĝ divĝw. Then (C) is equivalent to

−8∆ĝφ+ R(ĝ)φ+ 2
3
τφ5−

∣∣σ+ Lĝw
∣∣2
ĝ
φ−7 = 0,

−divĝLĝw+ 3
2
φ6dτ = 0.

Let us rewrite the above as

Aφ+ Rφ+ 2
3
τφ5 − a(w)φ−7 =: Aφ+ f(w,φ) = 0,

Bw+ φ6dτ = 0.

Note that trgK = τ and that if τ = const the system decouples.



Fixed point approach

[Holst, Nagy, GT ’07, ’08]

Aφ+ f(w,φ) = 0, Bw+ φ6dτ = 0.

With S : φ 7→ −B−1(φ6dτ) this can be written as

Aφ+ f(S(φ),φ) = 0.

Let 0 < φ− 6 φ+ <∞ be global barriers, i.e.,

Aφ− + f(w,φ−) 6 0, Aφ+ + f(w,φ+) > 0,

for all w ∈ S([φ−,φ+]). Then for s > 0 large, and any w ∈ S([φ−,φ+])

Tw : φ 7→ (A+ sI)−1(sφ− f(w,φ))

is monotone increasing on U = [φ−,φ+], and for φ ∈ U

T(φ) ≡ TS(φ)(φ) 6 TS(φ)(φ+) 6 φ+, T(φ) > φ−,

so T : U→ U. Since T is compact, there is a fixed point in U.



Global super-solution
[Holst, Nagy, GT ’07, ’08]

We want to find φ > 0 such that

Aφ+ f(w,φ) = Aφ+ Rφ+ 2
3
τφ5 − a(w)φ−7 > 0.

for all w ∈ S([0,φ]). Recall that a(w) =
∣∣σ+ Lĝw

∣∣2
ĝ
. Elliptic estimates give

a(w) 6 p+ q‖φ‖12C0 , with q ∼ |dτ|2

Assume that R = const > 0, τ = const, and let φ = const > 0.

Rφ+ 2
3
τφ5 − a(w)φ−7 > 2

3
τφ5 + Rφ− pφ−7 − qφ−7φ12

> φ−7
(
Rφ8 − (q− 2

3
τ)φ12 − p

)
If p is small enough (depending on how large q is), choosing φ > 0 sufficiently
small one can ensure that the above is nonnegative.



Asymptotically Euclidean manifolds

[Choquet-Bruhat, Isenberg, York ’07], [Holst, Isenberg, Nagy, GT ’09]

Let ϕ > 0 be the solution to
−∆ϕ = η−β,

for a suitable β > 0. Then φ = λϕ is a global supersolution if

−ϕ∆λ− 2(dϕ)(dλ) + εη−β > 0,

for certain ε > 0.
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