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The problem

The Navier-Stokes-a 8 equations:
0, v—A(l - f2A) u+ (gradv)u+ (gradu) 'v+Vp=0,
v=(1-a*Au,  V-u=0,
with @ > 8> 0. Wall-eddy boundary conditions:
B*(1-nen)(gradw +y(gradw)’ ) n=lw, u=0,

with |yl <1 and ¢>0. [Fried&Gurtin'08]
Study the spatial principal part:

A2u+Vp=f, V-u=0, & b.c.



Integration by parts

Let G=gradw +y(gradw)”, with w = curlu. Then

f G:gradcurlg = - f divG- curle + f Gn-curle
Q Q aQ
=—f curldiVG‘(/)+f Gn-curlgp + (nx divG) - ¢
Q aQ

Assume Vu=0 and ¢|sq =0. Then we have curldivG = —A?u and
g-curlp = —(nx g)-0,¢p, hence

fG:gradcurl(p:f Azu-(p—f (nx Gn)-0pd.

Q Q 00

The boundary condition is of the form —nx nx Gn= kw, which implies
knxw=nxGn (k=2162).

If this is satisfied, and A2u =0, then

fG:gradcurl(p+kf (nxw)-0,¢p =0, Ve :Pplag =0.
Q 00



Variational formulation

Let 7V ={ue2(Q):V-u=0}, V=closg ¥, and V*=VnH*(Q). Define the
continuous bilinear form a: V? x V2 — R by

a(u, @) :f G:gradcurle + k/ (nx w) -0,
Q o)
where k= ¢/p%>0. This bilinear form is symmetric, since

G:grady = w; jy;j + YW ¥ij = 0ijWij+ YWV

and (nxw) -0, =—w-curlp =—(nx 0, - (nxd,d), the latter inequality
true provided ulsq =0.

Let ue V* satisfy a(u,P) = (f, )2 for all pe V2, where fe I? is a given
function. Then
ANu+Vp=f in Q,

u=nxnxGn+kw=0 on 0Q.



Coercivity: The volume term

We want to show that a(u, u) = cIIuII2 - Cl uII2 for ue V2.
Case y=-1:

fQ(wi,j—wj,i)wi,j = %Ilcurlcurlull =3 IIAuIIL2 = CIIuII
Case y =1: Korn's second inequality
f(wi,j+wj,i)wz,]—c||w”
Q
Case |yl < 1:
wi,'wi,'if (wi,~+yw~,i)wi,~+|y|f Wi 0
_[Q JOL = ) O j J o uh
To conclude the latter two cases, note that

lull gz < CllAul 2 = llcurlwll 2 < @l g



Coercivity: The boundary term

We have established

2 2 2 2
aw,w zclulls, —k| Inx0,ul”=clully, —kClull?s,.
H- 90 H- H

In order for this to be positive, we need
kCiC<c,
where Cp is the constant of the Friedrichs inequality
lull garz < Cpllull g2,
that has the behaviour Cf,~ diam(Q). To conclude, we have
alu,u) = c|| ullz2 - C| ulli2 for wueV?

and moreover there exists a constant 6 >0 such that

¢ 5B

B < m lmplles C=0.



Hilbert-Schmidt + elliptic regularity

Define the operator A: vz - (v2y by (Au)(¢) = a(u, @), and restrict its
range to H=close;27, i.e., consider A as an unbounded operator in H
with the domain dom(A) = {u€ V?: Aue H}.

Then A is self-adjoint and has countably many eigenvalues 1; <1, <...,
with 1, = +00 as n—oco. If £ >0 is sufficiently small, then 1; > 0.

Moreover, the corresponding eigenfunctions form both an orthonormal
basis in H, and a basis in V2, orthogonal with respect to a(-,-) + u(-,-) for
some sufficiently large p.

Regularity results on the solutions of Au=f can be derived from the
Agmon-Douglis-Nirenberg theory for elliptic systems.

One also has a functional calculus, e.g.,

gA U= gAn)(u, vy



Fixed-point formulation

In H, and with fe€ I?H, consider the initial value problem
0 Au+ pPAu=f, where A=1-a’A:V? > H.

This is equivalent to

dw+BATAN Zv=ATZf,  with v=Aly
|
implying that D

1 1 t 1 1
u(t) = A"2e"PA2u0) + f A" 2T P A72 f(1)dr.
0
Restricting attention to the time interval [0, T], let us write it as
u=uy+ of.

Let B(v,u) = Pl(gradv)u+ (gradu)Tl/], and let P: I2 — H be the Leray
projector. Then Navier-Stokes-aff equations are

0:Au+ B2Au—Au+B(Au,u) =0,
or equivalently
u=uy+PAu—d®B(Au, u).



Local existence and blow-up criterion

Recall the fixed-point formulation
u=ug+PAu—OB(Au, u).
Noting that “B(Au, u) = d(Au-w)", we can bound

IBAw, 1)l S lull?,

and show that u— B(Au, u) is locally Lipschitz as a mapping vt vt

Hence we can design a Banach fixed point iteration in V*, assuming that
T >0 is suitably small. This also gives the following blow-up criterion:

If there is a finite time T* < oo beyond which the solution cannot be
continued, then it is necessary that [|u(f)||g+ — o0 as t /' T*.

So global existence is proved if we show that [[u(f)| ;4 is bounded by a
finite constant depending on the time of assumed existence.



A priori estimates and global well-posedness

Pairing
0;Au+ B?Au— Au+ B(Au,u) =0, (%)
with u, we get
1d
—— (A, u) + B2(Au, uy + (Vu, Vi) =0,

2dt
which gives

2

%, implying  ueL®VnI*VZ

L2, + cllul, < Clul
dt H! H2 —
If we act on (x) by A before pairing with u, we get

d
31+ ellulif = Cllul, +1(AB(AL, ), 1)].

Taking into account the bound

[(B(Aw, w), Auy| S I Aul gl el Aull 2 < ellully + Cellul3 w3,

we get ue [®V3.



Similarly, if we act by A? before pairing with u, we get

d .o 2 2 2
d_t”””m +cllullys < Cllully, + KA”B(Au, w), w).

We have the bounds
1 3
[{AZ B(Au, ), A2 u)| S I B(Au, )|l g2 ll ull s

and
IBAw, )l gz S NAull s lleell s S Nl s el s,

giving rise to

2

2 2 2 2 2
s+ cllule < Clul?, +ellul?e + Cellull®s llull2 .

— lull
dr H

Thus ue I®H®, and global existence follows.



Let a, and B, be sequences satisfying 0 < a, < ¢, — 0, and consider
0 Aty + B2 Aty — Aty + B(A i, ;) =0,

where A, has a, in it, and k= [n/ﬁ% is fixed, so that A does not change.
Also, assume that the initial conditions are the same.

Then we can show that
u, € I°HNI?V, aup € L™V, Buy € I2V?,

with uniformly bounded norms.

Hence there exists ue L°H N L?V such that up to a subsequence
up,—u weak*in L®I? and up,—u weaklyin I?H'.

Moreover, u is a weak solution of the Navier-Stokes equation. Note that
the second order boundary condition will be lost under the limit.



