Lecture 25: Section 6.4

The Gram-Schmidt orthogonalization

2 Applications of the Gram-Schmidt process

The Gram-Schmidt orthogonalization

Let $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be a basis for a subspace H of \mathbb{R}^n . Define

$$\begin{aligned} \mathbf{u}_1 &= \mathbf{v}_1 \\ \mathbf{u}_2 &= \mathbf{v}_2 - \frac{(\mathbf{v}_2 \cdot \mathbf{u}_1)}{(\mathbf{u}_1 \cdot \mathbf{u}_1)} \mathbf{u}_1 \\ \mathbf{u}_3 &= \mathbf{v}_3 - \frac{(\mathbf{v}_3 \cdot \mathbf{u}_1)}{(\mathbf{u}_1 \cdot \mathbf{u}_1)} \mathbf{u}_1 - \frac{(\mathbf{v}_3 \cdot \mathbf{u}_2)}{(\mathbf{u}_2 \cdot \mathbf{u}_2)} \mathbf{u}_2 \\ & \dots \\ \mathbf{u}_p &= \mathbf{v}_p - \frac{(\mathbf{v}_p \cdot \mathbf{u}_1)}{(\mathbf{u}_1 \cdot \mathbf{u}_1)} \mathbf{u}_1 - \frac{(\mathbf{v}_p \cdot \mathbf{u}_2)}{(\mathbf{u}_2 \cdot \mathbf{u}_2)} \mathbf{u}_2 - \dots - \frac{(\mathbf{v}_p \cdot \mathbf{u}_{p-1})}{(\mathbf{u}_{p-1} \cdot \mathbf{u}_{p-1})} \mathbf{u}_{p-1} \end{aligned}$$

Then $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ is an orthogonal basis for H. In addition

Span
$$\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$$
 = Span $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ for $1 \le k \le p$

An alternative description of the Gram-Schmidt process:

$$\begin{aligned} \mathbf{u}_1 &= \mathbf{v}_1, & \mathbf{u}_2 &= \mathbf{v}_2 - \operatorname{Proj}_{\operatorname{Span}\left\{\mathbf{u}_1\right\}} \mathbf{v}_2, & \mathbf{u}_3 &= \mathbf{v}_3 - \operatorname{Proj}_{\operatorname{Span}\left\{\mathbf{u}_1,\mathbf{u}_1\right\}} \mathbf{v}_3 \\ & \dots, & \mathbf{u}_p &= \mathbf{v}_p - \operatorname{Proj}_{\operatorname{Span}\left\{\mathbf{u}_1,\dots,\mathbf{u}_{p-1}\right\}} \mathbf{v}_p \end{aligned}$$

Applications of the Gram-Schmidt process

QR factorization

Let A be a $k \times n$ matrix with linearly independent columns. Then A = QR, where

- the columns of $Q(k \times n)$ form an orthonormal basis for Col A
- R is an upper triangular matrix with positive entries on its diagonal (so invertible)

Q can be obtained by applying the Gram-Schmidt on the columns of A, followed by normalization. We have $R=Q^TA$.

Least-squares problems

If the columns of A are linearly independent and A=QR, then

$$A^T A \hat{\mathbf{x}} = A^T \mathbf{b} \quad \Leftrightarrow \quad \hat{\mathbf{x}} = R^{-1} Q^T \mathbf{b}$$

Orthogonal diagonalization of symmetric matrices

Let $A=A^T$, let $\lambda_1,\ldots,\lambda_k$ be the eigenvalues of A, and $\mathcal{V}_1,\ldots,\mathcal{V}_k$ be bases for the corresponding eigenspaces $\mathrm{Nul}\,(A-\lambda_i I)$. To orthonormalize \mathcal{V}_i we can use the Gram-Schmidt, and get the orthonormal basis \mathcal{U}_i for $\mathrm{Nul}\,(A-\lambda_i I)$.