Lecture 22: Section 6.1

Inner product, length, angle, and distance

Inner product, length, angle, and distance

For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, the inner product of \mathbf{u} and \mathbf{v} , (aka dot- or scalar prod.), is

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = u_1 v_1 + \ldots + u_n v_n$$

Properties:

• $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u},$ $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w},$ $(\alpha \mathbf{u}) \cdot \mathbf{v} = \alpha(\mathbf{u} \cdot \mathbf{v})$

•
$$\mathbf{u} \cdot \mathbf{u} \ge 0$$
, and $\mathbf{u} \cdot \mathbf{u} = 0 \Leftrightarrow \mathbf{u} = 0$

Length, angle, and distance

- Length (norm, magnitude) of \mathbf{u} : $\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{u_1^2 + \ldots + u_n^2}$
- Angle θ between **u** and **v**: $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$
- Distance between u and v: dist (u, v) = ||u v||

Normalization

- $\|\alpha \mathbf{u}\| = |\alpha| \|\mathbf{u}\|$
- If $\mathbf{u} \neq \mathbf{0}$, the length of $\frac{1}{\|\mathbf{u}\|}\mathbf{u}$ is 1

If $\mathbf{u} \cdot \mathbf{v} = 0$ for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, we say they are orthogonal, and write $\mathbf{u} \perp \mathbf{v}$

The Pythagorean Theorem: $u \perp v \Leftrightarrow \|u+v\|^2 = \|u\|^2 + \|v\|^2$

Let *H* be a subspace of \mathbb{R}^n

- If $\mathbf{z} \perp \mathbf{v}$ for all $\mathbf{v} \in H$, then we say $\mathbf{z} \in \mathbb{R}^n$ is orthogonal to H, and write $\mathbf{z} \perp H$
- $H^{\perp} = \{ \mathbf{z} \in \mathbb{R}^n : \mathbf{z} \perp H \}$ (the orth. complement of *H*, a subspace of \mathbb{R}^n)
- Suppose $H = \text{Span} \{ \mathbf{v}_1, \dots, \mathbf{v}_p \}$. Then $\mathbf{z} \perp \mathbf{v}_1, \dots, \mathbf{z} \perp \mathbf{v}_p \Leftrightarrow \mathbf{z} \perp H$

A fundamental theorem

For any matrix A, it holds that

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$
 and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$

Let $H = \text{Span} \{ \mathbf{v}_1, \dots, \mathbf{v}_p \}$, and $P = [\mathbf{v}_1, \dots, \mathbf{v}_p]$. We have H = Col P.

 $H^{\perp} = (\operatorname{Col} P)^{\perp} = \operatorname{Nul} P^{T}$