## Lecture 21: Sections 5.3



If  $A = PDP^{-1}$  with D diagonal, A is called diagonalizable.

 $n \times n$  matrix *A* is diagonalizable iff *A* has *n* linearly independent eigenvectors. If  $\mathbf{v}_1, \ldots, \mathbf{v}_n$  are the eigenvectors, and  $\lambda_1, \ldots, \lambda_n$  are the corresponding eigenvalues

$$A = PDP^{-1}$$
 with  $P = [\mathbf{v}_1 \dots \mathbf{v}_n], \quad D = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$ 

Algorithm for diagonalizing A:

- Find the eigenvalues of A, i.e., solve the characteristic equation  $det(A \lambda I) = 0$
- Find bases for the eigenspaces of A, i.e., basis for Nul  $(A \lambda_k I)$  for each  $\lambda_k$
- If there is enough linearly independent eigenvectors, construct P and D
- Check:  $A = PDP^{-1}$  or AP = PD

Some criteria:

- distinct eigenvalues, or symmetric matrix ⇒ diagonalizable
- dimension of Nul  $(A \lambda_k I)$  is less than the multiplicity of  $\lambda_k \Rightarrow$  not diagonalizable